石门揭突出煤层围岩力学特性模拟试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石门揭穿突出煤层时的煤与瓦斯突出,是煤矿生产中的一种极为复杂的动力灾害,这种类型突出的强度和危害性在各类突出中往往是最大的。据统计,约有80%的重、特大煤与瓦斯突出事故发生在石门揭煤的过程中。众所周知,煤与瓦斯突出这一复杂的力学现象是在某些特殊因素的共同作用下发生的,这些因素包括地应力、瓦斯压力和煤的结构及强度等。有的学者从煤与瓦斯突出发生地点的相关地质资料的研究中,得出这样的结论,大多数石门揭煤突出的发生和其发生地点的地质构造有密切的关系(这一点和其他类型的突出是一致的)。因此,有关地质构造影响下,石门揭煤过程中的围岩力学特性和突出机理的研究具有重要意义。
     以岩石力学、地质构造力学、瓦斯赋存与流动理论及煤与瓦斯突出机理等理论为基础,总结出了各种地质构造在煤层中形成的破坏区的共同特征,描述了“构造包体”的概念。然后,选择逆断层构造在煤层中所形成的压扭、封闭性破坏区作为试验中的“构造包体”,构建了石门揭含“构造包体”突出煤层的突出模型,并探析了模型中“构造包体”的力学和聚能特性以及模型的煤与瓦斯突出机理。
     依据淮南矿区C13-1煤这一典型突出煤层的顶、底板岩性分布及物理力学参数,在实验室内构建了煤与瓦斯突出模拟试验台,进行了石门揭煤相似模拟试验。在相似模拟试验中,对表征石门揭煤巷道掘进过程中围岩的力学特性及揭开含“构造包体”突出煤层时的相关参数进行了采集,其中包括:围岩应力的变化、围岩的位移,“构造包体”及煤层内瓦斯压力的变化,“构造包体”周围围岩的温度变化。通过对试验数据的分析研究,得出以下结论:第一,揭煤巷道向“构造包体”推进的过程中,巷道迎头端面前方围岩的一定范围内存在明显的应力降低和应力升高现象。第二,在石门巷道向“构造包体”推进过程中的良好支护范围内,巷道上覆围岩各点垂向位移量的最大值仅为3mm(相当于现场12cm);在“构造包体”周围围岩的位移量在突出前很小,突出时猛增,最小为10mm(相当于现场0.4m),最大值超过了50mm(相当于现场2.0m);突出终止以后,在上覆载荷的作用下,突出空洞的体积有所缩小,为最大空洞体积的80%。第三,随着瓦斯气体的充入,“构造包体”温度升高的幅度和速率大于两侧煤层;当突出发生时,两侧煤体的瓦斯压力和温度的下降时间滞后于“构造包体”,两侧煤体的瓦斯压力和温度的下降幅度也小于“构造包体”。第四,突出发生时,突出颗粒具有分选现象,并出现了典型的突出空洞。
     结合相似模拟试验,利用固-气耦合软件RFPA2D-Flow建立了石门揭含“构造包体”突出煤层数值模型,从细观的角度再现了石门揭含“构造包体”突出煤层时围岩的应力场、声发射、瓦斯流场及瓦斯压力场的演化及煤与瓦斯突出现象,数值模拟结果与相似模拟结果是基本一致的。此外,改变地应力和煤体强度的大小,进行了多次模拟计算,发现了以下规律:第一,高地应力、高瓦斯条件下,如果支护不力,巷道变形严重,煤层煤体和“构造包体”内松散煤岩进一步破碎,极易产生自“构造包体”向周围煤层扩展的大型突出;第二,低地应力、高瓦斯条件下,突出强度相对减弱,突出一般被限制在“构造包体”控制范围以内;第三,若提高“构造包体”的强度,即使在高地应力和高瓦斯压力条件下,突出也不易发生,煤体以破裂为主
     最后列举了含“构造包体”煤层突出的实例,论证了“构造包体”对煤与瓦斯突出影响的客观性;并利用构建的“构造包体”突出模型,对突出进行了分析,认为:在石门揭含“构造包体”突出煤层过程中,高瓦斯含量和压力、高地应力和低煤体强度是突出的发生的关键因素。
     通过理论分析、相似试验和数值模拟分析得出石门揭含“构造包体”突出煤层时突出发生的原因是:“构造包体”影响区存在构造应力场,围岩的初始应力较高;随着石门揭煤巷道的推进,该区域围岩的应力具有进一步增加的趋势,围岩变形小,瓦斯压力较高,即便当石门揭煤工作面推进至“构造包体”附近时,附近围岩仍然保持着较高的地应力和瓦斯压力;当揭煤工作面突然打开“构造包体”时,突出瞬间发生,附近围岩的地应力和瓦斯压力迅速降低。可见,在石门巷道推进过程中,含“构造包体”突出煤层一直维持着较高的地应力和瓦斯压力是造成突出的重要原因。论文的研究成果对深入认识复杂地质构造影响下石门揭煤突出机理和突出灾害防治具有一定的理论指导和现实意义。
Coal and gas outburst of coal seam uncovered by crosscut is an extremely complex dynamic disaster in the coal mining, its intensity is often biggest in all kinds of outbursts and its hazardness is extremely high. Statistics indicates that 80% of the serious coal and gas outbursts occur in coal uncovering by crosscut. Therefore, study of outburst mechanism of the gaseous coal (rock) uncovered by crosscut has vital practical significances for guaranteeing the safe and highly effective production in coal mine. It is known to all, coal and gas outburst is a complex mechanical problem that occurs under special conditions, for example, crustal stress, gas pressure, coal structure and strength, and so on. According to the statistical data, as other kinds of outbursts, the outburst occur in coal seam uncovered by crosscut has some relation with the tectonic zone. But up to present, very few people have studied the mechanical characteristics of the surrounding rock during coal seam unvovering and the outburst characteristics systematically.
     Bases on the theories of the rock mechanics, the geognosy, the gas storage and flowing, and coal and gas outburst mechanism, and so on, the author defines the concept of "tectonic mass" after summarizing the characters of the rupture zones due to some kinds of geological structures. Taking the rupture zone in coal seam created by the reversed fault structure as the model, the author proposes the outburst model for "tectonic mass" containing coal seam uncovered by crosscut, and carries on preliminary analysis of mechanical and energy binding characteristics of the model, then, analyzes the coal and the gas outburst mechanism of the model.
     According to the distribution of layers and the coal (rock) mechanical characteristic around of C13-1 coal seam in Huainan, the author sets up experiment apparatus system for coal and gas outburst in the laboratory and carries on the similar material experiment of coal seam uncovered by crosscut in the apparatus. It studies the mechanical characteristics of the surrounding rock and the outburst characteristics of the "tectonic mass" containing coal seam, including:crustal stress evolution, the distortion and displacement, the change of gas pressure and temperature in the "tectonic mass" and coal seam when gasification and outburst starting. The findings are as follows:Firstly, because of the friction force between the model material and the wall of the apparatus, the menstruated stress around the apparatus wall is evidently lower. Secondly, as the workface of crosscut advancing to the "tectonic mass", obvious stress concentration exits in the front surrounding rock. Thirdly, in the process of advancing distortion and displacement exit in the upper surrounding rock, the biggest displacement, for good support laneway is 3mm (12cm if in the mine field), but when outburst takes place, the displacement of the "tectonic mass" surrounding rock surpasses 50mm (2.0m if in the field). Fourthly, when inflating gas, the increasing range and velocity of the temperature of the "tectonic mass" are larger and faster than that of the coal seam. Fifthly, after the outburst, the volume of the outburst cavity becomes 20% smaller than before.
     Combined with the laboratory similar material simulation, the author founds corresponding numerical model with the rock breaking solid-gas coupling software RFPA2D-Flow. It analyzes the evolution process of the crustal stress field, the AE, the gas flow field and the gas pressure field of the surrounding rock during the coal seam uncovered by the crosscut, and reappears the outburst of the "tectonic mass" containing coal seam uncovered by crosscut from a microscopic view.The simulating results are in substance coincident with that of the similar material experiment. Bsides, through changing stress and coal strength, it founds some other rules as follows:fitstly, besides increasing deformation of the surrounding rock, the high crustal stress may break the tectonic material further, and is helpful in forming large-scale outburst; secondly, for low stress situation, outburst coal is often limited to the scope of the "tectonic mass", the outburst intensity reduces relatively; thirdly, on the condition of high crustal stress and gas pressure, enhancing the mechanical properties of the "tectonic mass", the outburst is not easy to occur, only exits some rupture.
     Finally, the author gives some field cases of coal and gas outburst in coalseams which contain "tectonic mass" to approve the objective existence of the influence from the "tectonic mass".The author also explains the reason of these gas disasters with the discussion of the experiment studies.
     Through the theoretical analysis, similar experimental and the numerical simulation analysis, it obtains the reason for the outburst in uncovered coal seam containing "tectonic mass":because of the structure stress field, the virgin stress is high in "tectonic mass" zone; With tunnel advancing, the stress of the surrouding rock furtherly increases, the formation distortion is small, the gas pressure is high. Even when the workface is near to the "tectonic mass" zone, they are still very high; When the caving workface opens the "tectonic mss" suddenly, the outburst occurs instantaneously, then, the crustal stress and the gas pressure rapidly reduce. Obviously, in the process of the tunnel advancing, the outbursting coal seam which contians the "tectonic mass" has been maintaining high crustal stress and bearing pressure are the reason for the outburst. The research has certain theoretical instruction and practical profit significance to furtherly understanding the mechanism of the outburst in coal seam affected by complex geological structure and outburst disaster prevention.
引文
[1]Kravchenko, V. S.On the nature and mechanism of sudden outbursts of gas and coal, Iz. AN SSSR, Otd. tekhn. nauk,1955, No.6:101-8 (in Russian).
    [2]Botham, J. G. Association of gases with coal laboratory outburst tests on solid coal specimens, Dept. of Mines & Tech. Surveys, Mines Branch, Ottawa, Canada, and Fuels Div. Tech. Memo. 1957, No.75/57 OCG, pp.1-23 (in Canada).
    [3]Yartsev, V. A. Crushing of coal in sudden drop of gas pressure [J].Ugol,1958,5:35-36.
    [4]Kuroiwa, T., Tashiro, T. Experimental study on coal pulverization and gas emission in a moment of outbursts of gas and coal [J] Journal of Japanese Mining,1960,76(862):227-33 (in Japanese).
    [5]Bodziony, J., Nelicki, A., Pindel, Z., Topolnicki, J. Laboratory trial of inducing a quasi-outburst, Int. Colloquium "Tendencies in Gas and Rock Outburst Hazard Prevention in Underground Mines", Nowa-Ruda-Radkbw, Poland,1988,19-23 Sept., pp.7-22 (in Polish).
    [6]Bodziony, J., Nelicki, A.,Topolnicki, J.Results of laboratory investigations of gas and coal outbursts [J] Archives of Mining Sciences,1989,94(3):581-91 (in Polish).
    [7]Bodziony, J., Nelicki, A., Topolnicki, J. Investigations of experimental generation of gas and coal outbursts, In:Strata s Multiphase Medium.Rock and Gas Outbursts Ed. J. Litwiniszyn, Vol. Ⅱ, pp.489-508, Krak6w (in Polish).
    [8]Khristianovich, S. A.On the Outburst Wave [J].Izv. AN USSR Otd. tekhn. nauk,1953, 12:1679-88 (in Russian).
    [9]Khristianovich, S. A.On the Crushing Wave [J].Izv. AN USSR Otd. tekhn. nauk,1953, 12:1689-99 (in Russian).
    [lO]Nelicki, A., Topolnicki, J. Experimental stand for the investigation of outbursts of porous materials saturated with gas[J].Archives of Mining Sciences,1994,39(3):301-11.
    [11]Topolnicki, J. Energy balance in an outburst, Int. Symp.-cum-Workshop on Management & Control of High Gas Emissions & Outbursts in Underground Coal Mines (Ed. Lama), Wollongong, NSW,1995,20-24 March, pp.67-74.
    [12]Ujihira, M., Isobe, T., Higuchi, K.On the flaking-destructive phenomena of porous material induced by involved high pressure gas. Study on coal and gas outbursts. (1st Report)[J].Journal of Mining&Metallurgical Inst. of Japan,1984,100(3):225-32 (in Japanese).
    [13]Ujihira, M., Isobe, T.,Higuchi, I.On the process of destruction of porous material in which high pressure gas is involved. Study on coal and gas outbursts. (2nd Report) [J]. Journal of Mining & Metallurgical Inst. of Japan,1984,100(5):397-403 (in Japanese).
    [14]Ujihira, M., Isobe, T., Higuchi, I.The relation between gas pressure and stress distribution in the vicinity of the exposed surface of porous materials. Study on coal and gas outbursts. (3rd Report) [J].Journal of Mining & Metallurgical Inst. of Japan,1985,101(5):283-88 (in Japanese)
    [15]Ujihira, M., Higuchi, K., Nabeya, H. Scale model studies and theoretical considerations on the mechanism of coal and gas outbursts, Proc.21st Int. Conf. of Safety in Mines Res. Inst., Sydney, NSW,1985,121-27.
    [16]Famin, L. B. Instantaneous outburst of coal and gas in a laboratory experiment, in:Problemy rudnichnoi aerologii; Gosgortekhizdat, Moscow,1959 (in Russian).
    [17]Alekseev A.D., Nedodayev, N.V., and Starikov, G. P. Destruction of coal saturated with gas under triaxial stress field on destressing:Modeling of outbursts of coal and gas, Institute Problem Mekhaniki AN SSSR, Moscow, Preprint No.139,30pp (in Russian).
    [18]Muller, W., Meiners, H. Occurrence of rock bursts and outbursts,24th Int. Conf. of Safety in Mines Research Institutes, Donetsk, Ukraine,1991,23-28 Sept., pp.377-90 (in German).
    [19]邓全封,栾永祥,王佑安.煤与瓦斯突出模拟试验[J].煤矿安全,1989,11:6-11.
    [20]He Xueqiu,Zhou Shining.Rheological hypothesis of coal and gas outburst mechanism [J]. Journal of China University of Mining & Technology,1994,4(1):15-23.
    [21]蒋承林,俞启香.煤与瓦斯突出机理的球壳失稳假说[J].煤矿安全,1995,2:17-25.
    [22]孟祥跃,丁雁生,陈力等煤与瓦斯突出的二维模拟试验研究[J].煤炭学报,1996,21(1):57-61.
    [23]郭立稳,俞启香,蒋承林等.煤与瓦斯突出过程中温度变化的实验研究[J].岩石力学与工程学报,2000,19(3):366-368.
    [24]牛国庆,颜爱华,刘明举.煤与瓦斯突出过程中温度变化的实验研究[J]湘潭矿业学院学报,2002,17(4):20-23.
    [25]蔡成功.煤与瓦斯突出三维模拟实验研究[J].煤炭学报,2004,29(1):66-69.
    [26]尹光志,许江,鲜学福等.煤与瓦斯突出模拟试验台.中国专利:200810069276.X,2008-01-22.
    [27]许江,陶云奇,尹光志等.煤与瓦斯突出模拟试验台的研制与应用[J].岩石力学与工程学报,2008,27(11):2354-2362.
    [28]许江,陶云奇,尹光志.煤与瓦斯突出模拟试验台的改进及应用[J].岩石力学与工程学报,2009,28(9):1804-1809.
    [29]赵志刚,胡千庭,孙东玲等.煤与瓦斯突出试验装置.中国专利:200910103157.6,2009-02-06.
    [30]Paterson, L.A model for outburst in coal [Jj.Int. J. Rock Mech. Min. Sci. Geomech.abstr. 1985,22:39-46.
    [31]Litwiniszyn, J. A model for the initiation of coal-gas outbursts [J].Int. J. Rock. Mech. Min. Sci. Geomech Abstr.1985,22:39-46.
    [32]Paterson, L.A model for outburst in coal [J].Int.J. Rock Mech. Min. Sci. Geomech. Abstr. 1985,22:39-46.
    [33]Xavier Choi, Mike Wold.Study of the mechanisms of coal and gas outburst using a new numerical approach.
    [34]Lama, R.D.Assessment of Threshold Values for Safety Against Outbursts of Gas and Coal in the Bulli Seam at Appin Colliery. Tech Effect, Kembla Coal and Coke Pty Limited, October 1996.
    [35]魏晓林.煤层瓦斯流动规律的实验和数值方法的研究[J].粤煤科技,1981,(2):35-41.
    [36]李英俊.煤层瓦斯压力分布的研究[J]煤矿安全,1980,(5):32-36.
    [37]C. YU and X. Xian. Analysis of gas seepage flow in coal beds with finite element method [A]. Symposium of 7th international conference of FEM in flow problem, Huntsvil, USA,1989.
    [38]C. YU and X. Xian. A boundary element method for inhomogeneous medium problems [A]. Proceedings:2nd world congs. On computational mechanics, Stuttgart, FRG.1990.
    [39]周世宁,孙辑正.煤层瓦斯流动理论及其应用闭.煤炭学报,1965,2(1):24-36.
    [40]周世宁,林柏泉.煤层瓦斯赋存及流动规律[M].北京:煤炭工业出版社,1998:14-16+9.
    [41]郑哲敏.从数量级和量纲分析看煤与瓦斯突出的机理[C]//煤与瓦斯突出机理和预测预报第三次科研工作及学术交流会议论文集.北京:北京大学出版社,1983:3-11.
    [42]方健之.煤与瓦斯突出的层裂-粉碎模型[J].煤炭学报,1995,20(2):149-152.
    [43]何学秋,含瓦斯煤岩流变动力学[M].徐州:中国矿业大学出版社,1995,180-187.
    [44]裴图霍夫H.M..预防冲击地压的理论与实践[C]//第二十二届国际采矿安全会议论文集.北京:煤炭工业出版社,1987.
    [45]章梦涛,徐曾和,播一山,冲击地压与突出的统一失稳理论[J].煤炭学报,1991,16(4):48-53.
    [46]赵阳升.煤体-瓦斯拱合数学模型与数解法明[J].岩石力学与工程学报,1994,(3):229-239.
    [47]赵阳升,胡耀青,赵宝虎,等.块裂介质岩体变形与气体渗流的耦合数学模型及其应用[J].煤炭学报,2003,28(1):41-45.
    [48]梁冰.煤和瓦斯突出固流耦合失稳理论[M].北京:地质出版社出版,2000,9.
    [49]Guojing Zhao, Zhanfei Fan. Biphasic model and finite element analysis of coal-methane outburst. Computational Mechanics. Proc. of APCOM,1991,2,1577-1582.
    [50]赵国景,步道远.煤与瓦斯突出的固-流两相介质力学理论及数值分析[J]工程力学,1995,12(2):1-7.
    [51]丁继辉,麻玉鹏,赵国景等.煤与瓦斯突出的固-流耦合失稳理论及数值分析[J].工程力学,1999,16(4):47-56.
    [52]孙培德.Sun模型及其应用--煤层气越流固气耦合模型及可视化模拟[M].杭州:浙江大学出版社,2002:37-57.
    [53]Valliappan S., Zhang Wohua. Numerical modeling of methane gas migration in dry coal seams [J].Geomechanics Abstracts,1997:1-10.
    [54]Dziurzynski W, Krach A. Mathematical model of methane emission caused by a collapse of rock mass trump [J].Archives of Mining Sciences,2001,46(4):433-449.
    [55]Price H S, Mculloch R C, Edwards J C et al. Computer model study of methane migration in coal bed [J]. Can Min Metall Bull,1973,66(737):103-112.
    [56]Zhao Chongbin, Valliappan S. Finite element modeling of methane gas migration in coal seams [J].Computers&Structures,1995,55(40):625-629.
    [57]张我华.煤-瓦斯突出过程中煤介质局部化破坏的损伤机理[J].岩土工程学报,1999,21(6):731-736.
    [58]唐春安,刘红元.石门揭煤突出过程的数值模拟研究[J]岩石力学与工程学报,2002,21(10):1467-1472.
    [59]徐涛,唐春安,杨天鸿.含瓦斯煤岩破裂过程与突出机理[M].北京:煤炭工业出版社,2009,3:144-162.
    [60]鲜学福,吴泽源.简论煤和瓦斯突出的机理[J].川煤科技,1976,3.
    [61]渝岩.试论没和瓦斯的机理[J].川煤科技,1975,2.
    [62]于不凡.煤和瓦斯突出机理的概述[J].川煤科技,1976,3.
    [63]宋士钊.石门揭煤开突出危险煤层的几个问题[C]//全国煤矿安全科学学术会议论文,1979,5.
    [64]宋十钊.我国煤和瓦斯突出研究工作的主要成果及近期的主要任务[C]//煤与瓦斯突出机理和预测预报第三次科研工作及学术交流会议论文选集,1983,5.
    [65]湖南省煤科研究所等.湖南省煤和瓦斯突出与煤层围岩,地质构造,煤的机构性能关系的报告[C]//煤与瓦斯突出机理和预测预报第三次科研工作及学术交流会议论文选集,1983,5.
    [66]谭学术,鲜学福.石门巷道中动力现象的变弹模光弹性实验研究及预防[M].重庆:重庆出版社,1986,12.
    [67]先进炭材料研究部.碳相图谱-无烟煤http://carbon.imr.ac.cn/carbonknowledge/C-Wuyan mei.htm,2010-3-11.
    [68]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版杜,1992:7.
    [69]黄醒春.岩石力学[M].北京:高等教育出版社,2005,11:32-33.
    [70]Paterson M.S. Experimental deformation and faulting in wombayan marble [J].Bull. Geol. Soc. Am.1958,69:456-476.
    [71]葛修润,刘建武.加锚节理面抗剪性能研究[J].岩土工程学报,1988,10(1):8-19.
    [72]兴伦电子学习.工程岩石力学http://developer.hanluninfo.com/2005/rock/level/all/inside_01_05_01_m.htm,2010-3-3.
    [73]张梦涛,潘一山,梁冰等.煤岩流体力学[M].北京:科学出版社,1995,8:93-94.
    [74]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].煤炭工业出版社,1999:18.
    [75]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002.
    [76]包剑影.阳泉煤矿瓦斯治理技术[M].北京:煤炭工业出版社,1996,9.
    [77]陈国保,黄长辉.芙蓉矿地质构造特征及其对矿井瓦斯突出的影响[J].煤炭技术,2002.9,21(9).
    [78]周克友,江苏省矿井瓦斯与地质构造关系分析[J].焦作工学院学报,1998,17(4):269-270
    [79]黄德生.地质构造控制煤与瓦斯突出的探讨[J].地质科学,1992(A12):201-207.
    [80]徐学峰.地质构造对煤与瓦斯突出的影响研究[D].辽宁工程技术大学,2003:19-20.
    [81]陈庆宣,王维襄,孙叶编著.岩石力学与构造应力场分析[M].北京:地质出版社,1998.
    [82]安欧.构造应力场[M].北京:地震出版社,1992.
    [83]于不凡.煤矿瓦斯灾害防治及利用技术手册[M].北京:煤炭工业出版社,2000,429-431.
    [84]Turcotte D L and Schubert G. Geodynamics:applications of continuum physics to geological problems [M].John Wiley, New York,1982,2.
    [85]Carl Bowin, Scheer E and Smith W. Depth estimates from ratios of gravity, geoid and gradient anomalies[J].Geophysics,1986,51(1):123-136.
    [86]张赤军等.由地面、卫星重力资料研究岩石圈密度[J].地球物理学报,1988,31(6):14-19.
    [87]方剑.利用卫星重力数据计算地球内部密度异常[J].地球物理学进展,1994,9(3):60-65.
    [88]党亚民,杨强,曹学伟.地壳内构造应力的分布研究[J].大地测量与地球动力学,2009,29(2):4-6+23.
    [89]于不凡.煤和瓦斯突出与地应力的关系[J].工业安全与防尘,1985,3:2-6.
    [90]程伟.煤与瓦斯突出危险性预测及防治技术[M]徐州:中国矿业大学出版社,2003,7:31-32.
    [91]Beamish B B, Crosdale, P J. Instantaneous outbursts in underground coal mines:an overview and association with coal type [J]. International Journal of Coal Geology,1998, (35):27-55.
    [92]张子敏,张小兵.煤与瓦斯突出地质控制机理研究[J].中国科技论文在线,2010,1:1-5.
    [93]张玉贵.构造煤演化与力化学作用[D].太原:太原理工大学,2006:26.
    [94]袁崇孚,构造煤和煤与瓦斯突出[A].瓦斯地质论文集[c].北京:煤炭工业出版社,1995,217-224.
    [95]Brady B T. Theory of earthquakes (Part1):A scale independent theory of rock failure. Pure Appl. Geophys,1974, (112):701-725.
    [96]Brady B T. Theory of earthquakes (Part 2):Inclusion theory of crustal earthquakes. Pure Appl. Geophys,1975,113(1/2):149-168.
    [97]Brady B T. Theory of earthquakes (Part 4):General implications for earthquake prediction. Pure Appl. Geophys,1976, (114):1031-1059:
    [98]Rice J R. The theory of precursory procession in the inception of earthquake rupture.Gerlands Beitr Geophysik,1979,88(2):91-127.
    [99]陈顒.地壳岩石的力学性能——理论基础与实验方法[M].北京:地震出版社,1988.
    [100]梅世蓉.地震前兆物理模式与前兆时空分布机制研究(一)——坚固体孕震模式的由来与证据[J].地震学报,1995 17(3):273-282.
    [101]许昭永,王彬,赵晋明.含硬包体试样特征的实验研究[J].地震学报,1997,19,(1):79-85.
    [102]唐春安,傅宇方,赵文.震源孕育模式的数值模拟研究[J].地震学报,1997,19(4):337-346.
    [103]P.K..Kaiser, C.A. TANG.Simulation of Crack Propagation and Coalescence of Brick Rock Part 1.Model with Single Flaw.
    [104]C.A.TANG, RK.Kaiser.Simulation of Crack Propagation and Coalescence of Brick Rock Part 2. Model with Multiple Flaws.
    [105]于不凡.煤和瓦斯突出机理[M].北京:煤炭工业出版社,1985,4:269-273.
    [106]张红日,曲有刚,郑志勇.含瓦斯包的回采工作而煤与瓦斯突出的数值分析[A].李增学.矿井地质与资源环境:2004年全国矿井地质学术会议论文集[C]北京:地质出版社,2004,8:532-535.
    [107]裴常心,姚建,田冬梅等.煤与瓦斯突出气球模型理论探讨[J].煤矿安全2009,6:76-78.
    [108]张春华,刘泽功,李尧斌等.深部矿井煤与瓦斯突出特性数值模拟研究[J].煤炭科学技术,2009,37(8):49-52.
    [109]徐涛,郝天轩,唐春安,杨天鸿.含瓦斯煤岩破裂过程固气耦合数值模拟[J].中国安全科学学报,2005,26(3):293-296.
    [110]Xu T,Tang C A, Yang T H, et al.Numerical investigation of coal and gas outbursts in underground collieries[J].International Journal of Rock Mechanics and Mining Sciences.2006, 43(6):905-919.
    [111]张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学[M].北京:科学出版社,1991.
    [112]马杏垣.中国地质历史过程中的裂陷作用[A].国家地震局地质研究所.现代地壳运动研究[C].北京:地震出版社,1985.
    [113]李万程.重力滑动构造的成因类型[J].煤田地质与勘探,1995,23(1):19-24.
    [114]张子敏,张玉贵.大平煤矿特大型煤与瓦斯突出瓦斯地质分析[J].煤炭学报,2005,30(2):137-140.
    [115]王恩义.地质构造突出机理研究[J].河南理工大学学报,2005,24(3):181-185.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700