微小孔磨粒流抛光装置的研制与工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航空航天器件的微型化,国防高技术武器的轻型化,微机电系统元件及民用各类型智能探测器的应用,微小孔零件在制造业中应用越来越广泛,加工精度及表面性能要求越来越高,对微小孔超精密加工的需求越来越迫切。磨粒流加工这一新的抛光加工工艺具有良好的表面精加工能力,特别适合于各类复杂异型孔零件、微小孔、复杂内部型腔结构的超精密加工。
     本文首先在理论上对磨粒流抛光机理进行了探讨,对微小孔磨粒流加工特性及磨粒的运动方式进行了分析,并对磨粒流在圆柱形流道内抛光的力学特性和运动特性进行了分析。
     然后根据试验零件的结构特征,应用GAMBIT软件完成了微小孔磨粒流抛光模型的创建和网格划分工作,利用流体力学软件FLUENT针对不同微小孔流道形状进行二维及三维数值模拟来分析研磨介质的流动状况。通过数值分析,可模拟研磨介质的静态压强、动态压强、速度、湍流动能、湍流强度、有效粘度和湍流粘度等参数,为磨粒流加工工艺研究提供理论依据。
     在此基础上设计了微小孔磨粒流抛光装置并对装置的液压缸、磨料缸及其支座进行了有限元分析,进而完成了微小孔磨粒流抛光装置及其夹具的研制以及数控微小孔磨粒流抛光机床的总体设计工作。通过抛光实验证实,该装置设计合理,可满足微小孔磨粒流加工的需要。
     以自行研制的磨粒流抛光液对磨粒流加工微小孔流道表面的精加工能力进行研究,探讨了磨粒粒度、磨料浓度、挤压压力及加工时间等加工工艺参数对微小孔表面精度的影响规律。通过对磨粒流加工前后微小孔流道表面精度和表面形貌的检测,可以确信磨粒流抛光技术确实可以显著改善微小孔流道的表面精度和表面形貌,获得理想的表面精修效果。在本文所选定的实验条件下,得到了最佳表面质量的磨粒流加工工艺参数。
     最后,为了获得磨粒流加工微小孔流道表面最佳工艺参数组合,将田口实验设计法引入微小孔磨粒流抛光工艺实验。用田口实验规划L9正交表为实验平台,以表面粗糙度为望小型期望目标确定了磨粒流抛光微小孔最佳工艺参数组合。通过对信噪比的分析,获得了各加工参数对微小孔流道表面精度的影响次序。最终获得的达到预期抛光效果的最佳工艺参数,可用于指导后续零件的批量生产,为数控磨粒流抛光机床的研发和磨粒流抛光技术的应用提供了技术支持。
With the miniaturization of Aero-Space devices, the light trend of high-tech weapons for national defense, and the application of Micro Electro-Mechanical Systems (MEMS) components and different types of civil intelligent detectors, the application of micro-hole parts in manufacturing becomes increasingly widespread, the requirements for machining precision and surface property becomes higher and higher, and the demands for micro-hole ultra-precision machining become more and more urgent. The abrasive flow machining technology, which is a new polishing technology, possesses good surface machining ability, especially suits the ultra-sophisticated machining of various complicated parts of special shape hole, micro-hole and complex internal cavity structures.
     The thesis first explores abrasive flow polishing mechanism in theory, expounds the properties of micro-hole abrasive flow machining and the motion mode of abrasive grain, and analyzes the mechanical properties and motion properties while the abrasive flow polishing in the cylindrical runner.
     Then according to the structural features of tested parts, we use GAMBIT software to accomplish the creation of micro-hole abrasive flow polishing model and the partition of grid, and use hydrodynamics software FLUENT to perform 2-d and 3-d numerical simulation on different micro-hole runner shapes to analyze the flowing situation of grinding medium. Through the numerical analysis, we can simulate parameters, such as the static pressure, dynamic pressure, velocity, turbulence kinetic energy, turbulent intensity, effective viscosity, and turbulent viscosity, which provide the theoretical basis for the research into abrasive flow machining technology.
     On the basis of it, we design micro-hole abrasive flow polishing device, and perform the finite element analysis of hydraulic cylinder, abrasive cylinder and bearing of the device, and then accomplish the development of micro-hole abrasive flow polishing device and the clamp, finish the general design of micro-hole abrasive flow polishing the machine tool on the digit control. It is proved through the polishing experiment that, the design is reasonable and it can meet the needs of micro-hole abrasive flow machining.
     The experiment uses self-developed abrasive flow polishing liquid to study the finishing ability of abrasive flow machining micro-hole runner surface, explores influencing rules of machining technology parameters, such as the grain size, abrasive thickness, squeezing pressure, machining time, etc. on the micro-hole surface precision. Through testing micro-hole runner surface precision and surface condition before and after abrasive flow machining, it is sure that abrasive flow polishing technology can improve the micro-hole runner surface precision and surface condition to achieve the ideal surface finishing effect. Under the experiment condition chosen in this thesis, the abrasive flow machining parameters for the best surface quality can be achieved.
     Finally, in order to obtain the best technology parameters combination of abrasive flow machining micro-hole runner surface, we introduce Taguchi experiment design method into micro-hole abrasive flow polishing technology experiment. According to the Taguchi experiment, L9 orthogonal array is projected as experimental platform, and the best technology parameters combination of abrasive flow polishing micro-hole is set up based on the minimizing surface roughness. Through the analysis of signal-to-noise ratio, the influencing order of machining parameters on the micro-hole runner surface precision can be accomplished. The ultimately-obtained best technology parameters which have achieved expected polishing effect can be used to instruct the batch manufacturing of following parts, which provides technology support for the following development and application of digit control abrasive flow polishing machine tool.
引文
[1]詹平海.磨粒流加工技术的特点及应用.金属加工.2009(6):30-32
    [2]任红军.磨粒流工艺技术及其应用.机械工人(冷加工).2004(9):21-23
    [3]毕建忠,李继亮.磨料流加工技术及应用.工程设计与应用研究.2001(3):7~11
    [4]A-Cheng WANG, Lung TSAI, Kuo-Zoo LIANG, et al. Uniform surface polished method of complex holes in abrasive flow machining. Trans. Nonferrous Met. Soc. China,2009(19):250-257
    [5]Hsinn-Jyh Tzeng, Biing-Hwa Yan. Self-modulating abrasive medium and its application to abrasive flow machining for finishing microchannel surfaces. Int J Adv Manuf Technol,2007(32):1163-1169
    [6]L Dabrowski, M Marciniak, T Szewczyk. Analysis of abrasive flow machining with an electrochemical process aid. Proc. IMechE PartA:J. Power and Energy,2005(220):397-403
    [7]Singh, S., Shan, H. S. Development of magneto-abrasive flow machining process. Int. J. Mach. Tool Mf, 2002(42):953-959
    [8]Singh, S., Shan, H. S., Kumar, P. Wear behavior of Materials in magnetically assisted abrasive flow machining. J. Mater. ProcessingTechnol,2002(128):155-156
    [9]S.L. Ko, Yu M. Baron, J.I. Park. Micro deburring for precision parts using magnetic abrasive finishing method. Journal of Materials Processing Technology,2007(187-188):19-25
    [10]V.K.Jain. Esign and development of the magnetroheological abrasive flow finishing. International Journal of Machine Tool & Manufacture,2004(44):1019-1029
    [11]张成光,于兴芝.基础超声波研磨加工机理的影响因素研究.机床与液压.2007,35(6):63-64
    [12]Williams R E. Acoustic Emission Characteristics of Abrasive Flow Machining. Journal of Manufacturing Science and Engineering,1998(120):264-271
    [13]Jeong-Du Kim, Kyung-Du Kim. Deburring of burrs in spring collets by abrasive flow machining. Int J Adv Manuf Technol,2004(24):469-473
    [14]Kamal K. Kar, N. L. Ravikumar, Piyushkumar B. Tailor, et al. Performance evaluation and rheological characterization of newly developed butyl rubber based media for abrasive flow machining process. journal of materials processing technology,2009(209):2212-2221
    [15]Manas Das, V. K. Jain, P. S. Ghoshdastidar. Analysis of magnetorheological abrasive flow finishing (MRAFF) process. Int J Adv Manuf Technol,2008(38):613-621
    [16]Sunil Jha, V. K. Jain, Ranga Komanduri. Effect of extrusion pressure and number of finishing cycles on surface roughness in magnetorheological abrasive flow finishing (MRAFF) process. Int J Adv Manuf Technol,2007(33):725-729
    [17]Hsinn-Jyh Tzeng, Biing-HwaYan. Finishing effect of abrasive flow machining on microslit fabricated by wire-EDM. Int J Adv Manuf Technol,2007(34):649-656
    [18]Yan-Cherng Lin a,_Ho-Shiun Lee. Machining characteristics of magnetic force-assisted EDM. International Journal of Machine Tools & Manufacture,2008(48):1179-1186
    [19]郭应竹.磨粒流加工在航空发动机制造中的应用.航空工艺技术.1993(5):28-32
    [20]郭应竹,石志奎.航空机载零件磨粒流去毛刺工艺.航空制造技术.2001(4):57-65
    [21]戴根村.磨料流技术去除交叉孔毛刺.航天制造技术.2002(1):25-28
    [22]杨贵铭.磨粒流挤压抛光技术研究应用.航空制造工程.1996(11):12~13
    [23]熊英.磨粒流加工技术的发展.航空科学技术.1995(2):16-18
    [24]R. S. Walia, H S. Shan, P Kumar. Modelling of centrifugal-force-assisted abrasive flow machining. Proceedings of the Institution of Mechanical Engineers, Part E:Journal of Process Mechanical Engineering,2009(223):195 - 204
    [25]R. S. Walia, H.S.Shan, and P.Kumar. Morphology and integrity of surfaces finished by centrifugal force assisted abrasive flow machining. Int J Adv Manuf Technol,2008(39):1171-1179
    [26]陈靖.发动机及管路零件去毛刺.航天制造技术.2002(2):16-18
    [27]汤勇,周德明,杨钢等.磨料流光整加工性研究.华南理工大学学报(自然科学版).2001,29(9):17-19
    [28]D Jung, W L Wang, S J Hu. Microscopic geometry changes of adirect-injection diesel injector nozzle due to abrasive flow machining and a numerical investigation of its effects on engine performance and emissions. Proc. IMechE PartA:J. Power and Energy,2007(222):241-252
    [29]郭志远,何志霞,王谦.柴油机喷油嘴结构对内部空穴流动的影响分析.现代车用动力.2009(4):40~43
    [30]姜光军,高国珍,文华.柴油机喷油嘴内燃油流动三维数值模拟.南昌大学学报(工科版).2008,30(1):57-59
    [31]曾东建,黄海波,贾友昌.柴油机喷嘴内流场的数值模拟分析.西华大学学报(自然科学版).2008,27(4):20-23
    [32]王军,张幽彤,林秀霞.军用柴油机高压共轨系统共轨管设计与仿真.装甲兵工程学院学报.2008,22(3):43-46
    [33]D. JUNG, W. L. WANG, A. KNAFL, et al. EXPERIMENTAL INVESTIGATION OF ABRASIVE FLOW MACHINING EFFECTS ON INJECTOR NOZZLE GEOMETRIES, ENGINE PERFORMANCE AND EMISSIONS IN A DI DIESEL ENGINE. International Journal of Automotive Technology,2008,9(1):9-15
    [34]D. Jung, W. L. Wang, S. J. Hu, et al. Microscopic geometry changes of adirect-injection diesel injector nozzle due to abrasive flow machining and a numerical investigation of its effects on engine performance and emissions. Powerand Energy,2007(11):241-252
    [35]张凌云,吴凤林.磨料流加工技术现状及展望.机械工程与自动化.2006(5):166-168
    [36]武利声,李原宗.磨粒流加工研究进展.金刚石与磨具磨料工程.2005(1):69~74
    [37]T. R. Loveless, R. E. Williams, K. P. Rajurkar. A Study of the effects of Abrasive-flow finishing on various machined surfaces. Journal of Materials Processing Technology,1994(47):133-151
    [38]R. K. Jain, V. K. Jain, and P. M. Dixit. Modeling of material removal andsurface rough-ness in abrasive flow machining process. International Journal of Machine Tools & Manufacture,1999(39):1903-1923
    [39]R K Jain, V K Jain. Finite element simulation of abrasive flow machining. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,2003(217):1723-1736
    [40]V. K. Jain, C. Ranganatha, K. Muralidhar. EVALUATION OF RHEOLOGICAL PROPERTIES OF MEDIUM FOR AFM PROCESS. MACHINING SCIENCE AND TECHNOLOGY.2001,5(2):151 - 170
    [41]V. K. Jain. Magnetic field assisted abrasive based micro-nano-finishing. Journal of Materials Processing Technology,2009(209):6022-6038
    [42]S. Jha, V. K. Jain. Design and development of the magnetorheological abrasive flow finishing process. International Journal of Machine Tools & Manufacture,2004(44):1019-1029.
    [43]V.K.Jain, Rajan i Kumar, P.M. Dixit, et al. Investigations into abrasive flow finishing of complex workpieces using FEM. Wear,2009(267):71-80
    [44]N. K. Jain, V. K. Jain, S. Jha. Parametric optimization of advanced fine-inishing processes. Int J Adv Manuf Technol,2007(34):1191-1213
    [45]Rajendra K. Jain, V. K. Jain. Stochastic simulation of active grain density in abrasive flow machining. Journal of Materials Processing Technology,2004(152):17-22
    [46]V. K. Gorana, V. K. Jain. Experimental investigation into cutting forces and active grin density during abrasive flow maching. International Journal of Machine Tool & Manufacture,2004(44),201-211
    [47]V. K. Gorana, V.K.Jain, G.K.Lal. Prediction of surface roughness during abrasive flow machining. Int J Adv Manuf Technol,2006(31):258-267
    [48]V.K.Jain, S. G. Adsul. Experimental investigations into abrasive flow maching (AFM). International Jounal of Machine Tool & Manufacture,2000(40):1003-1021
    [49]A. C. Wang, C. H. Liu, K. Z. Liang, et al. Study of the rheological properties and the finishing behavior of abrasive gels in abrasive flow machining. Journal of Mechanical Science andTechnology, 2007(21):1593-1598
    [50]Liang Fang, Jia Zhao, Kun Sun, Degang Zheng, et al. Temperature as sensitive monitor for efficiency of work in abrasive flow machining. Wear,2009(266):678-687
    [51]R. S. Walia, H. S. Shan, a, P. Kumar. Determining dynamically active abrasive particles in the media used in centrifugal force assisted abrasive flow machining process. Int J Adv Manuf Technol,2008(38) 1157-1164.
    [52]R.S. Walia, H.S.Shan, P. Kumar. ABRASIVE FLOW MACHINING WITH ADDITIONAL CENTRIFUGAL FORCE APPLIED TO THE MEDIA. Machining Science and Technology,2006(10):341-354
    [53]R S Walia, H S Shan, P K Kumar. Finite element analysis of mediaused in the centrifugal for ceassisted abrasive flow machining process. Proc. IMechE PartB:J. Engineering Manufacture,2008 (220):1775-1785
    [54]Yan-Cherng Lin, Han-Ming Chow. Effects of finishing in abrasive fluid machining on microholes fabricated by EDM. Int J Adv Manuf Technol,2007(33):489-497
    [55]Davies P J, Fletcher A J. The Assessment of the rheological characteristics of various polyborosiloxane/grit mixtures as utilized in the abrasive flow machining process.Journal of Mechanical Engineering Science,1995(6):408-418
    [56]Rajendra K Jain, V K Jain. Specific energy and temperature determination in abrasive flow machining processes. International Journal of Machine Tools & Manufacture,2001,12(44):1689-1704
    [57]Mamilla Ravi Sankar, J. Ramkumar, V. K. Jain. Experimental investigation and mechanism of material removal in nano finishing of MMCs using abrasive flow finishing (AFF) process. Wear,2009,266(2): 688-698
    [58]Mamilla Ravi Sankar, V. K. Jain, and J. Ramkumar. Experimental investigations into rotating workpiece abrasive flow finishing. Wear,2009(267):43-51
    [59]Yan-Cherng Lina, Yuan-Feng Chena, Der-An Wanga. Optimization of machining parameters in magnetic force assisted EDM based on Taguchi method. Journal of materials processing technology,2009(209): 3374-3383
    [60]R. Singh, J. S. Khamba. Taguchi technique for modeling material removal rate in Ultrasonicmachining of titanium. Materials Science and Engineering,2007(460-461):365-369
    [61]Harlal Singh Mali, Alakesh Manna. Optimum selection of abrasive flow machining conditions during fine finishing of Al/15 wt% SiC-MMC using Taguchi method. Int J Adv Manuf Technol,2010(50):1013-1024
    [62]S. Jha, V. K. Jain. Modeling and simulation of surface roughness inmagnetorheological abrasive flow finishing (MRAFF) process. Wear,2006(261):856-866
    [63]Manas Das, V. K. Jain, P. S. Ghoshdastidar. Fluid flow analysis of magnetorheological abrasive flow finishing (MRAFF) process. International Journal of Machine Tools & Manufacture,2008(48):415-426
    [64]Amit M. Wani, Vinod Yadava, Atul Khatri. Simulation for the prediction of surface roughness in magnetic abrasive flow finishing (MAFF). Journal of Materials Processing Technology,2007(190): 282-290
    [65]Petri K L, Billo R E, Bidanda B. A neural network process model for abrasive flow machining operations. Journal of Manufacturing Systems,1998,17(1):52-64
    [66]Asfak Ali Mollah, Dilip Kumar Pratihar. Modeling of TIG welding and abrasive flow machining processes using radial basis function networks. Int J Adv Manuf Technol,2008(37):937-952
    [67]M. Ali-Tavoli, N. Nariman-Zadeh. MULT I-OBJECTIVE OPTIMIZATION OF ABRASIVE FLOW MACHINING PROCESSES USING POLYNOMIAL NEURAL NETWORKS AND GENETIC ALGORITHMS. Machining Science and Technology,2006 (10): 491-510
    [68]Benardos PG, Vosniakos GC. Prediction of surface References roughness in CNC face milling using neural networks and Taguchi's design of experiments. Robot Comput-Integr Manuf,2002(18):343-354
    [69]S. S. Mahapatra, Amar Patnaik. Study on mechanical and erosion wear behavior of hybrid composites using Taguchi experimental design. Materials and Design,2009(30):2791-2801
    [70]V. N. Gaitondea, S. R. Karnikb, B. T. Achyuthac. Taguchi optimization in drilling of AISI 316L stainless steel to minimize burr size using multi-performance objective based on membership function. Journal of materials processing technology,2008(202):374-379
    [71]Chih-Wei Chang, Chun-Pao Kuo. Evaluation of surface roughness in laser-assisted machining of aluminum oxide ceramics with Taguchi method. International Journal of Machine Tools & Manufacture, 2007(47):141-147
    [72]Eckart Uhlmann, Vanja Mihotovic, Andre Coenen. Modelling the abrasive flow machining process on advanced ceramic materials. Journal of Materials Processing Technology,2009(209):6062-6066
    [73]M. RaviSankar, V. K. Jain n, J. Ramkumar. Rotational abrasive flow finishing (R-AFF) process and its effects on finished surface topography. International Journal of Machine Tools & Manufacture. International Journal of Machine Tools & Manufacture,2010(50):637-650
    [74]汤勇,张发英,陈澄洲.磨料流加工流动形态及加工效果的研究.华南理工大学学报.1994,22(5):100-104
    [75]汤勇,周德明,夏伟.磨料流加工壁面滑动特性的研究.华南理工大学学报(自然科学版).2001,29(9):34~37
    [76]汤勇,陈澄洲,张发英.磨料流加工压力特性对加工表面粗糙度的影响.华南理工大学学报(自然科学版).1997,25(5):22-25
    [77]汤勇,陈澄洲,张发英.磨料流加工时磨料流动形态的研究.华南理工大学学报.1997,25(9):1-5
    [78]陆纪培,张斌,孙允臣等.粘性磨料对挤压珩磨加工效果的影响.电加工.1989(2):4-8
    [79]聂先桥,杨建明.磨料流加工磨料流动边界条件的确定.机械制造自动化.2001,39(446):9-11
    [80]杨建明,聂先桥.磨料流在工件孔腔中的流动特性分析.淮海工学院学报(自然科学版).2000,9(2):7-9
    [81]段润保.磨料流动加工(AFM)机理初探.唐山工程技术学院学报.1990(3):57-64
    [82]杨俭安.磨料流加工的流动分析.机械设计与研究.1997(3):7~9
    [83]王浩程,张宏太,张德良等.磨料流在离心研磨过中运动特征的数值模拟.中国机械工程.2005,16(22):1995~1998
    [84]王时英,吕明,轧刚.磨料流加工的力学原理及应用.太原理工大学学报.1998,29(3):272-275
    [85]宋伟,吴振华,唐维平.用正交试验法确定磨料流工艺因素的最优组合.现代车用动力.2003(1):26-28
    [86]谭援强,李艺,Sheng Yong.磨粒流加工的固液两相流模型及压力特性模拟.中国机械工程.2008,19(4):439~441
    [87]董志国,轧刚,宋桂珍等.磨料流加工中磨料黏弹性对磨削效果的影响分析.金刚石与磨料磨具工程.2010,30(6):82-85
    [88]焦佳能,费群星,白凤民等.钛合金表面磨粒流加工工艺研究.金刚石与磨料磨具工程.2010,30(1):42~45
    [89]计时鸣,唐波,谭大鹏.结构化表面软性磨粒流精密光整加工方法及其磨粒流动力学数值分析.机械工程学报.2010,46(15):178~184
    [90]黄志刚.基于数值仿真的流体振动抛光机理研究:[博士学位论文].广州:广东工业大学,2007
    [91]XiaoKai Hu, Zhitang Song, Zhongcai Pan, et al. Planarization machining of sapphire wafers with boron carbide and colloidal silica as abrasives. Applied Surface Science,2009(255):8230-8234
    [92]Liang Fang, Jia Zhao, Bo Li, and Kun Sun. Movement patterns of ellipsoidal particle in abrasive flow machining. Journal of Materials Processing Technology,2009(209):6048-6056
    [93]宿崇,侯俊铭,朱立:达等.基于流固耦合算法的单颗磨粒切削仿真研究.系统仿真学报.2008,20(19):5250~5257
    [94]K Malla, Reddy, A K Sharma, et al. Some aspects of centrifugal force assisted abrasive flow machining of 2014 Alalloy. Engineering Manufacture,2008(222):773-783
    [95]朱春锋.喷油嘴磨粒流超精密抛光技术研究:[硕士学位论文].长春:长春理工大学,2009
    [96]熊佳,雷玉勇,杨志峰等.基于FLUENT的磨料水射流喷嘴内流场的可视化研究.润滑与密封.2008,33(6):51~53
    [97]陈群.车用柴油机冷却水套的计算流体力学分析:[博士学位论文].长春:吉林大学,2003
    [98]刘晓丹·.汽油机水套冷却液流动数值分析:[硕士学位论文].长春:吉林大学,2009
    [99]李志刚.基于CFD技术的柴油机中冷器的优化设计与匹配研究:[硕士学位论文].天津:天津大学,2007
    [100]胡贵华,俞涛,刘小健.前混合磨料水射流喷嘴内固液两相流的数值模拟.机电一体化.2005(6):20-23
    [101]郭杰,冯志华,曾庭卫.基于FLUENT的喷气织机主喷嘴内部气流场三维数值分析.苏州大学学报(工科版)..2009,29(2):38-42
    [102]曹铭.自动防斜钻井液压系统研究及其旋转导向套CFD仿真分析:[硕士学位论文].武汉:武汉科技大学,2007
    [103]李海龙.某固冲发动机进气道流场和结构模拟仿真:[硕士学位论文].内蒙古:内蒙古工业大学,2007
    [104]邹宁.超声速喷管设计及其数值模拟和实验研究:[硕士学位论文].南京:南京航空航天大学,2008
    [105]刘萍,张东速.喷嘴几何参数对射流流场性能影响的计算研究.机械设计.2007,24(11):50-52
    [106]李仁年,王秋红,沈建锋等.螺旋离心泵内固液两相流的数值模拟.流体机械.2008,36(12):24-27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700