乳化液泵机液耦合建模与仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着液压传动与控制技术的不断发展,对乳化液泵的性能提出了更高的要求。为研究、设计和开发高性能的乳化液泵,单纯运用传统的设计方法需要进行样机的试制和各种性能试验,周期长、成本高,变更参数或条件困难,有时甚至无法实现。近年来出现的虚拟样机技术,可对泵的传动系统、液力系统的运动特性和动力学特性进行较为精确的仿真研究。
     本课题以RBW315/31.5型乳化液泵为研究对象,在CATIA三维设计软件建立的虚拟样机的基础上,主要应用多体系动力分析仿真软件ADAMS和液压系统仿真软件AMEsim,建立了乳化液泵传动系统和液力系统的虚拟仿真模型,并研究了两种软件和模型在进行联合仿真时的耦合接口问题。
     通过建立虚拟仿真环境下的乳化液泵机液耦合模型,对该型乳化液泵的液力系统进行了仿真研究,研究了曲轴在不同转速情况下,液力系统中柱塞缸内压力、输出流量以及吸排液阀的运动特性。研究得出,曲轴转速直接影响吸、排液阀的启闭特性,进而会影响泵的容积效率;在提高曲轴转速减小泵结构尺寸的前提下,以吸、排液阀的滞后角最小,泵容积效率达到最大为目标,合理地选择了乳化液泵的曲轴速度。仿真研究方法和结果对于研究分析乳化液泵性能、提高新产品开发的质量具有一定的实际意义。
With the developing of fluid power transmission and control technology, an increasing demanding for capability of Emulsion pump is even higher. To research, design and empolder more high-powered Emulsion Pump, only through traditional design ways need more cycle and cost to trial-produce and test prototype, and can not change parameter of Emulsion pump freely, even some can not be realized. In recent years, The virtual prototyping technology appears, which can make accurate simulation research on the movement and the dynamics of the transmission system and hydraulic systems of pumps.
     This paper has taken RBW315/31.5 emulsion pump as the study object. Based on the Virtual Prototyping Technology established by three dimensional design software CATIA, it has mainly applied multi-body system simulation software ADAMS and hydraulic system simulation software AMEsim for establishing emulsion pump drive system and hydraulic system of virtual simulation model, and studied the issue of coupling interface produced by two types of software and models when conducting joint simulation.
     Through the establishment of virtual simulation environment, it has researched the simulation of this type of emulsion pump the hydraulic system, as well as the plunger-cylinder pressure, output flow and the movement features of suction and discharge liquid valve in the hydraulic system in different circumstances. According to the research, crank speed directly affects the hoist characteristics of suction and discharge liquid valve, and then impact on pump volumetric efficiency; Under the premise of improving the speed of crankshaft and reducing the size of pump, choose logically the emulsion pump speed of the crankshaft, with the purpose of the minimum angle lag of suction and discharge liquid valve and the maximum of pump volumetric efficiency. Simulation research methods and results have certain practical significance in researching performance of emulsion pump, and improving the quality of new products.
引文
[1]JenY,LeeC.Robustspeedcontrolofapump-con-trolledmotorsystem[J].IEEEProceding-D,1992,139(6):503-510
    [2] L.C.Boulden.Load-Scntative Hy-draulic System[J].Machine Design,1972,(8)
    [3] R.W.Henke.Load Hydraulic System[J] .Hydraulic and Pneuma-tics,1984,(2)
    [4] http:www.fluidon.comWeb_Siteindex.php
    [5] 李瑞涛,方湄,张文明等,虚拟样机技术的概念及应用,金属矿山,2000,(7):38-42
    [6] MSC.Software(美)著,李军,陶永忠译,MSC.ADAMS FSP 基础培训教程[M],北京:清华大学出版社,2004
    [7] 华东石油学院,西南石油学院等编,石油矿场往复泵国内外发展水平综述,兰州石油机械研究所,1975:145~163
    [8] 孟英峰等,往复泵泵阀运动规律的建模与仿真,石油机械,1995;23(5):16~20
    [9] 邬亦炯,钻井泵阀盘运动的微分方程数值解及其结果的讨论,石油矿场机械,1988;17(1):6~8
    [10] 闫国军,赵军明等,往复泵阀运动规律的研究[J],中国机械工程 2004,15(18):1617—1619
    [11] 刘忠章,乳化液泵站的发展趋势,煤矿机械,1992(5) , 1~4
    [12] Dr. ir.Peter Achten,ir Titus van den Brink,ing. Marc Schellekens. DESIGN OF A VARIABLE DISPLACEMENT FLOATING CUP PUMP. SICFP' 2005
    [13] 陈鹰,面向创新的液压仿真技术,液压气动与密封,2003,8(4):16-20.
    [14] 赵胜,赵振东,叶长根等,往复泵设计[M].北京:机械工业出版社,1983.
    [15] 李永堂,雷步芳,高雨茁,液压系统建模与仿真,北京:冶金工业出版社,2003
    [16] 陶品.虚拟装配仿真平台的研究与实现[J].系统仿真学报,2001( 61):704-706
    [17] Bideaux E,Scavarda S. Pneumatic library for AMESim [J]. Fluid power system and technology,1998:185 一 195
    [18]Jaroslav Ivantysyn and Monika Ivantysynova Hydrostatic Pumps and Motors. INDIA:Akademia Books Internationa1,2001
    [19] http:www.bj-esp.comproductionpromain2.htm
    [20] 郑学贵,王国治斜盘发动机虚拟样机的动力学仿真分析[ J] .华东船舶上业学院学报(自然科学版),2004, 18 ( 4) : 81 一 85.
    [21] JimLedin,焦宗夏,王少萍,仿真工程,北京:机械工业出版社,2003
    [22] http:www.20sim.comindex.html
    [23] http:www.mscsoftware.com.
    [24] Michael Deeken.Displacement unit simulation in DSHplus.hydraulik and Pneumatik,45 (2001)
    [25] 陈立平,张云清,任卫群,覃刚,机械系统动力学分析及 ADAMS 应用教程,北京:清华大学出版社,2005
    [26] 余新康,王健.基于 ADAMS 的液压系统虚拟样机,工程机械,2003,11
    [27] MSC. ADAMS interface Version4. 2-summer 2004. IMAGINE S. A.2004
    [28] 高饮和,郭晓松,基于 ADAMS 的多级液压缸系统仿真建模[J],机床与液压,2003,(1):93~94
    [29] http:www.hirain.comProductproduct_intro.asp?menucolr=3&id=5&name=EASY5
    [30] 何存兴,液压元件,北京:机械工业出版社,1982
    [31] http:www.mathworks.comproductssimulink
    [32] 蒙上阳,唐国金,雷永军,MSC Nastran 软件在复杂结构力学特性分析中的应用,广西科学,2002,(01)
    [33] 王小宁,崔志敏,Msc 对船舶和海洋工程 CAE 仿真解决方案,中国造船,2000(01)
    [34] http://www.mscsoftware.com.cn
    [35] http:www.bj-esp.comproductionpromain2.htm
    [36] 赵文辉.机电一体化系统虚拟样机的异构建模和仿真[J].系统仿真学报,2001,13( 5) : 592-595.
    [37] M RASHID KHAN,Rheological properties of heavy crude oils and heavy oil emulsions[J],Energy Sources, 1996,v18 (n3),56-60
    [38] Getting Started Using ADAMS/Durability. MSC.Software Corpora- tion, 2004
    [39] 郑建荣,ADAMS—虚拟样机技术入门与提高,北京:机械工业出版社,2002 系统与仿真技术,2004 26 (5>:61-64)
    [40] AMESim 4.0 用户手册[M]
    [41] http:www.amesim.com.
    [42] IMAGINE. AMESim 4. 2 User Manual. IMAGINE S. A,2004
    [43] 余佑官,龚国芳,胡国良,AMESim 仿真技术及其在液压系统中的应用,液压气动与密封,2005 (3):28-31
    [44] 付永领,祁晓野,AMESim 系统建模和仿真-从入门到精通,北京航空航天大学出版社
    [45] 李谨,邓卫华.AMESim 与 MATLAB/Simulink 联合仿真技术及应用,情报指挥控制

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700