液压增压单井增注系统理论研究及优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压增压单井增注系统采用供水干线的水压作动力源,利用活塞面积差实现增压注水,运行稳定可靠,费用低,具有较好的经济技术指标。研究了组成液压增压单井增注系统各元件的结构、工作原理以及系统各参数的计算方法;建立了系统和蓄能器的数学模型和仿真模型,利用MATLAB中的SIMULINK软件包分别对未加蓄能器和加蓄能器的系统进行了动态仿真,说明了蓄能器对于系统工作稳定性的意义;研究了两种常规结构的插装,即芯为锥形的插装座为锥形的插装,首先应用计算流体力学(CFD)专用软件Fluent的后处理器软件Gambit建立了插装的三维物理模型并对其进行了网格划分,然后利用Fluent对两类插装分别进行了三维稳态和动态数值模拟,分析了两类插装的速度场和压力场以及每种插装在不同开度下的速度场和压力场的变化情况;在对两种类型插装模拟和分析的基础之上,对插装进行了结构优化,提出了两种优化模型并对其进行了数值模拟,给出了流场可视化的计算结果并通过比较座为锥形插装和两种改进的插装的压力损失、流量系数、芯受力等参数,说明了优化效果。在中原油田采油三厂和文明寨油田的配合下,在10号注水站进行了现场试验。
The system of hydraulic supercharging water injection for single well uses the pressure of the water supply line as the power source and the area difference of the piston to realize the supercharging water injection, it runs steadily and reliably and the operation cost is very low, so the system has better economic and technological index. The thesis studied each part’s structure, working principle and each parameter’s calculation method of the system. The thesis established the mathematical model and simulation model of the system and the storage generator, carried out the dynamic simulation for the system with storage generator and without by the SIMULINK in MATLAB and showed the storage generator’s significance for the working stability of the system. The thesis studied cartridge valve with cone valve core and cartridge valve with cone valve seat, firstly, establishing the three-dimensional physical model of the cartridge valve by the Gambit in Fluent of CFD and generating the mesh of the cartridge valve, secondly, carrying out the steady-state three-dimensional numerical simulation and the dynamic, finally, analyzing the velocity field and the pressure field and the change of the velocity field and the pressure field for each kind of cartridge valve in different opening. On the base of simulation and analysis for the two types’cartridge valve, the thesis optimized the structure of the cartridge valve, proposed two kinds of optimization model and numerical simulation were carried out, gave the visual results of the flow field and showed the effect of the optimization by comparing the parameters of pressure drop, flow coefficient and the force on the valve core. Under the cooperation of the Third Production Company in Zhongyuan Oilfield and Wenmingzhai Oilfield, the field test was carried out in NO.10 water injection station.
引文
[1] Johnson C.L.,Vandevier J.E.,徐文芹,等.国外油田增压注水设备的新途径[J].国外油田工程,1996,(04):28-31
    [2]徐文芹,郝惠欣,Johnson C.L..国外油田增压注水设备的技术水平与发展[J].国外石油机械,1995,6(02):44-52
    [3]康玉晶,赵怀文,高学仕.液压增压注水泵的发展前景[J].石油矿场机械,1997,26(04):33-35
    [4]李继志,齐明侠.国产增压注水泵的发展前景[J].石油矿场机械,1995,24(01):37-39
    [5]段礼祥,张来斌,王朝晖.油田注水设备技术现状及发展方向[J].石油机械,2005,33(10):68-70
    [6]周晓君,袁辉.单井增注液压增压系统设计[J].液压与气动,2003,(07):12-14
    [7]徐灏,机械设计手册(第5卷,第37篇)[M].北京:机械工业出版社,1991:3-635
    [8]王海坤,王德福,潘红政.TYB系列调压注水装置[J].石油机械,1999,27 (08):24-26
    [9]周晓君.井下液压增压器[J].石油矿场机械,2000,29(05):13-15
    [10]李振辉.锥特性研究[J].长春光学精密机械学院学报,1998,21(04):56-58.
    [11]贺小峰,王学兵,嵇碧波,等.先导式水压溢流的设计[J].中国机械工程,2005,16(18):1625-1628
    [12]王幼民.溢流结构参数的优化设计[J].农业机械学报,2003,34(01):67-69.
    [13]弓永军,周华,杨华勇.结构参数对先导式纯水溢流性能的影响[J].浙江大学学报(工学版),2006,40(05):869-873
    [14]王兴洲,徐超,何永森.增压器全液压自动换向装置及其计算方法[J].中南工业大学学报,2003,(05):31-34
    [15]邓重一.接近开关原理及其应用[J].自动化博览,2001,32(01):89-92
    [16]向天榜.水压自动换向装置[J].广东造纸,1997,(01):41-42
    [17]马金英,许同乐.液压系统中换向的问题分析[J].机械工程师,2003,(10):57-58
    [18]杨华勇,弓永军,周华.纯水液压控制研究进展[J].中国机械工程,2004,15(15):1400-1404
    [19]王正林,王胜开,陈国顺.MATLAB/Simulink与控制系统仿真[M].北京:电子工业出版社,2005:44-73
    [20]王显正,陈正航,王旭永.控制理论基础[M].北京:科学出版社,2000:21-72
    [21]王洪杰,季天晶,毛新涛,等.直驱式液压位置控制系统的建模与仿真分析[J].机床与液压,2005,(15):65-66
    [22]李永堂,雷步芳,Ting K.L..液压锤液压系统的建模与仿真[J].中国机械工程,2004,15(06):481-483
    [23]陈立胜,刘云香.基于Simulink的液压控制系统的仿真[J].电气技术与自动化,2006,(02):136-138
    [24]刘光临,沈全成,陈奎生.泵控缸速度控制系统动态特性研究[J].液压与气动,2006,(02):38-41
    [25]叶爱华,叶文华,赵明镜.控制系统中建立数学模型的方法探讨[J].科技广场,2004,(08):66-67
    [26]张力钧,黄人豪,胡伟民,等.二通插装统一建模方法的研究[J].液压气动与密封,2003,(03):1-4
    [27]袁立鹏,赵克定,李海金.控液压缸统一流量方程的分析研究[J].机床与液压,2005,(08):97-99
    [28]江四厚,马长林,陈淑红.液压缸系统动态特性仿真与优化研究[J].计算机仿真,2003,20(06):124-126
    [29]丁强,裘丽华.二次调节加载系统中液压蓄能器的研究[J].机床与液压,2006,(02):109-110
    [30]车德宁,李炳辉.蓄能器在液压系统中的应用[J].建筑机械化,2005,(02):32-33
    [31] Mordas J.B,李云涛.蓄能器——不可忽视的液压元件[J].河北建筑工程学院学报,1995,(02):88-94
    [32]姚黎明,张菁,马力中,等.皮囊式蓄能器蓄能效率的理论和实验[J].节能技术,2006,(02):131-132
    [33]王福军,计算流体动力学分析[M].北京:清华大学出版社,2004:113-253.
    [34]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004:264-274
    [35] Dietze M..Measurment and Calcu1ation of the Internal Flow in Hydraulic SeatValves(D).Darmatade University of Technology,1996,130-159
    [36] Vaughan N.D.,Johnston D.N.,Burnell L.R..The use of computational Fluid Dynamics in Hydraulic Valve Design.Circuit,component and System Design.New York:John Wiley and Sons.1992:226-244
    [37]唐兵,卢堃,郝燕文,等.水压锥内流场的数值腄鈁J].兰州理工大学学报,2007,33(04):54-58
    [38]盛国成,刘智强.水液压锥阀阀口流场数值模拟与仿真分析[J].科技资讯,2007, (24):37-38
    [39]杨国来,叶清,林男.纯水液压锥阀阀口流场气穴的CFD研究[J].机床与液压,2007,35(01):148-150
    [40]张智辉,陈军,王树宗.液压锥内部运动流场的数值模拟[J].机床与液压,2006,(08):122-128
    [41]杨绪壮,田福利.流量系数数学模型的建立及计算机过程模拟[J].内蒙古石油化工,2002,28(04):5-6.
    [42]袁小川,郭迎清.机械液压系统流量方程中流量系数的选取[J].航空计算技术,2006,36(05):90-93
    [43]范海平,曾小林.基于计算流体动力学的流量系数研究[J].机电设备,2007,(02):9-12
    [44] Borghi M.,Milani M.,Paoluzzi R..Transient flow force estimation on the pilot stage of a hydraulic valve fluid power systems and technology[J].1998,(05):157-162
    [45] Roger Yang,Ph.D.CFD simulation of oil flow and flow induced forces inside hydraulic valves.National fluid power association and society of automotive engineers[J].2002:201-207
    [46] To K.,Takahashi K.,Inoue K..Pressure Distributions and Flow Force on the Body of a Poppet Valve[J].Fluid Power Systems Modeling and Control.1991,(10):123-138
    [47]刘清友,单代伟,陈丽霞,等.高压井控锥流场数值模拟研究[J].石油矿场机械,2007,36(05):24-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700