基于液压变压器的装载机节能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
装载机是工程建设的重要机种,其工作特点就是重载、低速、油耗高。为了实现节能目的,本文基于二次调节静液传动技术,在液压恒压网络平台上选取新的二次调节元件液压变压器,构建出了装载机的新的液压系统,在作业时减少液压系统的节流损失以降低油耗,对此节能思路展开的具体工作如下:
     1.液压变压器结构改进
     液压变压器的效率是影响装载机节能效果的主要因素之一,针对目前新型液压变压器(IHT)的不足,提出一种双端面配流结构液压变压器(DPPHT),并对其内部主要零件进行受力分析,得出此结构的变压器能有效解决配流盘径向力分布不均及缸体振动等问题,可提高变压器的效率。
     2.液压变压器功率键合图分析
     功率键合图理论比较成熟,能以图形化和功率流的方式完成系统建模,能简单地处理系统的线性和非线性关系,进而贴近实际地表述出系统的动态特性及动态变化规律。采用此理论对液压变压器的内部功率流动进行分析,得出其键合图模型后用MTALAB/Simulink仿真得到变压器出口压力随流量变化的响应曲线。
     3.新液压系统构建与主要元件建模
     由上述理论构建出装载机恒压网络二次调节液压系统,与现行液压系统比较分析后得出新系统省去了大部分的液压阀,可降低油液流动过程中的节流损失。建立新系统中液压泵、蓄能器、溢流阀等主要元件的数学模型,为下一步仿真做好准备。
     4.装载机动作仿真与节能分析
     针对装载机铲斗翻转物料、动臂举升物料与铲斗空载下降工况,在AMESim软件中建立液压变压器的模型,把其封装后建立新液压系统与现行液压系统的模型。仿真后得出前二种工况下液压变压器B口的流量、压力曲线与系统消耗的功率曲线,结果显示新液压系统可降低功率消耗27%左右。铲斗空载下降工况,蓄能器可回收铲斗下降势能60%左右
     5.系统控制策略研究
     液压系统具有非线性的特点,为实现工程上精确控制与快速响应,提出基于负载压力的控制策略,并使用神经网络增量PID控制算法设计控制器。对给定的方波、阶跃、正弦三种输入信号,对比神经网络增量PID控制算法与增量PID控制算法的响应,得出前者更加适用于非线性的液压系统。
     6.台架试验与展望
     在液压恒压网络试验台上,测试出液压变压器的压力、流量、变压比、效率等性能,并针对变压器驱动液压缸的工况测试了液压变压器的动态特性和节能效果,证实了新液压系统节能的实际可行性。随后指出实车试验与全液压系统驱动装载机是后续研究的重点。
     总之,本文为装载机的节能研究提供一个新的思路,并做出了前期工作,为后续研究奠定了基础。
Loader is one of the most important construction machineries. The characteristics of loader are overloading, low-speed, high fuel consumption. Secondary regulation technology of constant pressure rail and a new secondary regulation element: Hydraulic Transformer(HT) were used on hydraulic system of wheel loader based on hydrostatic transmission technique with secondary regulation in order to improve the situation of high fuel consumption. The main content include that:
     1. Structure Improvement of Hydraulic Transformer
     The efficiency of Hydraulic Transformer is one of the most important factors that affect effect of Loader energy saving.According to the design deficiency of IHT, a structure of double port plates hydraulic transformer (DPPHT) was proposed. The forces of chief elements inside hydraulic transformer were analyzed. The conclusion was drawn that the structure of double port plates can solve the questions of unbalanced distribution for radial force and cylinder vibration.
     2. Anlysis with Theory of Power Bond Graph
     The power bond graph was so mature that it can accomplish system model with figure and power flow.The relation of linearity and nonlinearity can be treated easily with power bond graph because the closeness to fact for the theory. The bond graph model and mathematical model of HT were established. The dynamic response of HT load port used with Matlab/Simulink indicates requirements for actual working conditions were met and further research of hydraulic transformer was achieved.
     3. Construction of New Hydraulic System and Building Models of Chief Elements
     The new hydraulic system of loader based on secondary regulation constant pressure rail was established from what we had been studied above. Most hydraulic valves were omitted and throttle loss were decreased compared with current hydraulic system. Mathematical model of pump, accumulator, overflow valve were built in order to prepare for next simulation.
     4. Action Simulation of Loader and Anlysis of Energy Saving
     Aiming at the work condition of fliping materiel and lifting materiel with booms, the model of hydraulic transformer was built. The models of new hydraulic system and current hydraulic system were built with software named AMESim. The result of curves between flow, pressure, power and time indicated the output power number of new hydraulic system was reduced clearly to 27%. New hydraulic system can recover potential energy of bucket so that the life of loaders will be rised.
     5. Research on Control Strategy
     The nonlinearity is the significant characteristic of hydraulic system. The control strategy based on load pressure so that accurate control and fast response can be achieved. The controller was designed used control algorithm of neural network-incremental PID. The control strategy proposed in this article was suitable for nonlinearity hydraulic system compared the signal response of square wave, step, sine.
     6. Bench Test and Prospects
     The characteristic experiments of hydraulic transformer on flow, pressure, ratio of transformation,efficiency had been done on the hydraulic constant pressure rail bench. Dynamic characteristics and energy saving effect confirmed the feasibility of new hydraulic system actually. Real train test and full hydraulic drive loader will be the research emphasis.
引文
[1]中国装载机行业发展研究报告(2010版).千讯行业研究,2010
    [2]杨占敏,王智明,张春秋等.轮式装载机[M].北京:化学工业出版社,2006
    [3]张平格.液压传动与控制[M].北京:冶金工业出版社,2004
    [4]赵丁选马铸等.工程车辆液力机械传动系统的动力性分析[J].中国机械工程,2001.12(8),948-953
    [5]刘长年.液压伺服系统优化设计理论[M].北京:冶金工业出版社,1989.8
    [6]李连升,刘绍球.液压伺服理论与实践[M].北京:国防工业出版社,1990.11
    [7]刘国印.装载机液压系统动态性能仿真研究[D].厦门:集美大学,2010.5
    [8]王頔.液压变压器在垂直负载中的应用研究[D].哈尔滨:哈尔滨工业大学,2008
    [9]王学峰.工程机械液力机械传动变速系统智能控制研究[D].长春:吉林大学博士学位论文,2002.3
    [10]姜继海.二次调节静液传动系统及其控制技术的研究[D].哈尔滨:哈尔滨工业大学,1998,10:15-26
    [11]赵春涛,姜继海,高维忠,赵克定.新型二次调节静液汽车传动系统[J].汽车技术,2001,(1):4-6
    [12]刘宇辉,蒲红,张艳萍,姜继海.二次调节静液传动技术的发展及应用[J].佳木斯大学学报,2001,3(19):52-56
    [13]姜继海,刘宇辉.二次调节静液传动技术在矿井提升机中的应用[J].机床与液压,1999,(4):42-43
    [14]姜继海,刘宇辉,于庆涛等.二次调节静液传统液压抽油机[J].机床与液压,2005,(8):59-61
    [15]姜继海,董宏林,吴盛林.液压恒压网络功率完备匹配的结构条件及其控制方案的研究[J].中国机械工程,2003,1(14):16-19
    [16]张斌,徐兵,欧阳小平等.液压变压器恒压网络实验台的设计[J].液压与气动,2004(10):8-12
    [17]董宏林,吴盛林,姜继海.液压恒压网络压力控制研究[J].机械工程学报, 2002,38(9):47-51
    [18]姜继海,董宏林,吴盛林.液压恒压网络功率完备匹配的结构条件及其控制方案的研究[J].中国机械工程, 2003,14(1):16-20
    [19] Nikolaus H. Antriebssystem mit hydrostatischer Kraftübertragung Patent-anmeldung P27 39 968.4 Vom 6.9.1977
    [20] Achten P A. The Hydraulic Transformer[J]. SAE,2007-01-4152,2007
    [21]卢红影,姜继海,于庆涛等.液压变压器的特性分析[J].液压与气动.2005,(8):13-14
    [22]杨华勇,欧阳小平,徐兵.液压变压器的特发展现状[J].机械工程学报. 2003,39(5):1-5
    [23] R.Kordak.Der Sekund?rgeregelte Hydrostatischen Antrieb in Mobilen Arbeitsger?ten. [J]?lhydraulik und Pneumatik.1995,39(2):808-812
    [24] P.A.J.Achten,Zhao Fu,G.E.M.Vael. Transforming Future Hydraulics:a new Design of a Hydraulic transformer. The Fifth Scandinavian International Conference on Fluid Power[C].SICFP’97,Link?ping University,Sweden,1997
    [25] S.Schmidt.Energiesparende Prim?r-und Sekund?rregelung für Pressen. [J]?lhydraulik und Pneumatik.1997,41(10):747-751
    [26] P.A.J.Achten.What a Difference a Hole Makes-The Commercial Value of the Innas Hydraulic Transformer.In:Proceedings of the Sixth Scandinavian International Conference on Fluid Power[C]. (SICFP’99),Tampere,Finland.May 26-28,1999
    [27] Vael Georges E M,Achten P A,Fu Zhao. The Innas hydraulic transformer: the Key to the hydrostatic common pressure rail[J]. SAE,2000-01-2561,2000
    [28]路甬祥,俞浙青,吴根茂.功率回收型液压抽油机的设计原理[J].石油机械.1995,23(2):42-54
    [29]欧阳小平,徐兵,杨华勇等.液压变压器在液压电梯系统中的节能应用[J].中国机械工程.2003,(19):1660-1662
    [30]欧阳小平,徐兵,杨华勇.液压变压器及其在液压系统中的节能应用[J].农业机械学报.2003,34(4):100-104
    [31]刘贺,徐兵,欧阳小平,杨华勇.采用液压变压器原理的液压电梯节能系统设计[J].液压与气动.2003,(10):19-21
    [32]张维官.液压恒压网络中液压变压器的性能测试与节能效果分析[D].哈尔滨:哈尔滨工业大学.2007,7
    [33] Achten,Peter,Augustinus,etc.Hydraulic System with a Hydromotor Fedby a Hydraulic Transformer[P].WO98/54468.1997,5
    [34] P.A.J.Achten.Hydraulic System with a Hydromotor Fed by a Hydraulic Transformer,INNAS FREE PISTON.B.V.Germany[P].WO98/54468.1998,5
    [35] P.A.J.Achten.Ein neuer alter Bekannter-der Hydraotransformator[J].?lhydraulik und Pneumatik.1998,(6):374-377
    [36] Werndin R,P.A.J.Achten and Sannelius Mikael,etc.EfficiencyPerformance and Control Aspects of a Hydraulic Transformer.In:The Sixth Scandinavian International Conference on Fluid Power[C].SICFP’99,Tampere,Finland,1999,1:395-407
    [37] P.A.J.Achten,G.E.M.Vael and Zhao Fu.The Innas HydraulicTransformer-The Key to the Hydrostatic Common Pressure Rail[J].SAE2000-01-2561
    [38] P.A.J.Achten,Zhao Fu.Valving Land Phenomena of the Innas Hydraulic Transformer.International Journal of Fluid Power[J].2000(1):33-47
    [39] P.A.J.Achten,G.E.M.Vael and Johan van den Oever,etc.‘Shuttle’Technology for Noise Reduction and Efficiency Improvement ofHydrostatic Machines.TheSeventh Scandinavian International Conferenceon Fluid Power[C].SICFP’01,Link?ping,Sweden,2001
    [40] P.A.J.Achten,Titus van den Brink and Johan van den Oever.Dedicated Design of the Hydraulic Transformer.In 3rd International Fluid Power Conference [C].Aachen,Germany,2002,2:233-24
    [41] P.A.J.Achten,Van den Brink,T.L.,Potma,etc.Design and Testing of an Axial Piston Pump Based on the Floating Cup Principle.The Seventh Scandinavian International Conference on Fluid Power[C].SICFP’03,Tampere University of Technology,2003:805-820
    [42] Ivantysynava,M..Energy Losses of Modern Displacement Machines-a new Approach of Modelling.The Seventh Scandinavian International Conference onFluid Power[C].SICFP’03,Link?ping,Sweden,2003:377-395
    [43] G.E.M.Vael,P.A.J.Achten and Jeroen Potma.Cylinder control with the floating cup hydraulic transformer.Proc.of the 8th Scandinavian International Conference on Fluid Power SICFP’03[C].Tampere,2003
    [44] P.A.J.Achten.Power Density of the Floating Cup Axial Pistion Principle.In Proceedings of 2004 ASME International Mechanical Engineering Congress and Expo,IMECE2004[C].Anaheim,USA,2004:1-12
    [45] P.A.J.Achten,M.P.A.Schellekens.Efficiency and Low Speed Behavior of the Floating Cup Pump[J].SAE 2004-01-2653
    [46] P.A.J.Achten.Volumetric Losses of a Multi Piston Floating Cup Pump.In Proceedings of the 50th National Conference on Fluid Power[C].NCFP-Paper I05-10.2,2005:1-7
    [47] P.A.J.Achten,Titus van den Brink,Marc Schellekens.Design of a Varible Displacement Floating Cup Pump.The Ninth Scandinavian International Conference on Fluid Power[C].SICFP’05,Link?ping,Sweden,2005:1-16
    [48]刘顺安,姚永明,尚涛等.基于二次调节技术的小型装载机全液压驱动系统[J].吉林大学学报:工学版,2011,41 (3):665-669
    [49]欧阳小平,徐兵,杨华勇.拓宽液压变压器调压范围的新方法[J].机械工程学报.2004,40(9):28-32
    [50]欧阳小平.液压变压器研究[D].杭州:浙江大学,2005
    [51] Yuanhua Chen,Qingguang Yu,Wenhua Liu,etc.High Power InductionMotor VVVF Drives System with IGCTs in thermal Power Plant[J].Power System Technology,2002,(4):13-17
    [52]崔功杰,工程车辆三参数最佳换挡规律及控制方法研究[D].长春:吉林大学机械科学与工程学院,2009
    [53]刘秀骥.车辆传动系统分析[M].北京:国防工业出版社,1998.
    [54]葛安林.车辆自动变速理论与设计[M].北京:机械工业出版社,1993.5
    [55]王庆丰,张彦廷,肖清.混合动力工程机械节能效果评价及液压系统节能的仿真研究[J].机械工程学报.2005,41(12):135-139
    [56] Katsuhiko Ogata. System Dynamics:Fourth Edition[M].北京:机械工业出版社,2005
    [57]刘顺安,陈延礼,姚永明.内开路式液压变压器及变压方法:中国,200910067270[P].2009
    [58]闻德生.斜盘型开路式轴向柱塞泵[M].北京:机械工业出版社,1993.09
    [59]黎啓柏.电液比例控制与数字控制[M].北京:机械工业出版社,1997.5
    [60]常春馨.现代控制理论基础[M].北京:机械工业出版社,1988,6
    [61]王显正,陈正航.控制理论基础[M].北京:国防工业出版社,1989,11
    [62]钱耀义.汽车发动机电子控制系统[M].北京:机械工业出版社,1999.1
    [63]李光友,王建民,孙雨萍.控制电机[M].北京:机械工业出版社,2009
    [64]李粤.液压系统PLC控制[M].北京:化学工业出版社,2009
    [65]王季秩,曲家骐.执行电动机[M].北京:机械工业出版社,1997.8
    [66]马吉恩.轴向柱塞泵流量脉动及配流盘优化设计研究[D].杭州:浙江大学,2009
    [67]黄涛,吕伟华.功率键合图在电液伺服系统建模和仿真中的应用[J].机电一体化,2000, (2):39-41
    [68]王艾伦,钟掘.模态分析的一种新方法—键合图法[J].振动工程学报, 2003,16(4):463-467
    [69]王勇,张作龙,杨东泽.基于功率键合图的恒压变量泵建模与仿真[J].液压气动与密封,2010(3):30-32
    [70]孙成通,韩虎.基于功率键合图的液压系统建模与仿真[J].煤矿机械,2008,29(3) :52-54
    [71]姚永明,刘顺安,尚涛等.基于液压恒压网络的ZL50装载机节能技术[J].吉林大学学报:工学版,2011,41 (1):117-121
    [72]张庆永.液驱混合动力车辆液压系统研究[D].南京:南京理工大学,2009.1
    [73]李成功,和彦淼.液压系统建模与仿真分析[M].北京:航空工业出版社,2008
    [74]刘顺安,姚永明,尚涛等.叉车负载势能回收的研究[J].吉林大学学报:工学版,2011,41 (1):117-121
    [75]李壮云.液压元件与系统[M].北京:机械工业出版社,2005
    [76]雷天觉.新编液压工程手册[M].北京:北京理工大学出版社.1998
    [77]刘海丽,李华聪.液压机械系统建模仿真软件AMESim及其应用[J].机床与液压,2006,(6):124-126
    [78]胡庆玉.基于IPSO-BP网络的汽车半主动悬架控制算法研究[D].长春:吉林大学,2010.6
    [79]刘永红.神经网络理论的发展与前沿问题[J].信息与控制,1999,28(1):31-46
    [80] Kirkpatrick S, Gellat Jr C D, Veechi M P. Optimization by Simulated Annealing[J]. Science, 1983, 220(4598): 671-681.
    [81] Hinton G E, Sejuowshi T J, Ackley D H. Boltzmann Machinces: Cotraint Satisfaction Networks that Learn[C]. Carnegiemellon University, Tech, Report CMU-CS-84-119, 1984.
    [82]陈祥光,裴旭东.人工神经网络技术及应用[M].北京:中国电力出版社,2003
    [83]吴微.神经网络计算[M].北京:高等教育出版社2003
    [84]邱东强涂亚庆.神经网络控制的现状与展望[J].自动化与仪器仪表,2001, (5):1-7
    [85] Chen,S.and Billings,S.A..Non-linear System Identification using Neural Networks.Int.J.Control,1990,51(6):1191-1214
    [86]王永骥.神经元网络控制[M].北京:机械工业出版社,1999
    [87] TSUTSUMI K,MATSUMOTO H.Neural computation and learning strategy for manipulator position control[A].IEEE First Int Conf on Neural Network[C].San Diego:SOS Printing.1987,525-534
    [88]罗四维.大规模人工神经网络理论基础[M].北京:清华大学出版社、北方交通大学出版社,2004
    [89]李晓忠主编.模糊神经网络[M].贵阳:贵州科技出版社,1992
    [90]杨行峻,郑君里.人工神经网络与盲信号处理[M].北京:清华大学出版社,2003
    [91]虞和济等著.基于神经网络的智能[M].北京:冶金工业出版社,2000
    [92] Berenji,H.R.and Khadkr,P.S..Adaptive Fuzzy Control with Reinforcement Learning.ACC,San Francisco,1993,1840-1844
    [93] Narenda,K.S.andMukhopadhydy,S. Adaptive Control of Non-linear ulrivariableSystems Using Neural Networks[J].Neural Networks,1994,7:737-752
    [94]王洪元,史国栋.人工神经网络技术及其应用[M].北京:中国石化出版社,2002
    [95]高隽.人工神经网络原理及仿真实例[M].北京:机械工业出版社,2003
    [96]李士勇.模糊控制.神经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社,1998
    [97]焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1996.
    [98]张大鹏.神经元网络系统设计方法:英文[M].北京:清华大学出版社,1995
    [99]郭志安等著.神经计算机:概念、原理、算法、能力[M].成都:四川教育出版社,2001
    [100]赵林明等.多层前向人工神经网络[M].郑州:黄河水利出版社,1999.
    [101] LEWIS F L,YESILDIREK A,LIU K.Multilayer neural net robot controller:structure and stability proofs [J].IEEE Trans on Neural Networks,1996,7(2):388-399.
    [102] CHEN F C,KHALIL H K.Adaptive control of nonlinear systems using neural networks [J].Int J Control,1992,55(6):1299-1317.
    [103]张治国伞冶.一种数据缺损条件下的小波神经网络收敛算法[J].科学技术与工程.2006,6(4):375-382
    [104] FassòA,Negri I.Non-linear statistical modeling of high frequency ground ozone data[J]. Environmentrics,2002;1(33):225—241
    [105] Zhang Jun,Walter G G,Miao Y.Wavelet neural networks for function learning.IEEE Trans Signal Processing.1995;4(36):1485—1496
    [106]陈书开.多值逻辑电路与神经网络和模糊计算机[M].北京:国防工业出版社.2002
    [107]王耀南.智能控制系统-模糊逻辑.专家系统.神经网络控制[M].长沙:湖南大学出版社1996
    [108]阎平凡,张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2002
    [109] Kennedy J, Eberhart R. Particle Swarm Optimization[A],Proc, IEEE International Conference on Neural Networks[C], Piscataway NJ:IEEE Service Center, 1995,1942-1948..
    [110] Eberhart R C,Kennedy J. A new optimizer using partiele swarm theory[A],proc.on 6th International symposium on Micromachine and Human seience[C],Piscataway NJ:IEEE Serviee Center,1995,39-43.
    [111] Recynold C W. Flock,herds and schools:a distributed behavioral model[J], Comuputer Graphics, 1987,21(4):25-34.
    [112]王洪元史国栋.人工神经网络技术及其应用[M].北京:中国石化出版社,2002
    [113]吴忠强刘冲奥顿.电液伺服系统的模糊神经网络并行自学习鲁棒控制[J].中国机械工程,2003,14(22)1914-1917
    [114]何洪孙薇周恩涛等.基于RBFMCN网络的电液伺服系统的动态补偿控制算法[J].中国机械工程,2001,12(2):192-195
    [115]陈延礼.基于液压变压器的车辆节能系统研究[D].长春:吉林大学,2009.6
    [116]徐兵,欧阳小平,杨华勇等.液压变压器排量特性[J].机械工程学报,2006,42 (5):89-90.
    [117]卢红影.电控斜轴柱塞式液压变压器的理论分析与实验研究[D].哈尔滨:哈尔滨工业大学,2008.9
    [118]谭尹耕.液压实验设备与测试技术[M].北京:北京理工大学出版社,1989.12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700