超深水超深钻井作业钻柱三维运动补偿系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钻井平台是海上石油开采和科学钻探必备设施之一。在海水、风浪等因素作用下,钻井平台产生六自由度运动。浮动钻井平台作业经验表明,无论钻机性能的高低,都必须配备有钻柱运动补偿器,才能保证稳定的钻压(WOB),提高深海钻井效率。
     目前,广泛使用的钻柱运动补偿系统是针对钻井平台的运动而设计的。在浅海钻井作业时,钻井平台的运动是引起钻压波动的主要原因,消除平台运动的影响可使钻压稳定,以最优的钻压进行钻井作业。但在深海钻井的条件下,海水对钻柱的作用不容忽略,仅消除钻井平台运动对钻压的影响,达不到深海钻井作业钻压的要求。
     针对深海钻井作业的特点,本文提出了三维钻柱运动补偿系统。该系统在深海钻井作业环境可以保证钻压的稳定,并能对钻压进行调节。为了验证所提出补偿方案的可行性和控制策略的可靠性,本文利用仿真和实验研究来验证补偿装置液压系统和控制策略的可靠性,为钻柱运动补偿系统的开发提供理论和实践基础。
     本文总体目标是在理论分析的基础上,构筑钻柱运动补偿的半物理仿真试验系统,并进行实验验证。通过结构方案和参数的设计、钻柱的非线性分析、补偿系统的数学建模、控制器的设计以及补偿系统的仿真和实验研究,从理论和实验上实现对钻压补偿的研究,证明补偿方案是可行的,研究结果是合理的。根据上述的研究过程,本论文的主要内容分为六章,各章研究重点如下:
     第一章回顾钻柱运动补偿系统的发展历程、研究现状以及存在不足之处,分析了目前各种钻柱运动补偿系统在深海钻井作业的不足情况,提出了本文的研究内容。
     第二章确定钻柱补偿液压方案及补偿系统的相关参数。针对深海钻压补偿的特点和要求,提出了采用复合补偿缸对钻柱进行补偿的优化方案,结合具体工作海况,本文给出了钻柱补偿装置的钻井作业参数;根据具体的工作海况确定深海钻柱运动补偿的各项指标,设计相应的补偿方案;根据所确定的方案设计了相关的参数。
     第三章分析深海钻井作业时海水对钻柱及钻压的影响。通过对钻柱补偿系统进行必要的假设和简化,利用有限元分析方法对钻柱进行非线性分析,从理论上证明钻柱三维补偿可以达到补偿的目的,为补偿装置的参数设计提供参考。
     第四章建立钻柱补偿系统的数学模型。针对半主动补偿的特点,首先建立三位四通比例阀控制液压缸数学模型和蓄能器与液压缸被动补偿的数学模型,然后在两者的基础上,推导出钻压半主动补偿的数学模型,为系统仿真和补偿控制器的设计提供参考依据。
     第五章对钻柱运动补偿系统自适应控制器的设计及补偿的仿真研究。补偿系统采取流量补偿和自适应控制的复合控制策略,使补偿系统适应复杂的工作海况。同时,根据研究的需要,利用AMESim仿真软件对钻柱补偿做进一步的研究,提高补偿系统分析的准确性、钻柱补偿方案及补偿策略的可行性。
     第六章实现了对钻柱补偿系统的半物理仿真实验研究。本章利用物质和几何相似性原理,根据所提出的方案和控制策略,建立钻压补偿系统半物理仿真模型。利用Simulink/xPC对实验系统进行半物理仿真研究,在实验过程中,结合第五章自适应控制策略,进行仿真实验研究,结果证明了补偿方案的可行性和控制策略良好的控制效果。
     最后,对全文的研究内容进行了总结,并给出本文的研究结论、创新之处以及对未来的展望。
Drilling platform is an essential facility of oil production and scientific drilling in offshore, it has the movement of six degrees of freedom which caused by water, winder and other factors. Experience of the offshore drilling operations has shown that no matter how the level of performance of rig was, to ensure the stability of weight on bit (WOB) and improve the efficiency of deep-sea drilling, it must be equipped with the motion compensator when drilling in the sea.
     Currently, the motion compensation system of drill string is designed for the movement of drilling platform. When drilling in shallow water, the movement of platform is the main reason which caused the fluctuations of WOB, so the WOB will be stable and the efficiency of drilling will be improved by eliminating the impact of movement of platform, and improve the efficiency of offshore drilling. However, the role of water has on the WOB can not be ignored under the deep-sea drilling conditions, it will be significantly reduced the compensation accuracy of WOB. Therefore, it is necessary to take a appropriate compensation control scheme to improve the precision of compensation.
     For the characteristics of deep-sea drilling, three-dimensional motion compensation system of drill string is put forward in this study, which will guarantee the stability of WOB in the drilling operating environment of deep-sea. To verify the feasibility of compensation and reliability of control strategies, it is essential that take on the research of simulation and experiment, which will provide theoretical and practical basis for the development of motion compensation system of drill string.
     The overall goal is to build a semi-physical simulation system of motion compensation of drill string based on theoretical analysis in this thesis, through the design of compensation scheme and parameters, nonlinear analysis of drill string, mathematical modeling of compensation system, the design of controller, the simulation and experimental studies of compensation system, the WOB compensation system is taken by the theory and experiment, it is proved that that compensation program is feasible and the results are reasonable. According to the research process above, the main contents of this paper is divided into six chapters, the specific focus of each chapter is as follows:
     ChapterⅠreviews the development process of drill string motion compensation system, research and its inadequacies, analysis of the inadequacies of current motion compensation system in deep-sea, and then the content of this study is proposed.
     ChapterⅡdiscusses the most basic part of drill string motion compensation system, the design of compensation program of drill string and its parameters. for the characteristics and requirements of deep-sea drilling operation and pressure compensation. The indicators of drill string motion compensation system of deep-sea, the appropriate compensation programs are put forward; the parameters of drill string compensation system according to the sea conditions with the specific work are determined:Finally. the relevant parameters of compensation program is established.
     ChapterⅢanalyzes the effect of water has on the drill string in deep-sea, which provides the reference of the design of compensation system. Through the necessary assumptions and simplifications of compensation system, the nonlinear analysis of drill string is taken on by the use of the finite element method.
     ChapterⅣdiscusses how to set up the mathematical model of motion compensation systems. Firstly, the mathematical model of the 4/3-way proportional valve controlled hydraulic cylinder is established, and then the mathematical model of accumulator and hydraulic cylinder is put forward, on the basis of the active and passive compensation system. the mathematical model of semi-active compensation system is put forward.
     ChapterⅤfocuses on the design of controller of compensation system and the simulation of system, the composite control strategy of flow compensation and adaptive control is taken to improve control accuracy.
     ChapterⅥachieves the experiments of the compensation system for semi-physical simulation. By the use of Simulink/xPC control system and the adaptive control strategy, the semi-physical simulation model of compensation system is established.
     Finally, it is the summary of the paper, which gives the conclusions, innovations and vision for the future.
引文
[1]王永生.海洋矿产开发:现状、问题与可持续发展[J].国土资源,2007(10):18-21.
    [2]荆波.海洋石油勘探开发安全概述[M].北京:石油工业出版社,2006.
    [3]郭炳火,黄振宗,要培英等.石油工作海洋[M].石油大学出版社,1999.
    [4]刘中民.世界海洋政治与中国海洋发展战略[M].北京:时事出版社,2009.12
    [5]廖谟圣.2000-2005年国外超深水和超深水钻井采油平台简况与思考[J].中国海洋平台,2006,21(3):1-3.
    [6]廖谟圣.21世纪初的世界海洋石油钻机[J].石油矿场机械,2000,29(1):5-9.
    [7]中国IODP办公室.中国大洋钻探船建造的初步设想[R].中国综合大洋钻探通讯,2009,21(1):26-39.
    [8]国家海洋局海洋发展战略研究所课题组.中国海洋发展报告(2010)[R].北京:海洋出版社,2010.5
    [9]Wada, Kazuyasu; Saito, Masakatsu; Yamaguchi, Hiroyoshi. Development of the waste mud treatment system for drilling vessel "CHIKYU"[C]. OCEANS 2006-Asia Pacific. Yokohama,2006:1-8.
    [10]Bach, Wolfgang; Ravelo, Christina; Behrmann, Jan; et al. IODP new ventures in exploring scientific targets (INVEST):Defining the new goals of an international drilling program[J]. Scientific Drilling,2010,9:54-64.
    [11]Takagawa, Shinichi. Ocean science drilling and underwater technologies[C]. Proceedings of the 12th (2002) International Offshore and Polar Engineering Conference. Yokosuka,2002:3-7.
    [12]Radford, T.S.; Radford, S.S. The Ocean Drilling Program:Leg 207[C]. Proceedings of the SPE Latin American and Caribbean Petroleum Engineering Conference, Port of Spain:Society of Petroleum Engineers (SPE),2003:1028-1035.
    [13]Rhodes, Q. Z.; Haney, J.D.; Carey, J.D.. A low power/high performance active heave compensation system[C], Proceedings Underwater Intervention 2002 Conference, New Orleans, IEEE,2002:23-31.
    [14]James E., Adamson. Efficient Heave Motion Compensation for Cable Suspended Systems[R]. Ocean Works International.2003:1-7.
    [15]栾苏,于兴军.深水平台钻机技术现状与思考[J].石油机械,2008,36(9):135-139.
    [16]尽快实现深水钻井装备国产化[J].中国船舶报,2010.6.13
    [17]亢峻星.加快上海海洋工程发展步伐[J].上海造船,2005(1):36-39.
    [18]T. Pakarinen. Analysis of a 6.000-m riser system[C]. Proceedings of the 20th annual offshore technology conference. Houston, Texas:IEEE,1988.:489-496.
    [19]C. Ganapathy,S. Panda. Nonlinear analysis of pipe string for deep sea mining[C]. Proceedings of the 21st annual offshore technology conference. Houston, Texas.,1989, V01.4, OTC 6179:633-640
    [20]Brink, A.W.; J. S. Chung. Automatic position control of a 300,000-ton ship ocean mingng systems[J]. Energy Resout Technol Trans ASME,1982.104(4):285-293.
    [21]Xiao Yue; Wang. Yanying. Analysis of deepwater mooring system for a semi-submerged drilling platform:Deepwater Mooring Systems Concepts[J]. Design Analysis and Materials.2003:216-226.
    [22]W. F. Lammert; J. R. Hale; V. Jacobsen. Dynamic response of submarine pipelines exposed to combined wave and current action[C]. Proceedings of the 21st annual offshore technology conference. Houston, Texas:IEEE.1989:159-170.
    [23]Shifeng Yuan, Kazuo Aso. Static behavior of a pipe string designed for mining manganese nodules[J]. JSME International Journal,1990,33(1):101-106.
    [24]K. Zare; T. K. Datta. Dynamic response of lazy-Sin random sea. OTC90. Houston, Texas.1990, OTC6440:177-184.
    [25]J. S. Chang; A. k Whitney; W. A. Loden, et al. Nonlinear transient motion of deep ocean mining pipe[C]. Proceedings of the 12th annual offshore technology conference. Houston. Texas:IEEE.1980:341-352.
    [26]G Guerin, D Goldberg, Heave compensation and formation strength evaluation from downhole acceleration measurements while coring[R]. Geo-Marine Letters, 2002:133-141.
    [27]G. Sarker. G. Myers, T. Williams, et al. Comparison of heave motion compensation systems on scientific ocean drilling ship and their effects on wireline logging data[C]. Offshore technology conference, Houston, Texas:IEEE,2006:1-7.
    [28]金鸿章,马丽华,李冬松.适用于不同海浪的变参数减摇鳍控制器设计[J].控制工程,2009,16(1):1-4.
    [29]金鸿章.智能技术在船舶减摇鳍系统中的应用[M].北京:国防工业出版社,2003.1.
    [30]Do, K.D.; Pan, J. Nonlinear control of an active heave compensation system[J]. Ocean Engineering,2008,35(5-6):558-571.
    [31]Overdiek, G. Design and charecteristics of hydraulic winch controls by counterbalance valves. Mech E Conference Publications (Institution of Mechanical Engineers),1981,p39-48.
    [32]Kuchler, S; Mahl, T; Neupert, J. et al. Active control for an offshore crane using prediction of the vessel's motion[J]. IEEE-ASME Transactions on mechatronics, 2011,16(2):297-309.
    [33]Ku uml chler, S.; Sawodny. O.Nonlinear control of an active heave compensation system with time-delay[C].2010 IEEE International Conference on Control Applications (CCA) part of the IEEE Multi-Conference on Systems & Control (MSC), Yokohama Japan:Institute of Electrical and Electronics Engineers Inc., 2010:1313-1318.
    [34]Lainiotis, D.G.; Plataniotis, K.N.; Menon, Dinesh; Charalampous, C.J. Adaptive heave compensation via dynamic neural networks[C]. Proc Conf Oceans 93, Victoria, BC, Can:IEEE,1993:1243-1248.
    [35]Driscoll, F.R.; Nahon, M.; Lueck, R.G. A comparison of ship-mounted and cage-mounted passive heave compensation systems[J]. Journal of Offshore Mechanics and Arctic Engineering,2000,122(3):214-221.
    [36]Driscoll, Frederick R.; Buckham, Brad; Nahon, Meyer.Numerical optimization of a cage-mounted passive heave compensation system. Oceans Conference Record (IEEE) 2000, Providence:IEEE 2000:1121-1127.
    [37]Umesh A. Korde. Active heave compensation on drill-ships in irregular waves[J]. Ocean Engneering,1998.25(7):541-561.
    [38]廖谟圣.海洋开发机器与液压技术[M].北京:海洋出版社,1988.5
    [39]K. D. Do; J. Pan. Nonlinear control of all active heave compensation system[J]. Ocean Engineering.2008.35:558-571.
    [40]Driscoll, F.R.; Nahon, M.; Lueck. R.G.. A comparison of ship-mounted and cage-mounted passive heave compensation systems[J]. Journal of Offshore Mechanics and Arctic Engineering,2000,122(3):214-221.
    [41]Do, Due; Pan, Jie. High performance control of an active heave compensation system[C]. IFAC Proceedings Volumes (IFAC-PapersOnline) 2008, Seoul:Elsevier. 2008:339-353.
    [42]Haney, Jeffrey D.; Carey, Dean W.; Zane Rhodes, Ⅱ. Low power/high performance active heave compensation[J]. Sea Technology,2002,43(7):23-31
    [43]Korde. U.A. Active heave compensation on drill-ships in irregular waves[J]. Ocean Engineering,1998,25(7):541-561.
    [44]Takagawa, Shinichi. A new concept design of heave compensation system for longer life of cables. OCEANS'10 IEEE Sydney:IEEE Computer Society,2010: 899-211.
    [45]Korde. U.A. Active heave compensation on drill-ships in irregular waves[J]. Ocean Engineering,1998,25(7):541-561.
    [46]Xiao, Tibing. Simulation modeling for heave compensation of heavy-duty semi-active Heave Compensation System[C]. CCC'10. Beijing:IEEE Computer Society,2010:1265-1267.
    [47]Zimmermann, Charles A.; Garnero, Charles L.; Mack, Ronald C. Tension leg riser system-An effective solution for deepwater risers[C]. OMAE 2001, Rio de Janeiro: American Society of Mechanical Engineers,2001:537-545.
    [48]P. Albers. Motion control in offshore and dredging. Springer,2010,9.
    [49]美国“格洛玛·挑战者”号[M].中国海洋年鉴,1986:654.
    [50]http://www.planetseed.com/node/15209
    [51]D. Goldberg, G. Myers, A. Meltser, et al. Measurement while coring in ODP success during leg 179 and the road ahead[J]. JOIDES Journal.1998,Vol.24 Number 2.
    [52]肖体兵,吴百海,邹大鹏,龙建军.深海采矿升沉补偿系统非线性仿真模型的建立和试验[J].中国机械工程,2004,15(9):792-795.
    [53]Xiao Tibing. Simulation modeling for heave compensation of heavy-duty semi-active heave compensation system[J].29th Chinese Control Conference (CCC), Beijing:IEEE Computer Society,2010:1265-1267.
    [54]王维旭,于兴军.被动式钻柱升沉补偿装置气液控制系统的原理[J].石油矿场机械.2011(2):30-33.
    [55]R.谢菲尔德.浮式钻井设备及其使用[M].北京:石油工业出版社,1988.
    [56]Kinjo, Hiroshi; Nakazono, Kunihiko; et al. Feedback controller with nonlinear compensator optimized by genetic algorithm for rotary crane system. ICCAS-SICE 2009, Fukuoka:IEEE Computer Society,2009:1817-1821.
    [57]Yu. Wen; Li, Xiaoou. Anti-swing control for an overhead crane with intelligent compensation[C]. ISRCS 2010, Idaho Falls:IEEE Computer Society,2010:85-90.
    [58]Hatleskog, J.T.; Dunnigan. M.W. Heave Compensation Simulation for Non-Contact Operations in Deep Water[C]. OCEANS 2006.2006:1-6.
    [59]Toxqui, Rigoberto; Wen Yu; Xiaoou Li. Anti-swing control for overhead crane with neural compensation[C]. IEEE International Conference on Neural Networks 2006. Vancouver:Institute of Electrical and Electronics Engineers Inc.,2006.4697-4703.
    [60]肖体兵,吴百海.深海作业装置主动型升沉补偿系统控制器的研究[J].液压与气动2008(4):18-21.
    [61]Hatleskog, J.T.; Dunnigan, M.W. Active heave crown compensation sub-system[C]. OCEANS 2007 Europe,2007:1-6.
    [62]E1-Hawary, Ferial; Mbamalu, G.A.N. Dynamic heave compensation using robust estimation techniques[J]. Computers and Electrical Engineering,1996, 22(4):257-273.
    [63]J.T. Hatleskog and M.W. Dunnigan, Heave Compensation Simulation for Non-Contact Operationsin Deep Water, IEEE Oceans'06, Boston.2006:1-6.
    [64]Gaddy, D.E. Ultradeep drillship will react to heave with electric-compensating draw works[J]. Oil and Gas Journal,1997,95(29):68-75.
    [65]任克忍,沈大春,王定亚.海洋钻井升沉补偿系统技术分析[J].石油机械,2009,37(9):125-128.
    [66]Guesnon. J.; Gaillard, Ch.; Richard, F. Ultra deep water drilling riser design and relative technology (Risers de forage en offshore profond et technologies associees) [J]. Oil and Gas Science and Technology,2002,57(]):39-57.
    [67]Levett. B.A.; Brandt. H. The role of risk management in development and application of new technology[C].2005 SPE/IADC, Amsterdam:Society of Petroleum Engineers,2005:1019-1023.
    [68]带自动波浪补偿的吊放装置[R].机电设备,2000(6):43.
    [69]徐小军,何平,徐循等.基于DSP的主动式波浪补偿起重机控制系统设计[J].国防科技大学学报,2008,30(1):110-114.
    [70]Leland R Robichaux, Jan T Hmleskog. Semi-active heave compensation system for marine vessels:United States:005209302A[P],1993.
    [71]白鹿,张彦廷,张作龙等.钻柱液压升沉补偿系统参数计算及比较分析[J].石油矿场机械,2009,38(3):10-13.
    [72]F. R. Driscoll; M. Nahon. Comparison between ship-mounted and cage mounted passive heave compensation systems[C]. Oceans Conference Record (IEEE), Nice: IEEE, Piscataway,1998:1449-1454.
    [73]F. R. Driscoll; B. Buckham, M. Nahon. Numerical optimization of a cage-mounted passive heave compensation system[C]. Oceans Conference Record(IEEE), 2000:1121-1127.
    [74]余建星,李红涛.高架索海上补给装置在小型船舶补给上的应用[J].海洋技术,2005,24(2):59-62.
    [75]Yiimaz Turkyilmaz; Olav Egeland. Active depth control of towed cable in 2D[C]. Proceeding of 40th IEEE Conference on Decision and Control, Orlando:Institute of Electrical and Electronics Engineers Inc.,2001:952-957.
    [76]王海波.水下拖曳升沉补偿液压系统及其控制研究[D].杭州:浙江大学机械工程学系,2009.7
    [77]路甬祥,胡大纥.电液比例控制技术[M].北京:机械工业出版社,1988:223-224.
    [78]王庆丰,顾临怡,袁卫军.负载自动适应的液压减张力卷取系统研究[J].机床与液压,2000(5):40-42
    [79]Bjrn Skaare; Olav Egeland. Parallel force/position crane control in marine operations[J]. oceanic engineering,2006,31 (3):p599-613.
    [80]Neupert, J.; Mahl. T.; Haessig. B.:et al. A heave compensation approach for offshore cranes[C]. American Control Conference 2008. Seattle:IEEE Computer Society. 2008:538-543.
    [81]YE Jia-wei, Chen Yuan-ming, Wang Dong jiao et al. Wave motion compensation scheme and its model tests for the salvage of an ancient sunken boat[J]. China Ocean engineering,2006,20(4):635-643.
    [82]吴百海,肖体兵,龙建军,毛宁.深海采矿装置的自动升沉补偿系统的模拟研究[J].机械工程学报,2003,39(7):128-133.
    [83]Jin S Chung; Katsuya Tsurusaki. Advance in deep-ocean mining stems research[C]. Proceeding ofthe 4th International Offshore and Polar Engineering Conference, Osaka:IEEE Computer Society,1994:18-31.
    [84]Takagawa, S. A new concept design of heave compensation system for longer life of cables[C]. OCEANS 2010 IEEE. Sydney:IEEE Computer Society,2010:1-5.
    [85]余建星,顾鹏.海上干货补给技术[M].海洋技术,2005,24(3):105-110.
    [86]GungRong Chen; MingChung Fang. Hydrodynamic interactions between two ships advancing in waves[J]. Ocean Engineering.2001,28:1053-1078.
    [87]James E; Adamson. Efficient heave motion compensation for cable-suspended systems[J]. Underwater Intervention.2003.1:1-7.
    [88]Brockea Ted:Petters Richard. Launch and recovery for two-body tow systems:sea MARC Ⅱ side-scan sonar towfish proved that deployment system works in sea state 5 with just two operators[J]. Sea Technology,1985,26(7):10-13.
    [89]Hanson Kenneth; Hanson Lee; Bentley Mark; et al. Marine heave compensating device and winch drive:US, B66DOO1/48A[P],2002.
    [90]亢峻星.加快上海海洋工程发展步伐[J].上海造船,2005(1):36-39.
    [91]方华灿.海洋石油工业钻采设备理论基础[M].北京:石油工业出版社,1994.
    [92]肖体兵.深海采矿装置智能升沉补偿系统的研究[D].广州:广东工业大学机械电子工程学院,2004.9
    [93]徐兴平.海洋石油工程概论[M].北京:中国石油大学出版社,2007.9
    [94]Xiao, Tibing. Simulation modeling for heave compensation of heavy-duty semi-active Heave Compensation System[C]. CCC'10, Beijing:IEEE Computer Society 2010:1265-1267.
    [95]Haney. Jeffrey D.; Carey. Dean W.; Zane Rhodes, Ⅱ. Low power/high performance active heave compensation[J]. Sea Technology,2002.43(7):23-31..
    [96]Zhang. Xiaojian; Liu. Shaojun; Zeng, Fengyan; Li, Liujun. Simulation research on the semi-active heave compensation system based on H robust control[C]. ISDEA 2010, Changsha:IEEE Computer Society,2011:378-382.
    [97]华东石油学院矿机教研室.石油钻采机械(上册)[M].北京:石油工业出版社.1980.6
    [98]冯福璋,深海资源开采系统球铰硬管接头的设计及系统横向运动分析[D].北京:北京科技大学,2006.1
    [99]赵建亭,刘树祥,晏绍枝等.浮式钻井装置钻柱运动补偿系统研究[J].船舶,2010(3):1-5.
    [100]E1-Hawary. F. Compensation of vertical displacement components in marine seismic applications using the coupled heave and pitch model[C]. OCEANS' 88. Baltimore:Publ by IEEE, New York.1988:291-294.
    [101]Kuchler, S.; Mahl. T.; Neupert. J.et al. Active Control for an Offshore Crane Using Prediction of the Vessel's Motion. Mechatronics[J], EEE/ASME Transactions on Mechatronics.2011.Vol.16(2):p297-309.
    [102]Leland R.; Robichaux; Jan T. Hatleskog. Semi-active heave compensation system for marine vessels. United States. USA Patent:5209302[P],1993.3.11.
    [103]白鹿.钻柱液压升沉补偿系统设计研究[D].东营市:中国石油大学(华东)机电工程学院;.2009.4.
    [104]徐国贤.钻柱[M].北京:石油大学出版社,1990.4
    [105]雷天觉等.液压工程手册[M].北京:机械工业出版社,1990
    [106]成大先.机械设计手册[M].北京:化学工业出版社,2005.
    [107]Sarpkaya T; Isaacson M. Mechanics of Wave Forces on Offshore Structures[R]. New York:Van Nostrand Reinhold company,1981.
    [108]邹志利.水波理论及其应用[M].北京:科学出版社,2005.
    [109]孙东昌,潘斌.海洋自升式移动平台设计与研究[M].上海:上海交通大学出版社.2008.3
    [110]廖辉,吴百海,肖体兵等.海洋钻柱运动补偿的非线性动力学分析[J]-广东工业大学学报,2011(1):1-4.
    [111]C.M. Liu; H.H. Hwung; R.-Y. Yang. The Consistence between the Stokes Wave Theory and General Wave Theory[J]. Journal of Mechanics,2009.25(3):17-20.
    [112]陈士荫,顾家龙,吴宋仁.海岸动力学(第二版)[M].北京:人民交通出版社,1988.12
    [113]于永南.钻柱力学分析的有限元法[M].北京:石油大学出版社,1998.12
    [114]王新敏.ANSYS工程结构数值分析[M].北京:人民交通出版社,2007.10
    [115]杨进,刘书杰,姜伟等.ANSYS在海洋石油工程中的应用[M].北京:石油工业出版社,2010.3
    [116]石钟慈,王鸣.有限元方法[M].北京:科学出版社.2010.1
    [117]李成功,和彦淼.液压系统建模与分析[M].北京:航空工业出版社,2008.9
    [118][2011-9-08]:http://www.jdol.com.cn/spzs/931519.html
    [119]董宏林,姜继海,吴盛林.液压变压器与液压蓄能器串联使用的优化条件及能量回收研究[J].中国机械工程,2003,14(3):192-195.
    [120]林建杰,徐兵,杨华勇.蓄能器作为压力油源的掖压电梯节能系统研究[J].中国机械.2003,14(24):2082-2084.
    [121]马雅丽,黄志坚.蓄能器实用技术[M].北京:化学工业出版社,2007.6
    [122]李壮云等.中国机械设计大典.第五卷:机械控制系统设计[M].南昌:江西科学技术出版社,2002.1.
    [123]钟天宇.大惯性负载双向电液比例张力控制系统研究[D].杭州:浙江大学机械与能源工程学院,2007.12
    [124]宋志安.基于MATLAB的液压伺服控制系统分析与设计.国防工业出版社,2007.6
    [125]Su Y. X.; Sun D.; Duan B. Y. Design of an enhanced nonlinear PID controller[C]. Mechatronics,2005.15(8):1005-1024.
    [126]王德进.H2和H∞优化控制理论[M].黑龙江:哈尔滨工业大学出版社,2001-3
    [127]Lee Jeong Woo; Oh Jun Ho. Time delay control of nonlinear systems with neural network modeling[J]. Mechatronics,1997,7(7):613-640.
    [128]Qiuping Hu, Rangaiah Gade Pandu. Adaptive internal model control of nonlinear processes[J]. Chemical Engineering Science.1999.54(9):1205-1220.
    [129]张友旺,钟向明,黄元峰.电液位置伺服系统的自适应模糊神经网络控制[J].中国机械工程,2004,15(8):681-684,749
    [130]Hou Hongsheng. The model-free learning adaptive control of a class of nonlinear discrete-time systems[J]. Control Theory & Application.1998.15(6):893-899.
    [131]F. L Li; J.F. Wang:C. J. Fan; et al. A model-free adaptive control of welding pool dynamics during arc welding[C].2008 IEEE International Conference on Cybernetics and Intelligent Systems, Shanghai. Inst. of Elec. and Elec. Eng. Computer Society,2008:591-595.
    [132]吴振顺,韩俊伟.机电液控制系统数字仿真与CAD[M].哈尔滨:哈尔滨工业大学出版社,2006.7
    [133]K.J.奥斯特降姆,B.威顿马克.自适应控制[M].北京:科学技术出版社,1992.5
    [134]付永领.AMESIM系统建模和仿真:从入门到精通[M].北京:北京航空航天大学出版社,2006.6
    [135]工春行.液压伺服控制系统[M].北京:机械工业出版社,1981.
    [136]丁汉哲.试验技术[M].北京:机械工业出版社,1982
    [137]吴百海,肖体兵,龙建军等.深海采矿装置的自动升沉补偿系统的模拟研究[J].机械工程学报,2003,39(7):128-132.
    [138]李伯虎,文传源.系统仿真技术新动向[J].计算机仿真,1996,13(3):3-5
    [139]王恒霖,曹建国.系统仿真的发展沿革与展望[J].系统仿真学报,1997,9(1):1-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700