微能耗压边系统数值模拟及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,液压技术在实现高压、高速、大功率、低噪声、高可靠性、高度集成化等方面都取得了重大进展,在完善发展比例控制、伺服控制、开发数字控制技术以及机电液一体化方面也有许多新成就。同时,随着科学技术的进步,以及对液压机性能和产品竞争力要求的提高,高效率、低能耗、高控制性能等正成为液压技术的主要发展动向。
     液压机微能耗压边节能原理的提出紧密结合了当今液压技术的发展动向,顺应了液压机的节能趋势。在查阅国内外相关资料基础上,针对板料拉深成形的压力机提出了以能量回收为主要实现途径的节能技术方案。本研究课题主要是研究如何将顶出缸(或压边缸)排出液体的压力能借助补偿缸,转化为主滑块的工作能而加以利用,以及压边压力伺服控制的实现及其性能。
     本文首先运用能量法推导了单动拉深液压机的两种压边方式即传统液压垫压边方式和液压垫-补偿缸压边方式的能量损失表达式,通过比较,得出后者在压边节能方面存在优势。
     运用MATLAB/SIMULINK对微能耗压边系统的两种简化物理模型,即控封闭容腔模型和控单出杆缸控封闭容腔模型进行数字建模、仿真,其结果表明该系统的快速性、稳定性等性能指标理想,且便于工程实现,有很好的应用前景。
     最后,开发LabVIEW系统控制程序并利用实验室现有设备,进行软、硬件结合,完成了微能耗压边系统的实验研究。通过对实验、仿真数据的分析和比较,证明微能耗压边系统具有较好的稳定性,符合控制性能要求。
Presently, the hydraulic technology has all made the significant progress in the realization of high pressure, high speed, high efficiency, low noise, redundant reliability, high integration and so on, also has many new achievements on consummating the proportional control, the servo control, the numerical control technology as well as electro-hydraulic integration. Along with the progress of science and technology as well as in order to adapt the operation requirements of hydraulic press and strengthens itself competitive ability, the high efficiency, low-energy consumption, high controlled performance and so on are becoming the main development trend of the hydraulic technology.
     The principle of the low-energy consumption blank holding now closely accords with the hydraulic development trend and complied with the energy conservation tendency for the hydraulic press designs. After investigating some related material about domestic and oversease energy conservation, proposes the plan that take the energy recycling as the main realization question on sheet drawing forming press. The main purpose of this research topic is how to make the fluid pressure energy acquitted by the blank holding cylinder change into the work energy of the main gliding block under the servo-control. So that to achieve the goal of saving energy.
     This paper firstly presents the expressions of energy consumption in two types of blank holding, the conventional hydraulic cushion and cushion-compensating cylinder, in single-action deep-drawing hydraulic press, and shows through comparison that the consumption in later is far less than in the former.
     Using MATLAB/SIMULINK to mode and simulate the two kind of simplification model of the micro-energy consumption, the result indicates that the system rapidity, stability are extremely ideal and has very good applicationprospect.
     Finally, develops the LabVIEW control procedure and using the equipments that the laboratory already have to compose the micro-energy consumption blank holding test system. By comparing the experimental data and the simulation data, we know the stability of the system conform to the design requirement.
引文
1 王占林.近代液压控制.北京:机械工业出版社,1997:1-5
    2 王春行.液压伺服控制系统.北京:机械工业出版社,1999:13-22,67-157
    3 [英]H.E.梅里特.液压控制系统.陈燕庆译,北京:科学出版社,1976:199-297
    4 李洪仁.液压控制系统.北京:国防工业出版社,1981:199-282
    5 胡世民.液压控制系统在现代工程机械中的应用.科学资讯.2006, (33):18-19
    6 雷天觉.新编液压工程手册.北京:北京理工大学出版社,1998:113-129
    7 I.D.朗道著.自适应控制-模型参考方法.吴百凡译.北京:国防工业出版社, 1985:58-60
    8 C.J.哈里斯编著.自校正和自适应控制-理论与应用.李清泉译.北京:科学出版社, 1986:24-26
    9 A. Luo, H. Hun. Intelligent Control for Electro-hydraulic Proportional Servo System. Proceedings of the 4th International Conference on Fluid Power Transmission and Control, Hangzhou, China,1997,(12):246-250
    10 Y. Jen, C. Lee. Robust Speed Control of A Pump Controlled Motor System. IEE Proceeding-D,1992,139(6):503-510
    11 H. Zhang, P. N. Nikiforuk & P. R. Ukrainetz. A Neural Network Approach for MIMO Electro-Hydraulic Servo System Control. Proceedings of The 3rd International Conference on Fluid Power Transmission and Control, Shanghai, China,1999:1102-1022
    12 王孙安,林廷圻,史维祥.液压伺服控制的新发展.机床与液压,1991,(1):8-14
    13 张军,许贤良,谢芳.纯水液压技术的回顾与展望.工程机械,2004,35(3):36-39
    14 张军 , 刘家华 , 许贤良 . 纯水液压技术在液压缸系统中的应用展望 . 煤矿机械,2003,(7):82-84
    15 牛国峰,王博.液压节能技术在高线生产中的应用.河北冶金,2005,(3):40-41
    16 谭海林.液压系统节能问题的探讨和分析.机床与液压,2005,(12):99-101
    17 刘国文,俞浙青.浅谈几种液压节能技术的原理及应用.液压与气动,2005,(2):40-42
    18 卜炎.中国机械设计大典第三卷.南昌:江西科学技术出版社,2001:202-239
    19 Song Liu, Bin Yao. Energy-saving control of single-rod hydraulic cylinders with programmable valves and improved working mode selection[J/OL]. 中 国 期 刊网,www.cnki.hznet.m.cn,2001,1
    20 李壮云.中国机械设计大典第五卷 机械控制系统设计.南昌:江西科学技术出版社,2002:92-193
    21 程寒生,曹玉平,阎祥安.液压泵输流参数控制与节能.液压与气动,2005(4):65-67
    22 王益群,张伟.流体传动及控制技术的评述.机械工程学报,2003,39(10):95-99
    23 刘树敏,官忠范.液压回路节能图解分析.沈阳工业大学学报,1996,18(2):93-99
    24 孙慢.电液伺服系统的可拓控制策略及实验研究.[燕山大学工学硕士学位论文].2004:40-60
    25 Klause Sieget. New Concept for Hydraulic Production Presses. Papers of the International Conference “New Development in Sheet Metal Forming”, Germany,2000
    26 吴志清.近代线性控制理论基础.重庆:重庆大学出版社,1988:6-51
    27 Huang Anyi. Fundamentals of mechanical control engineering. Wuhan:Wuhan University of Technology Press,2004:10-38
    28 董玉红,杨清梅.机械控制工程基础.哈尔滨:哈尔滨工业大学出版社,2003:11-28
    29 王益群,钟毓宁.机械控制工程基础.武汉:武汉理工大学出版社,2001:6-20
    30 [日]雨宫好文.机械控制入门.王献平译.北京:科学出版社,2000:8-25
    31 Baumann W T, Rugh W J. Feedback control of nonlinear systems by extended linearization. IEEE Trans. Automat. Control,1986,31:40-46
    32 程代展.非线性控制系统几何理论. 北京:科学出版社, 1988:48-59
    33 Doyle III F J, Allgower F, Morari M. A normal form approach to approximate input-output linearization for maximum phase nonlinear SISO systems. IEEE Trans. Automat. Control,1996,41:305-309
    34 高为炳.非线性控制系统导论.北京:科学出版社,1989:291-365
    35 Gelb A, Van der Velde W. Multiple Input Describing Functions and Norlinear Systems Design. Mc Graw Hill, New York,1968:69-75
    36 Hauser J, Sastry S, Kokotovic P. Nonlinear control via approximate input-outputlinearization: the ball and beam example. IEEE Trans. on Automatic Control,1992,AC-37:392-398
    37 胡跃明.非线性控制系统理论与应用.北京:国防工业出版社,2002:89-130
    38 曹建福.非线性理论及应用 M.西安:西安交通大学出版社,2001:111-136
    39 李运华,王孙安.液压伺服系统的非线性控制.机床与液压,1994,(1):21-25
    40 胡寿松,王执铨,胡维礼.最优控制理论与系统.南京:东南大学出版社,2005:162-193
    41 丁雪峰,许贤良.液压伺服系统的非线性最优控制.液压与气动,2004,(2):32-35
    42 薛定宇.反馈控制系统设计与分析—MATLAB 语言应用.北京:清华大学出版社,2000:67-72
    43 黄忠霖.控制系统 MATLAB 计算及仿真.北京:国防工业出版社,2004:1-7,263-43
    44 施阳 .MTLAB 语言精要及动态仿真工具 SIMULINK. 北京 : 国防工业出版社,1997:27-46
    45 陈哓天.用 MTLAB 进行数字控制器计算机辅助设计.广东自动化与信息工程,1997,(2):35-38
    46 张志涌,刘瑞桢.掌握和精通 MATLAB.北京:北京航空学院出版社,1997:25-42
    47 王正林,王胜开,谭宪林.MATLAB/Simulink 与控制系统仿真.北京 : 电子工 业出 版社,2005:98-225
    48 清源计算机工作室.MATLAB 基础及其应用.北京:机械工业出版社,2000:4-8
    49 Robert H. Bishop.LabVIEW7 实用教程.乔瑞萍,林欣等译.北京:电子工业出版社,2005:2-20
    50 谢建英.微型计算机控制技术.北京:国防工业出版社,1991:2-4
    51 National Instruments Corporation. LabVIEW User Manual,1996:70-85
    52 National Instruments Corporation. Data Acquisition VI Reference Manual,1996:9-10
    53 National Instruments. Instrumentation Catalogue,1998:49-60
    54 National Instruments. USA. Instrumentation reference and catalogue,1997:68-79
    55 K.J.Hunt, D.Sbarbaro, R.Zbikowski. Neural Networks for Control Systems A Survey Automation,1992,28(6):1083-1112
    56 W.T.Miller, R.S.Sutton & P.J.Werbos. Neural Networks for Control. MIT Press, Cambridge,1990
    57 K.S.Narendra, K.Parthasarathy. Identification and Control for Dynamical Systems Using Neural Networks. IEEE Trans. on Neural Networks,1990,1(1):4-27
    58 陈燕庆,鹿浩.神经网络理论及其在控制工程中的应用.西安:西北工业大学出版社,1991:255-300
    59 王科俊,王克成.神经网络建模、预报与控制.哈尔滨:哈尔滨工程大学出版社,1996:195-280
    60 周 其 节 , 徐 建 闽 . 神 经 网 络 控 制 系 统 的 研 究 与 展 望 . 控 制 理 论 与 应用,1992,9(6):569-577
    61 唐景林,王丽薇.单动拉深液压机压边能量损耗分析.锻压技术,2006,31(6):91-93
    62 王丽薇 , 唐景林 . 微能耗压边液体压力控制系统的建模与仿真 . 机床与液压,2006,(9):114-116

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700