注塑机合模机构建模及运动特性仿真分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肘杆式合模机构以其刚性大过载能力强,运动特性良好符合注塑工艺要求以及可自锁能够满足安全、可靠和节能的要求等优点被广泛应用于国内外注塑机的合模系统。而伺服泵系统以其高精度,高动态响应速度,低噪音和节能等优点被越来越多的应用于注塑机的液压系统。国内外对肘杆式合模机构研究的论文很多,然而大多数论文都采用以力学和数学为基础的理论加经验法对合模机构进行静力学和运动学分析。由于注塑机双肘杆合模机构是在复杂的工况下工作的系统,其动态特性的好坏直接影响成型制品的质量精度以及生产效率甚至整机性能。因此有必要对其进行动力学及运动学分析和研究。
     本论文利用三维设计软件PRO/E建立了WK400注塑机合模机构各零部件的3D建模并对其进行虚拟装配,导入动力学仿真软件ADAMS中,在ADAMS/View中对机构添加约束并施加驱动,建立其动力学模型。在AMEsim中建立伺服泵系统驱动合模机构的液压系统仿真模型,通过ADAMS与AMEsim联合接口建立合模机构的机械—液压联合仿真模型,完成对合模机构油缸和动模板的位移和速度、锁模力、传动比、等效质量、肘肝力、节点摩擦力、曲肘角以及液压系统的压力,流量等参数的仿真计算和测量,并通过实验对机构的线位移,角位移以及电机转速,内啮合齿轮泵的出口压力等参进行了测量,通过仿真结果、实验结果对比分析,全面掌握了肘杆式合模机构的运动特性,同时对开合模过程中的能耗特性及压力流量变化规律有了全面的了解。也对数控伺服泵系统有了更深刻的理解。为注塑机合肘杆式模机构运动特性分析提供了一种全新的方法。
Double-elbow clamping unit has been used extensively in the injection mould clamping system, because it has many advantages, such as big rigidty, high overload ability, good motion characteristics which can meet with the requirements of injection molding process,and it can be self-locked. All of these advantages can satisfy the safe, reliable and energy-saving require-ements for the institution. While servo pump system with its high accuracy, high dynamic response speed, low noise and energy-saving is more and more applied to the hydraulic system of injection molding machine.there are many papers about double-elbow clamping unit both at home and abroad, yet most essays base on mathematics and mechanics, through theory and experience method analysis the statics and kinematics for it. Because of the complex working conditions for double-elbow clamping unit, the dynamic characteristics of it directly impact on the quality precision and production efficiency of the products even the molding machine performance. Therefore, it is necessary to carry out their dynamics and kinematic analysis and research.
     This paper using three-dimensional design software PRO/E established the 3D parts models for WK400 injection mould clamping system and carried on the virtual assembly and finaly import to dynamics simulation software ADAMS, in ADAMS/View, we added restrictions and imposed driving force to the institutions, established its dynamic model. In AMEsim established the hydraulic system simulation model that servo_pump system drives the injection mould clamping system.Through AMEsim and ADAMS joint interface, established the clamping unit mechanical-hydraulic united simulation model, complete the simulation calculation and measurement of the clamping hydraulic cylinder and active moulding board's displacement and speed, the clamping force, transmission ratio, equivalent quality, elbow liver force, node friction, curve elbow Angle and hydraulic system pressure, flow parameters. At the same time, through experiment on the institution,we measure the line and angular displacement and motor speed, internal meshing gear pump outlet pressure parameter. Comparing and analysis the results curves measured by the simulation and experiment, Comprehensively, grasped the motion characteristics for double-elbow clamping unit, and comprehensively understand the pressure and flow variation characteristics in the process of combining a model. For CNC servo pump system have a deeper understanding. This pater provides a new method analyzing motion characteristics of double-elbow injection mold machine.
引文
[1]张友根我国注塑机的特点及发展方向[J],上海塑料,2004(03)
    [2]王兴天,注塑机与注塑技术[M].北京:化学工业出版社,2005
    [3]许颖,方子帆,注塑机合模装置的结构及发展[J],机械工程师,2006,(1):119-122
    [4]余宏,冯正进,王旭永,章志新.注塑机复式缸锁模机构的研究,液压与气动[J],2003(1):11-12
    [5]Shu Huang Sun, Optimum topology design for the stationary platen of a plastic injection machine, Computers in Industry[J],Volume 55, Issue 2, October 2004, Pages 147-158
    [6]文生平江剑强注塑机节能控制技术的最新发展与应用[J],工程塑料应用,2006,34(5),59--62
    [7]M.H. Salaha, P.M. Frickb, J.R. Wagnerc, D.M. Dawson, Hydraulic actuated automotive cooling systems-Nonlinear control and test, Control Engineering Practice,Volume [J],17, Issue 5, May 2009, Pages 609-621
    [8]张涛,注塑机变量泵系统的应用于发展[J],机电工程技术,2001(06):15-16
    [9]权龙,王成宾,伺服电机定量液压泵驱动的注塑机电液控制系统分析[J],液压气动与密封,2005(4):16-20
    [10]权龙,李凤兰,伺服电机定量泵驱动差动液压缸系统效率的研究[J],中国电机工程学报,2006,,26(8),93-98
    [11]张友根,注塑机交流伺服电动机驱动液压泵系统的应用及设计研究[J],液压气动与密封,2010,12:15-24
    [12]权龙,李凤兰,注塑机电液控制系统节能原理及最新技术[J],机床与液压,1999,5:5-7
    [13]闫政,变转速泵控注塑机锁模机构的机理建模仿真与控制特性研究[D],太原理工大学机电子研究所,2006
    [14]蒙红,注塑机双肘锁模机构运动特性分析[J],职大学报,1999年第4期,13-16
    [15]Wen Yi Lin a and Kuo Mo Hsiao, Investigation of the friction effect at pin joints for the five-point double-toggle clamping mechanisms of injection molding machines[J], International Journal of Mechanical Sciences, Volume 45, Issue 11, November 2003, Pages 1913-1927
    [16]任工昌苗新强郭志刚.注塑机双肘杆锁模机构的优化设计[J],机械设计与制造,2009(1):18-19
    [17]朱成实,吴琼等,注射机五孔斜排双曲肘合模机构的运动及力学模型的建立[J],2004,18(2):133-137
    [18]段绵开,王喜顺,彭玉成,曲肘式合模机构运动特性分析及其优化设计[J],中国塑料,1996,10(6):77-82
    [19]冯良为,芩运福,注射成型机五孔直排式合模机构的运动和力学特性分析[]J,特种橡胶制品,200(3),23(2):40-44
    [20]刘成峰,注塑机电液控制系统的建模及仿真研究[D],太原理工大学机械电子研究所,2003
    [21]Sasikumara, S. Srikantha, S.K. Das, Analysis of premature failure of a tie bar in an injection molding machine, Engineering Failure Analysis[J], Volume 13, Issue 8, December 2006, Pages 1246-1259
    [22]Wen Yi Lin, Kuo Mo Hsiao, Investigation of the friction effect at pin joints for the five-point double-toggle clamping mechanisms of injection molding machines, International Journal of Mechanical Sciences[J], Volume 45, Issue 11, November 2003, Pages 1913-1927
    [23]钟士培,基于ADAMS的注塑机合模机构动力学仿真研究[J],装备制造技术,2010(4):55-61
    [24]MSC.Software Corporation.MSC_ADAMS 2005 r2,ADAMS/View[CP/DK]. U.S.A.: Software Corporation,JUL22 2004
    [25]B. Nardin, K. Kuzmana, b and Z. Kampus, Injection moulding simulation results as an input to the injection moulding process, Journal of Materials Processing Technology[J],Volumes 130-131,20 December 2002, Pages 310-314
    [26]朱小晶,大型矿用液压挖掘机电液控制系统的建模及仿真[D],太原理工大学,2010
    [27]曾翠华,郑荣霞,杨军,液压-机械合模机构三维动态仿真优化设计[J],机床与液压,2008,36(8):139-142
    [28]滕乐天瞿金平张琳注塑机注射推进系统动力学仿真及动态特性[J],现代塑料加工应用,2008,20(1):78-83
    [29]权龙,李凤兰,田慧琴,闫政,变量泵,比例蓄能器符合控制差动缸回路原理及应用[J],2006(5),42
    [30]Helbig, A. Injection Moulding Machine with Electric-HydrostaticDrives,3. Internationales Fluidtechnisches Kolloqium[J].2002,3.Aachen, germa
    [31]L. M. Galantucci and R. Spina, Evaluation of filling conditions of injection moulding by integrating numerical simulations and experimental tests, Journal of Materials Processing Technology[J],Volume 141, Issue 2,20 October 2003, Pages 266-275
    [32]柯敏,精密注塑机的电液比例控制技术研究[D],浙江大学,2010年1月
    [33]宋春花,高性能注塑机关键技术研究[D],西南交通大学,2006
    [34]周渝曦,交流伺服电机及双向变量泵在注塑机中的应用[D],浙江,浙江大学,2006
    [35]杜青林,液压注塑机伺服泵控制方法研究[D],华南理工大学,2010年5月
    [36]白帆,挖掘机负载敏感系统的联合仿真及能耗分析[D],太原理工大学,2010
    [37]QUAN Long, LIU Shiping, Improve the kinetic performance of the pump controlled clamping unit in plastic injection molding machine with adaptive controlstrategy[J],CHINESE JOURNAL OF MECHANICAL ENGINEERING,2006, 19(1):9-13
    [38]Wang Hongjie, Dong Yong, Wang Lizhi, Research and Experiment on Direct Drive Electro-hydraulic Servo System, Proceedings of ISFP'2007:5"IntemationaI Symposium onFluid Power Transmission and ContmI[J], June 6-8,2007, Beidaihe. China
    [39]Clive Maier and Teresa Calafut, Injection molding, The Definitive User's Guide and Databook [J],1998, Pages 159-188
    [40]S. Kenig, A. Ben-David, M. Omera,A. Sadehb, Control of properties in injection molding by neural networks, Engineering Applications of Artificial Intelligence[J],Volume 14, Issue 6, December 2001, Pages 819-823
    [41]注塑机合模力测试的新方法,河海大学机械学院学报[J],1995(6),9(2):32-36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700