导管架水下调平夹持系统力学分析与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
导管架平台主要由导管架、钢管桩和平台上部结构组成。导管架作为平台的基础,在安装过程中必须要进行调平,其水平精度直接影响到平台的安全性、适应性、使用寿命等各种性能。较深水导管架调平安装过程包括调平阶段和夹持阶段,需要专用调平夹持系统。本文根据中海油综合科研项目“深水导管架安装液压装具研发”的要求,对导管架调平系统进行了分析和研究,设计了适用于国内配套生产的导管架夹持设备和调平系统的实验样机,解决了目前一些调平夹持系统存在的问题,主要包括以下几方面内容。
     对包括调平器和夹桩器两部分液压装具的机械系统结构进行了详细设计,确定了调平夹持系统工作过程,建立了调平器和夹桩器的三维模型;根据设计结构,分别对调平器及夹桩器的关键部位进行了力学分析,通过分析验证了设计的导管架调平夹持系统机械结构能够满足调平性能要求;对于调平器和夹桩器的夹持机构,依据薄壳弹塑性、稳定性理论分析了被夹持钢管桩和套管在调平过程所需的极限夹紧力载荷。
     建立了分析夹紧力、夹爪齿嵌入深度与系统承载能力的数学模型,对夹紧力与夹爪嵌入深度非线性关系问题上利用LS-DYNA软件进行显示动力分析,经过分析得出了夹紧力与嵌入深度在塑性变形阶段近似呈线性分布的关系,进而得出夹紧液压缸压力与系统承载能力间的关系;利用有限元方法对夹爪齿部受力进行强度分析,通过分析为确定夹爪结构和材料提供依据;对调平夹持系统中关键部位进行强度分析,对于明显存在材料浪费的套筒进行了拓扑优化;根据对夹爪夹持性能的分析及系统承载的要求,研制了夹爪用新型合金钢,确定了材料的化学成分,对实验用夹爪材料进行了微观组织分析,分别研究了不同退火温度和保温时间对合金钢性能的影响,确定了最佳退火工艺和淬回火工艺。
     以南海某平台为分析对象,并且根据所处海域的海况,研究了基于莫里森公式和Stokes5阶波理论的波浪载荷对导管架结构的影响;为了得到调平夹持系统在时域内的的动力响应,根据单参数的P-M谱,依据Shinozuka理论,对波浪载荷进行了时域分析;将海流和风载荷按定载荷处理,研究了海流以及风载荷对导管架结构的影响;确定了不同重现周期下的极端海况,从而确定了调平过程中导管架承受的主要环境载荷及其组合方式;利用SACS软件,针对南海某平台计算了其在不同重现期极限环境载荷影响下的底部动力响应;利用ADAMS软件对调平夹持系统的调平过程进行动力学分析,确定关键夹持接触部位的动力响应,分析了不同重现期环境载荷对调平夹持系统的影响,提出了极端恶劣海况下调平的解决办法。
     分析了传统调平方式的弊端以及存在的问题,针对这些问题,设计了导管架最优调平控制系统,包括建立系统的几何模型,制订最优调平策略,设计基于Mamdani模糊控制器,建立受控对象的数学模型;利用软件建立调平控制系统仿真模型,分别对无环境载荷和有环境载荷影响下的调平系统调平过程进行仿真,从仿真结果看,控制系统调平效率、精度比传统调平方式明显提高,可以克服环境载荷作用下产生的随机扰动,鲁棒性好。
     实验部分,确定了夹爪铸造工艺方案,制备夹爪样件,对夹爪的材料进行实验研究,并通过实验确定其强度;设计并研制了嵌入式楔形增力夹持机构实验样机,通过相关实验结果及与理论分析的比较,验证了调平器夹持机构的重力自锁功能以及理论分析的正确;设计并研制了夹桩器的实验样机,对夹桩器的油源供油及液压缸保压性能进行了实验验证;为了验证夹桩器的夹持性能,在某港口对夹桩器进行了模拟实际工况条件下的夹持性能实验,实验监测结果证明夹桩器可满足实际夹持要求;对钢管桩表面压痕深度及夹爪齿的断裂形式进行了分析,分析结果为改进夹爪齿形结构,提高调平夹持系统夹持性能指出了进一步优化的方向,为调平夹持系统的实际应用提供了宝贵依据。
Jacket platform mainly consists of jacket, steel pipe pile and the upper part. Jacket as aplatform base must be leveling in the installation process, the level of accuracy directly affectsthe platform safety, adaptability, service life and other properties. In deeper water jacketleveling process including the levelling stage and clamping stage, the specialleveling-gripping system is required. According to " The hydraulic equipment of deep waterjacket installation research and development " which the comprehensive scientific researchproject of CNOOC requirement, in this paper, the jacket leveling system is analyzed andstudied, jacket clamping device and leveling system prototype which applicable to domesticproduction is designed, solve the current problems of leveling-gripping system. It mainlyincludes the following aspects.
     Mechanical system structure including skirt pile gripper and jacket leveling equipment isdesigned, the leveling-gripping system work process is determined, the three-dimensionalmodel is established. According to the designed structure, the key parts mechanical propertiesof skirt pile gripper and jacket leveling equipment is analyzied, through the analysis to verifythe design of jacket leveling-gripping system mechanical structure can meet the levelingperformance requirements. On the basis of shell elastoplastic, stability theory, the limitclamping force which clamped pipe pile and the casing in the leveling process required isconfirmed.
     The mathematical model is established, which is used to analyze the clamping force,clamping claw tooth embedded depth and system bearing capacity. The nonlinear relationshipbetween clamping force and gripper embedding depth is analyzied by the LS-DYNA softwareto display dynamic analysis, the result shows that clamping force and embedding depth in thestage of plastic deformation have a linear relationship, and draw a relationship betweenclamping hydraulic cylinder pressure and the bearing capacity of leveling-gripping system.Finite element method is used to analyz clamp claw tooth stress intensity, through the analysisto determine the clamping claw structure and material. The leveling-gripping system key partsusing ANSYS to check the strength, the sleeves which have apparent material waste areoptimized. According to the requirements, a new type of alloy steel is developed, the chemicalcomposition of the materials is designed, the experimental gripper material microstructure is analyzed, the properties of alloy steel is studied in different annealing temperature andholding time, the optimal annealing and quenching tempering explosive art is determined.
     This paper select a platform locate in South China Sea for leveling object, and accordingto the waters of the sea, the effect of wave load on offshore structure is studied based on theMorrison formula and the Stokes5order wave theory. In order to get a leveling-grippingsystem dynamic response in the time domain, according to the parameters of the P-Mspectrum, based on the Shinozuka theory, the effect of wave load in the time domain isanalyzed. The effect of ocean current and wind load on the jacket structure is studied asconstant load. The extreme sea state under different return period is determined, the mainenvironmental load and its combination which jacket withstand in leveling proces is defined.With SACS software, according to the South China Sea, a platform bottom dynamic responseis calculated under limit environmental load in different return period. Use ADAMS softwareto the leveling-gripping system for dynamic analysis in leveling process, the key clampingcontact site dynamic response is determined, the leveling-gripping system can bear thegreatest environmental load is determine,and presents a extreme weather leveling solution.
     The drawbacks and problems of traditional leveling method is analyzed, aiming at theseproblems, leveling device hydraulic system and jacket leveling control system are designed,include the establishment of leveling-gripping system geometric model, making optimalleveling strategy, designing fuzzy controller based on Mamdani, establishing themathematical model of controlled object. Using software to establish the leveling controlsystem simulation model, leveling-gripping system leveling process simulation is simulatedwithout the environmental load influence and under the environmental load respectively, fromthe result of the simulation, we know leveling control system efficiency, precision isobviously improves compare with the traditional leveling method, can overcome the effect ofenvironmental load, has strong robustness.
     In the experimental part, this paper determines the leveling-gripping system claw castingprocess, prepare the sample for claw, make claw material for experimental research, andthrough the experiment to determine its strength. The embedded wedge booster clampingmechanism experimental prototype is designed and developed, the relevant experimentalresults compare with theoretical analysis, which varify the gravity self-locking function ofleveling device clamping mechanism and the theoretical analysis is correct. The pile gripper prototype is designed and developed, oil source and the hydraulic cylinder experiment iscarried out to verify the pressure maintaining performance of pile gripper. The grippingperformance experiment under the actual working conditions is carry out in a harbor, theexperimental monitoring results show that pile gripper can meet the practical steel pipe pileclamping requirements. The depth in surface and the clamping claw tooth fracture forms isanalyzed, the analysis results points further optimizing direction for the improvement of theclamping claw tooth structure and improve the leveling-gripping system grippingperformance, and can provides the valuable basis for leveling-gripping system practicalapplication.
引文
[1]钱亚林.种类繁多的世界海洋油气生产系统[J].海洋石油.2005,25(2):86-92页
    [2] Woodhead H.Roger. Hibernia offshore oil platform[J]. Concrete International, Vol.15,No.12,1993:23-30P
    [3] Ishida Shigesuke, Ohkawa Yutaka, Niwa Toshio, Ohkoshi Shigehiro, KokubunKentaroh. On the research and development of floating offshore platform[C]. OffshoreMechanics and Arctic Engineering–OMAE, Vol.6,2008:561-568P
    [4] Dunn Stanley E., McAllister Ray F. Ocean engineering. Strengthened acceptance&recognition[J]. Sea Technology, Vol.32, No.1,1991:23-25P
    [5]陶永宏.我国海洋工程发展现状[J].中外船舶科技.2009,16(3):16-19页
    [6]黄悦华,任克忍.我国海洋石油钻井平台现状与技术发展分析[J].石油机械.2007,35(9):157页
    [7] Manuel L., Schmucker D.G., Cornell C.A., Carballo, J.E. A reliability-based designformat for jacket platforms under wave loads[J]. Marine Structures, Vol.11, No.10,1999:413-428P
    [8] Cossa Nelson J., Potty Narayanan S., Idrus Arazi B., Hamid Mohd Foad Abdul,Nizamani Zafarullah. Reliability analysis of jacket platforms inMalaysia-environmental load factors[J]. Research Journal of Applied Sciences,Engineering and Technology, Vol.4, No19,2012:3544-3551P
    [9]王立忠.论我国海洋石油工程技术的现状与发展[J].中国海洋平台.2006,21(4):9-11页
    [10]李佼.导管架调平器实验样机研究[D].哈尔滨工程大学硕士学位论文.2007
    [11]王影.导管架调平器工程样机研究与设计[D].哈尔滨工程大学硕士学位论文.2010
    [12]孙志娟.海洋石油平台水下夹桩器研究与设计[D].哈尔滨工程大学硕士学位论文.2007
    [13] Urban Kjellén. Safety in the design of offshore platforms: Integrated safety versussafety as an add-on characteristic[J]. Safety Science, Vol.45, No.1,2007:107-127P
    [14]陈宏,李春祥.自升式钻井平台的发展综述[J].中国海洋平台.2004,22(6):1-6页
    [15] Sutherland Peter E. Generator capability study for offshore oil platform[C].2009IEEE Industrial and Commercial Power Systems Technical Conference, I and CPS2009,2009
    [16] T. Yan, W. Yan, Y. Dong, etc. Marine fouling of offshore installations in the northernBeibu Gulf of China[J]. International Biodeterioration&Biodegradation, Vol.58,No.2,2006:99-105P
    [17] Bybee Karen. Fixed-offshore-platform performance in hurricane Ivan[J]. Journal ofPetroleum Technology, Vol.59, No.2,2007:79-81P
    [18] Carlsen Kjell Glud, Vindvik Gunnar. Offshore concrete gravity structures-constructionof a condeep platform. Mem Univ of Newfoundl[J], Ocean Eng Inf Cent,Vol.1,1978:139-150P
    [19] Anon. Japanese study hybrid guyed tower platform[J]. Ocean industry, Vol.23,No.1,1988:24-25P
    [20] Azarhoushang Azin, Nikraz Hamid. Dynamic fatigue assessment of fixed offshoreplatform[C]. Proceedings of the International Offshore and Polar EngineeringConference,2012:1142-1147P
    [21]王彦.水波与浮式结构物相互作用的粘性流数值模拟研究[D].上海交通大学硕士学位论文.2009
    [22] Jazrawi Waleed, Khanna Jiti. Monocone-a mobile gravity platform for the arcticoffshore[J]. Mem Univ of Newfoundl, Ocean Eng Inf Cent, Vol.1,1978:170-184P
    [23] Chu Xinjie. Study on the stability and structural optimization of self-elevatingplatform pile foundation[C]. Applied Mechanics and Materials, Vol.65,2011:613-616P
    [24] Li Hui, Ren Huilong,Wei Tao, Feng Guoqing. Study on the wave loads and strengthassessment method on semi-submersible platform[C]. Offshore Mechanics and ArcticEngineering–OMAE, Vol.2,2009:463-471P
    [25] Ringsberg Jonas W., Ernholm Per, Hagstr m Love. Analysis of free vibrationcharacteristics and mode shapes of a semi-submersible platform[C]. OffshoreMechanics and Arctic Engineering–OMAE, Vol.1,2011:67-74P
    [26] Burman Jack, Renfro Kevin, Conrad Mark. Marco Polo tension leg platform:Deepwater completion performance[J]. SPE Drilling and Completion, Vol.22,No.3,2007:258-270P
    [27]汪睿.导管架在拖航过程中风激振动防治措施的研究[D].天津大学硕士学位论文.2011
    [28]顾成会.大连港锚地钻井平台拖航代理实务的研究[D].大连海事大学硕士学位论文.2010
    [29]郑成荣.深海系泊浮体的耦合分析及锚系的动力特性研究[D].上海交通大学硕士学位论文.2012
    [30]侯金林.导管架调平与灌浆系统[J].中国海上油气(工程).2000,12(4):21页
    [31] DUAN Zhong-dong, ZHOU Dao-cheng. Calibration of LRFD Format for Steel JacketOffshore Platforms in China Offshore Area[J]. China Ocean Engineering, Vo1.12,No.5,2006:1-14P
    [32] http://www.osmcs-bar.co.uk/latch-lok_levelling.htm
    [33] http://www.oilstates.com/fw/main/Latch-Lok%E2%84%A2-Leveling-385.html
    [34] http://www.ihchs.com/rental/oil-gas/levelling-equipment/
    [35] http://www.ihchs.com/products/oil-gas/levelling-system/
    [36]任新刚.钩扣式导管架调平器关键技术研究[D].哈尔滨工程大学硕士学位论文.2007
    [37]李双军.卡桩式调平器样机液压系统研究[D].哈尔滨工程大学硕士学位论文.2008
    [38]乌建中,陈州全,李龙华.海上风机导管架基础调平装置夹桩器结构分析[J].建筑机械.2012,412(3):79-80页
    [39]孙志娟,孟庆鑫,周到.海洋石油平台水下夹桩器本体结构分析[J].石油矿场机械.2007,36(1):36-38页
    [40]李健民.导管架桩的布置、尺寸和贯入深度的确定[J].中国造船.2005,46:378-380页
    [41]侯亮,唐任仲.产品模块化设计理论、技术与应用研究进展[J].机械工程学报.2004,40(1):56-60页
    [42]李怀亮,于文太,王立权,李佼.水下导管架调平器卡爪实验研究[J].中国海上油气.2009,21(1):57-58页
    [43]刘崟,刘江燕.自适应楔形锁紧装置的设计[J].工程机械.2008,39(10):41-45页
    [44] JIANG Pei-ran, FANG Xiao-ming, ZHU Shao-hua, LI Huai-liang, GONG Hai-xia.Study on a clamping device of leveling equipment mounted on jacket[J]. Journal ofHarbin Institute of Technology (NewSeries), Vo1.8, No.4,2011:41-42P
    [45] Matthew A. Dawson and Lorna J. Gibson. Optimization of cylindrical shells withcompliant cores[J]. International Journal of Solids and Structures, Vol.44,No.3,2007:1145-1160P
    [46] S.S. Ahn, M. Ruzzene. Optimal design of cylindrical shells for enhanced bucklingstability. Application to supercavitating underwater vehicles[J]. Finite Elements inAnalysis and Design, Vol.42, No.11,2006:967-976P
    [47]钱基宏.薄壳失稳机理浅析[J].计算力学学报.2003,20(3):366-370页
    [48]周到.半埋雷打捞装置关键技术研究[D].哈尔滨工程大学博士学位论文.2006
    [49]周到,孟庆鑫,孙志娟.半埋雷打捞装置夹紧爪结构优化[J].工程设计学报.2006,13(6):438页
    [50]孟庆鑫,周到,孙志娟,张忠林.捞雷具夹紧机构夹紧力与鱼雷体承载能力的研究[J].哈尔滨工程大学学报.2006,27(4):557页
    [51]刘明珠.深水法兰连接机具结构与液压控制系统设计[D].哈尔滨工程大学硕士学位论文.2009
    [52]刘明珠,龙斌,王克宽.深水法兰连接机具夹紧机构夹紧力与管道承载能力研究
    [C].2010年度海洋工程学术会议论文集.2010,50(2):261-262页
    [53]凌应轩,李建宏,黄晨.预应力混凝土管桩抗剪承载力计算方法[J].工程与建设.2007,21(1):73-75页
    [54] Lan Kai, Yan Tai-ning, Yang Jian-lin. Bearing Capacity of Bored Pile with LargeLength/Diameter Ratio[J].Geological Engineering,2009
    [55]孙文涛.内胀式吊桩器的研究[D].哈尔滨工程大学硕士学位论文.2010
    [56]姜沛然,房晓明.水下夹桩器夹持性能分析及实验研究[J].哈尔滨工程大学学报.2011,32(9):1128-1132页
    [57]张庆,孟凡杰,张立玲.卡环式液压缸结构分析[J].塑性工程学报.2002,9(2):91-92页
    [58] Zhang Jingjun, Zhong Jitao, Gao Ruizhen, He Lili. The application of co-simulationtechnology of ANSYS and MSC.ADAMS in structural engineering[C].2010Mechanic Automation and Control Engineering, MACE2010,2010:1033-1036P
    [59] Kondo Kenshiro. Fujitsu's activities in improving performance of LS-DYNAnonlinear finite element analysis software[J]. Fujitsu Scientific and Technical Journal,Vol.48, No.3,2012:375-383P
    [60] Zheng Xiahua, Binienda Wieslaw K. Rate-dependent shell element compositematerial model implementation in LS-DYNA[J]. Journal of Aerospace Engineering,Vol.21, No.3,2008:140-151P
    [61] Tong Hailong, Liu Zhonghai, Yin Li, Jin Quan. The dynamic finite element analysis ofshearer's running gear based on LS-DYNA[C]. Advanced Materials Research, Vol.402,2012:753-757P
    [62] Yang Shangyu, Yang Xiujuan, Yan Xiangzhen. Study on nonlinear dynamics collisionof drill string and rock based on ANSYS/LS-DYNA[C]. Applied Mechanics andMaterials, Vol.121-126,2012:3520-3524P
    [63] Li Xiaoran, Yuanfeng Wang. Three-dimensional nonlinear finite element analysis ofreinforced concrete structures based on ANSYS program[C]. Computer Engineeringand Technology, Proceedings, Vol.6,2010:642-646P
    [64] Gao Danying, Zhang Junwei. Finite element analysis of shear behaviors for steel fiberreinforced concrete corbels by ANSYS[C]. Computer Modeling and Simulation, Vol.4,2010:303-307P
    [65]钱俊梅,江晓红,仲小冬,范军.浅谈基于ANSYS软件的接触分析问题[J].煤矿机械.2006,27(7):62-64页
    [66] M. Bruyneel. A general and effective approach for the optimal design of fiberreinforced composite structures[J]. Composites Science and Technology, Vol.66,No.10,2006:1303-1314P
    [67] J.J. del Coz Díaz, P.J. García Nieto, C. Betegón Biempica, etc. Non-linear analysis ofunbolted base plates by the FEM and experimental validation[J]. Thin-WalledStructures. Vol.23, No.6,2006:529-541P
    [68] M. Campo, J.R. Fernández, J.M. Viao. Numerical analysis and simulations of aquasistatic frictional contact problem with damage in viscoelasticity[J]. Journal ofComputational and Applied Mathematics, Vol.192, No.1,2006:30-39P
    [69]吴莉莉.复合材料翼面结构二级布局优化设计方法[D].南京航空航天大学硕士学位论文.2011
    [70]陈晓艳.机械扩径过程的数值模拟与工艺参数优化[D].燕山大学硕士学位论文.2006
    [71]韩滔.高速立式加工中心关键部件结构优化[D].大连理工大学硕士学位论文.2010
    [72] Kost B., Baumann B. Building up structures by means of stochastic topologyoptimization[C]. Computer Aided Optimum Design of Structures, OPTI,Proceedings,Vol.7,2001:193-202P
    [73]张传思.硅片传输机器人手臂的拓扑优化设计[D].大连理工大学硕士学位论文.2007
    [74] BENDSOE M P, KIKUCHI N. Generating optimal topologies in structural designusing a homogenization method [J].Comput Methods in Appl Mech&Eng.Vol.71,No.2,1988:197-224P
    [75] Gregoire Allaire, Francois Jouve, Anca-Maria Toader. Structural optimization usingsensitivity analysis and a level-set method[J]. Journal of ConputationalPhysics.Vol.194,2004:363-393P
    [76]唐涛.基于Hypermesh/OptiStruct的发动机支架结构拓扑优化设计[J].制造业自动化.2011,33(12):1-4页
    [77]张晋芳,赵人达.基于ANSYS的渐进结构拓扑优化方法比较[J].四川建筑科学研究.2009,35(2):36页
    [78]张荭蔚,顾力强.基于有限元分析技术的大客车车门结构拓扑优化设计研究[J].机械设计与研究.2002,18(5):25-32页
    [79]魏文儒,屈福政.基于ANSYS的空间桁架结构拓扑优化设计[J].起重运输机械.2008,7:32页
    [80]欧进萍,肖仪清,黄虎杰,段忠东,张涛,李维星.海洋平台结构实时安全监测系统[J].海洋工程.2001,19(2):2-3页
    [81]杨曙光.自升式平台强度评估若干问题研究[D].哈尔滨工程大学硕士学位论文.2010
    [82] Karunakaran D., Baerheim M., Leira, B.J. Measured and simulated dynamic responseof a jacket platform[C]. Offshore Mechanics and Arctic Engineering-OMAE,Vol.2,1997:157-164P
    [83] Dousti M., Gharabaghi A.R.M., Chenaghlou M.R. Study of nonlinear dynamicbehavior of a typical jacket type platform under environmental loading (wave¤t) and blast overpressure[C]. Offshore Mechanics and Arctic Engineering-OMAE, Vol.1,2004:901-909P
    [84] Burke R.G.,Tighe J.T.A timeseries model for dynamic behavior of offshorestructures[C].Proc.3rdOTC.Houston,1971:775-788P
    [85]修宗祥.深水导管架海洋平台安全可靠性分析及优化设计[D].中国石油大学博士学位论文.2010
    [86]竺艳蓉,谢峻,龚佩华.各种波浪谱在海洋工程中适用性的研究[J].海洋学报(中文版).1995,17(6):126-131页
    [87]张圣亮.基于实测数据的海洋平台结构安全评定[D].哈尔滨工业大学硕士学位论文.2007
    [88] Yang C.H., Tung C.C. Effects of random wave surface fluctuation on response ofoffshore structures[J]. Probabilistic Engineering Mechanics, Vol.12, No.1,1997:1-7P
    [89] Isaacson Michael, Subbiah Kesavan. Random wave slamming on cylinders[J]. Journalof Waterway, Port, Coastal and Ocean Engineering, Vol.116, No.6,1990:742-763P
    [90] Hou Yijun, Guo Peifang, Song Guiting, Song Jinbao,Yin Baoshu,Zhao Xixi. Statisticaldistribution of nonlinear random wave height[J]. Science in China, Series D: EarthSciences, Vol.49, No.4,2006:443-448P
    [91] Morison J.R.,O’ Brien M.P., Johnson J.W,et a1. The forces exerted by surface waveson piles [J]. Petro.Trans., Am.Inst.of Mining Eng.,Vol.189,1950:149-154P
    [92]钱勤,黄玉监.求附连水质量的一种直接方法[J].力学与实践.1996,18(5):19-21页
    [93]童予靖,刘止兴.流固耦合问题中的附连水质量研究[J].上海力学.1997,18(4):311-320页
    [94]初良成,曲乃泗,邬瑞峰.附连水质量对结构动力响应影响的摄动分析[J].振动与冲击.1994,50(2):68-74页
    [95] L.Skjelbreia and J.A. Hendricksen, Fifth-order Gravity Wave Theory[C],Proceedings of Seventh Conference on Coastal Engineering,1961:184-196P
    [96]赫亮.波浪谱密度函数数值分析[D].大连理工大学硕士学位论文.2005
    [97]聂孟喜,王旭升,王晓明,张琳.风、浪、流联合作用下系统系泊力的时域计算方法[J].清华大学学报(自然科学版).2004,44(9):1214-1217页
    [98]苏厚德,李金波,任永泉,樊建领.海洋导管架在复杂载荷作用下的动态响应[J].石油化工设备.2011,40(6):35-37页
    [99]阎石,郑伟.简谐波叠加法模拟风谱[J].沈阳建筑大学学报(自然科学版).2005,21(1):1-2页
    [100]文圣常,张大错,郭佩芳,陈伯海,王伟,台伟涛.改进的理论风浪频谱[J].海洋学报.1990,12(3):271-282页
    [101]稽春燕.海洋平台动力响应分析与振动控制研究[D].中国海洋大学博士学位论文.2003
    [102]王浚璞,艾志久,李旭志,姜巍.基于SACS的海洋平台疲劳可靠性分析[J].石油矿场机械.2008,37(9):24-27页
    [103]王树杰,尹克金,李淑一,李冬.风浪流联合载荷作用下潮流能发电实验平台稳定性研究[C].第十四届中国海洋(岸)工程学术讨论会论文集.2009,370-374页
    [104] Qi Yiquan, Zhang Zhixu, Shi Ping. Extreme wind, wave and current in deep water ofsouth china sea[J]. International Journal of Offshore and Polar Engineering,Vol.20,No.1,2010:18-23P
    [105]凌轩,曹树平,朱玉泉,冯天麟.基于模糊自适应控制的四点支承液压平台自动调平方法[J].机床与液压.2007,35(12):84-85页
    [106]何林立.大型重载平台的自动调平夹持系统研究[D].中北大学硕士学位论文.2010
    [107] Peter Rohner. Fluid Power Logic Circuit Design-analysis, design methods and workedexamples[C]. The Macmillan Press LTD.1979:32-34P
    [108] Chen ZQ, He Y. Simulation of unitary water source heat pump[C]. Proceedings of the3rd Asian Conference on Refrigeration and Air-Conditioning Vols I and II.2006:513-516P
    [109]黄合成,韩轶霞.基于电液比例阀的模糊智能PID控制系统的研究[J].试验技术与试验机.2007,(4):56-57页
    [110] Bo Wu, Yanlang Dong, Shenglin Wu, Dongguang Xu and Keding Zhao, etal.Anintegral variable structure controller with fuzzy tuning design for electro-hydraulicdriving Stewart platform[C]. Systems and Control in Aerospace and Astronautics,2006. ISSCAA2006:941-945P
    [111]黎启柏,何厚礼.电液位置伺服系统的比例-模糊PID控制研究[J].机床与液压.2006,(8):189页
    [112] Lihua Chen, Yajuan Ji, Zhibin Sun. The application of fuzzy control strategy inelectro-hydraulic servo system[C]. Communications and Information Technology,2005. ISCIT2005:165-170P
    [113]姜沛然.基于模糊理论和强化学习的自主式水下机器人运动规划技术[D].哈尔滨工程大学硕士学位论文.2005
    [114] Ghalia Mounir Ben. Robust model-based control of uncertain dynamical systems: afuzzy set theory based approach[C]. Proceedings of the IEEE Conference on Decisionand Control, Vol.1,1996
    [115] Fu Yongling, Fan Dianliang, Qi Haitao, Wang Weihong. The application ofCo-Simulation based on AMESim and Matlab in Electro-hydraulic servo system[C].Electronic and Mechanical Engineering and Information Technology,Vol.7,2011:3547-3550P
    [116] Lynn Alfred,Smid Edzko, Eshraghi Moji, Caldwell Niall, Woody Dan. Modelinghydraulic regenerative hybrid vehicles using AMESim and Matlab/Simulink[C]. TheInternational Society for Optical Engineering, Vol.5805,2005:24-40P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700