80MN钛合金锻造液压机的建模与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
80MN钛合金锻造液压机是我国自行新研制的大型数控等温锻造液压机,它是我国锻造液压机规格、结构和性能的一次创新。特殊的锻造材料和复杂的锻造工艺,对如此大型的数控等温锻造液压机的控制精度提出了非常高的要求。本文的主要研究内容和已取得的研究成果如下:
     (1)对80MN钛合金锻造液压机的结构进行了深入的分析,依据系统本身的内在机理,并作合理的假设和简化,分别推导出了液压系统的动态模型、滑块的动态模型以及其它部分的动态模型。通过综合各个部分的动态模型,建立了比较准确的80MN钛合金锻造液压机仿射非线性动态模型。
     (2)分析了非线性系统反馈线性化的条件,针对80MN钛合金锻造液压机仿射非线性动态模型的特点,设计了反馈线性化解耦控制器,有效地解决了输出跟踪控制问题。
     (3)介绍了模糊控制器的基本结构,对模糊控制器中的模糊化、规则库、模糊推理和解模糊各个组成部分进行了详细的分析。
     (4)针对输入—输出线性化存在系统内动态不稳定的问题,在输入—输出线性化控制的基础上,根据80MN钛合金锻造液压机的结构特点,从系统实际物理关系和实验数据出发,采用模糊控制方法设计了监督控制器,保证了系统的内动态在整个输出跟踪过程中都处于一定的范围之内。
     (5)针对滑块四角调平存在的同步误差与滑块受力分布之间的矛盾,在反馈线性化解耦控制与模糊监督控制的基础上,根据80MN钛合金锻造液压机的结构特点,从系统实际物理关系和实验数据出发,采用模糊控制方法设计了补偿控制器,进一步提高了系统的同步精度。
     (6)应用反馈线性化解耦控制、模糊监督控制和模糊补偿控制相结合的混合控制方法,提出了滑块速度与应变速率控制方案、滑块四角调平控制方案和新型双闭环控制方案,实现了80MN钛合金锻造液压机的滑块速度与应变速率控制、四角调平控制、速度与四角调平的协调控制。
80MN titanium-alloy forging hydraulic press is a large type numerical control isothermal forging hydraulic press manufactured newly by China, and it blazes a new trail in standard, structure and performance of forging hydraulic press in our country. Owing to special forging materiel and complicated forging technology, very high control accuracy is required to such a large type numerical control isothermal forging hydraulic press. Main contents and progresses in this paper are as follows:
     (1) The structure of 80MN titanium-alloy forging hydraulic press is analyzed thoroughly. According to internal mechanism of the system, with reasonable hypothesis and simplification, the dynamic models of hydraulic mechanism, slide and other devices are deduced respectively. By means of synthesis to all the dynamic models, a comparatively accurate affine nonlinear dynamic model of 80MN titanium-alloy forging hydraulic press is set up.
     (2) The conditions for the feedback linearization of nonlinear system are discussed. Aimed at the characteristics of the affine nonlinear dynamic model of 80MN titanium-alloy forging hydraulic press, a feedback linearization decoupling controller is designed. It solves output tracking control problem validly.
     (3) The basic structure of fuzzy controller is introduced. Fuzzifier, fuzzy rule base, fuzzy inference and defuzzifier of fuzzy controller are explored in detail.
     (4) To solve the problem about the stability of internal dynamics of the system in the input-output linearization method, according to the characteristics of the structure, the relationship of the physical variables and the experiment data of 80MN titanium-alloy forging hydraulic press, a supervision controller is designed with fuzzy control method and introduced into the input-output linearization controller of 80MN titanium-alloy forging hydraulic press. It can ensure the internal dynamics of the system are controlled within a limited range in the whole process of output tracking.
     (5) To resolve the conflict between the synchronization error and the distribution of the force on the slide in the four-corner leveling control of 80MN titanium-alloy forging hydraulic press, according to the characteristics of the structure, the relationship of the physical variables and the experiment data of 80MN titanium-alloy forging hydraulic press, a compensation controller is designed with fuzzy control method based on the feedback linearization decoupling control and the fuzzy supervision control. It can improve the synchronization accuracy of the system further.
     (6) Based on the application of the mixed control which is composed of the feedback linearization decoupling control, the fuzzy supervision control and the fuzzy compensation control, a control program of the velocity of the slide and the strain rate of forging parts, a four-corner leveling control program of the slide and a new bi-closed-loop control program are given to realize the control of the velocity of the slide and the strain rate of forging parts, the four-corner leveling control of the slide and the coordination control of the velocity and four-corner leveling of the slide.
引文
[1]陈上达,国内外重型锻压设备的发展、现状和趋势,重型机械, 1988, 11: 2~9
    [2]于风仁,当代锻造液压机的发展状况与现有液压机的改装,重型机械, 1990, 1: 11~16
    [3]曾苏民,世界锻造工业的现状与发展前景,铝加工, 1996, 4: 55~58
    [4]荆宏赡,八十年代国外重型锻压机械制造业及其产品技术,重型机械, 1987, 4: 37~45
    [5]田依民,陈延杭,锻造液压机的发展动态,重型机械, 1985, 8: 1~4
    [6]王凤喜,大锻件生产行业与锻造技术发展,锻压机械, 2002, 4: 4~6
    [7]庞克昌,热模/等温精密锻造技术的发展,上海钢研, 2005, 1: 3~6
    [8]周建华,庞克昌,王晓英,航天用钛合金等温锻件的研制,上海航天, 2003, 6: 54~58
    [9]庞克昌,航空锻件精化的重要途径:等温锻造技术,金属学报, 2002, 38: 556~559
    [10]张金,中国锻压行业的发展、机遇和挑战(上),机械工程师, 2003, 6: 3~5
    [11]底学晋,李建华,在为装备中国服务中发展的大锻件生产行业,大型铸锻件, 1999, 3: 3~5
    [12]李永堂,雷步芳,高雨茁,液压系统建模与仿真,北京:冶金工业出版社, 2003
    [13]李永堂,锻压设备理论与控制,北京:机械工业出版社, 2005
    [14]蔡延文,液压系统现代建模方法,北京:中国标准出版, 2002
    [15]曹玉平,阎祥安,液压传动与控制,天津:天津大学出版社, 2005
    [16]俞新陆,杨津光,液压机的结构与控制,北京:机械工业出版社, 1989
    [17]王占林,近代电气液压伺服控制,北京:北京航空航天大学出版社, 2005
    [18] Yao B, Bu F, Reedy J, et al, Adaptive robust motion control of single-rod hydraulic actuators:theory and experiments,IEEE/ASME Transactions on Mechatronics, 2000, 5(1): 79~91
    [19] Bu F, Yao B, Integrated direct/indirect adaptive robust motion control of single-rod hydraulic actuators with time-varying unknown inertia, Proceedings of 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2001, 1: 624 ~629
    [20] Piche R, Ponjolaineus P R, Design of robust two-degree-of freedom controller for servos using H1 theory, Proc. Mech. Part 1, 1991, 205(14): 229~306
    [21] Jen Y, Lee C, Robust speed control of a Pump-controlled motor systems, IEEE Proc. on Control Theory and Application, 1992, 139(6): 503~510
    [22] Sirouspour M R, Salcudean S E, On the nonlinear control of hydraulic servo systems, Proceedings of 2000 IEEE International Conference on Robotics and Automation, San Francisco,CA, April, 2000. 1276~1282
    [23] Alberto Isidori,非线性控制系统,北京:电子工业出版社,2005
    [24] Jean-Jacques E. Slotine,Weiping Li,应用非线性控制,北京:机械工业出版社,2006
    [25]高为炳,非线性控制系统导论,北京:科学出版社,1988
    [26]冯纯伯,非线性控制系统分析与设计,南京:东南大学出版社,1990
    [27] H.Nijmeijer. and A.J.van der schdft, Nonlinear Dynamical Control systems, Springer-verlag, New York, 1990
    [28]夏小华,高为炳,非线性系统控制及解耦,北京:科学出版社,1993
    [29]程代展,非线性系统的几何理论,北京:科学出版社,1993
    [30] C.I.Byrnes and A.Isidori, Nonlinear disturbance discoupling with stability, IEEE Conf. Dec. Contr., 1987(26): 513~518
    [31] A.Isidori, A note on almost disturbance discoupling for nonlinear minimum phase systems, Syst. Contr. Lett., 1996(27): 191~194
    [32] A.Isidori,A.Krener,Gori-Gigogi and S.monaco, Nonlineardiscoupling via feedback: A differential geometory approach, IEEE Trans. Automat. Contr., 1981, 26(3): 331~345
    [33] J.W.Grizzle and A.Isidori, Block noninteracting control with stability via state feedback, Math. Contr. Signals Syst., 1989(2): 315~341
    [34] H.J.C.Huijberts,H. Nijmeijer and L.L.M.van der Vegen, Minimality of dynamic input-output discoupling for nonlinear systems, Sys. Contr. Lett., 1992(18): 435~443
    [35] L.R.Hunt, R.Su and G.Meyer, Global transformation of nonlinear systems, IEEE Trans. Automat. Contr., 1983,28(1): 24~30
    [36] D.Cheng,T.J.Tarn and A.Isidori, Global linearization of nonlinear systems via feedback, IEEE Trans. Automat. Contr., 1985, 30(3): 808~811
    [37] Z.Xu and J.Hauser, Higher order approximate feedback linearization about a manifold for multi-input systems, IEEE Trans. Automat. Contr., 1995, 40(9): 833~840
    [38] J.J.BuKley, Universal fuzzy controller, Automatica, 1992, 28(6): 1245~1248
    [39] H.Yang, Sufficient conditions on general fuzzy systems as function approximators, Automatica, 1994, 30(3): 521~525
    [40] J.L.Castro and M.Pelgado, Fuzzy system with defuzzification are universal approximators, IEEE Trans. Syst.Man.Cybern., 1996, 26(1): 149~152
    [41] S.G.Cao, N.W.Rhee and G.Feng, Stability analysis of fuzzy contol systems, IEEE Trans. Syst.Man.Cybern., 1996, 26(1): 201 ~204
    [42]戴先中,多变量非线性系统的神经网络逆控制方法,北京:科学出版社,2005
    [43]张腾,神经网络逆系统方法及其在电力系统控制中的应用:[博士学位论文],南京:东南大学, 2002
    [44]何丹,非线性系统控制的神经网络逆系统方法:[博士学位论文],南京:东南大学, 1999
    [45]孙增圻,智能控制理论与技术,北京:清华大学出版社,1997
    [46]李人厚,智能控制理论和方法,西安:西安电子科技大学出版社,1999
    [47]李士勇,模糊控制和智能控制理论与应用,哈尔滨:哈尔滨工业大学出版社,1990
    [48]王立新,模糊系统与模糊控制教程,北京:清华大学出版社,2003.6
    [49]汤兵勇,路林吉,王文杰,模糊控制理论与应用技术,北京:清华大学出版社,2002.9
    [50] Gottwald S, Set theory for fuzzy sets of higher level, Fuzzy Sets and Systems,1979,2(2):125~151
    [51] Green M. and D. J. N. Limebeer, Linear Robust Control, Prentice Hall,Englewood Cliffs,NJ,1995
    [52] Guan J. W. and D. A.Bell,Fvidence Theory and Its Applications,Vols. I and II,North- Holland,NY,1991
    [53] Gupta M. M. ,J. B. Kiszka and G. M. Trojan ,Multivariable structure of fuzzy control systems,IEEE Trans. on Systems, Mlan and Cybern.,1986,16(5):638~656
    [54] Gupta M. M. and D. H. Rao,On the principles of fuzzy neural networks,Fuzzy Sets and Systems,1994,61(1):1~18
    [55] Hansson A.,P. Gruber and J. Todtli,Fuzzy anti-reset windup for PID controllers,Control Eng. Practice,1994,2(3):389~ 396
    [56] Harris C. J.,C. C. Moore and M. Brown,Intelligent Control: Aspects of Fuzzy Logic and Neural Nets ,World Scientific, Singapore,1993
    [57] Hauser J.,S. Sastry and P. Kokotovic,Nonlinear control via approximate input-output liberalization: the ball and beam example,IEEE Trans. on Automatic Control,1992,37(3):392~ 398
    [58] Hellendoorn H. and R. Palm,Fuzzy system technologies at Siemens R&D,Fuzzy Sets and Systems,1994,63(3):215~269
    [59] Hellendoorn H. and C.Thomas , Defuzzification in fuzzy controllers,J. of Intelligent Fuzzy Systems,1993,1(2): 109 ~123
    [60] Higashi,M.,and G. J. Klir,On measure of fuzziness and fuzzy complements,Intern. J. of General Systems,1982,8(3):169~ 180
    [61] Hajek P,Metamathematics of Fuzzy Logic,Dordrecht: Kluwer, 1998
    [62] Zadeh L A, Outline of a new approach to the analysis of complex systems and decision processes,IEEE Trans Systems Man Cybernet,1973,3:28~44
    [63]李洪兴,从模糊控制的数学本质看模糊逻辑的成功,模糊系统与数学,1995,4:1~14
    [64]张钊,模糊系统的推理及其稳定性分析:[博士学位论文],天津:天津大学, 2004
    [65]王国俊,模糊推理的全蕴涵三I算法,中国科学,E辑. 1999,29(1):43
    [66] Chu. C. K. and J. M. Mendel,First break refraction event picking using fuzzy logic systems,IEEE Trans. on Fuzzy Systems,1994,2(4):255~266
    [67] Wang G J,On the logic foundation of fuzzy reasoning. In: Lecture Notes in Fuzzy Mathematics and Computer Science , Omaha :Creighton University,1997.4:1~48
    [68] Buckley J,Hayashi Y,Can approximate reasoning be consistent? Fuzzy Sets and Systems,1994,65:13~18
    [69] Dubois D,Prade H,Lang J,Fuzzy sets in approximate reasoning, Fuzzy Sets and Systems,1991,40:143~244
    [70] Guan J W,Bell D A,Approximate reasoning and evidence theory, Information Sciences. 1997,96:207~235
    [71] Wang G J,On the logic foundations of FMP and FMT,Int. J Fuzzy Mathematics, 1997, 5(1):229~250
    [72] Wang L X. A , Course in Fuzzy and Control , Hong Kong :Prentice-Hall,Inc,2003
    [73] Elkan C,The Paradoxical Success of Fuzzy Logic,ibid,1993,3~8
    [74]吴望名,关于模糊逻辑的一场争论,模糊系统与数学,1995,2:1~10
    [75]宋士吉,冯纯伯,关于模糊推理的全蕴涵三I算法的约束度理论,自然科学进展,2000,10(10):884~889
    [76]宋士吉,吴澄,模糊推理的反向三I约束算法
    [77] Cox,E,The Fuzzy Systems Handbook,Academic Press,MA,1994
    [78] Cowan,C. F. N. and P. M. Grant (eds.) ,Adaptive Filters, Prentice-Hall,Inc.,Englewood Cliffs,NJ. 1985
    [79] Wang G J,Mathematics of Control,Signals and Systems,1989
    [80] Czogala, E. and W. Pedrycz,Fuzzy rule generation for fuzzy control,Cybernetics and Systems,1982,13(3):275~293
    [81] Di Nola,A.,W. Pedrycz,S. Sessa,and E. Sanchez,Fuzzy relation equations theory as a basis for fuzzy modeling:an overview, Fuzzy Sets and Systems,1991,40(3):415~429
    [82] Di Nola,A., S. Sessa,W. Pedrycz and E. Sanchez,Fuzzy Relation Equations and Their Applications to Knowledge Engineering , Kluwer,Boston,1989
    [83] Dombi J, A general class of fuzzy operators, the De Morgan class of fuzzy operators and fuzziness measures induced by fuzzy operators,Fuzzy Sets and Systems,1982,8(2):149~163
    [84] Driankov,D.,H. Hellendoorn and M. Reinfrank,An Introduction to Fuzzy Control,Springer Verlag,Berlin,1993
    [85] Dubois,D. and H. Prade,Fuzzy Sets and Systems:Theory and Applications,Academic Press,Inc.,Orlando,Florida,1980
    [86] Duda R. O. and P. E. Hart,Pattern Classification and Scene Analysis,John Wiley & Sons,NY,1973
    [87] Falconer D. D,Adaptive equalization of channel nonlinearities in QAM data transmission systems,The Bell System TechnicalJournal,1978,57(7):2589~2611
    [88] Gegov A,Multilevel intelligent fuzzy control of oversaturated urban traffic networks,Intern. J. of Systems Science,1994, 25(6):967~978
    [89] Goguen J. A,L-fuzzy sets,J.of Math.Analysis and Applications,1967,18(1):145~174
    [90]吴百海,任新生,吴小洪,多缸同步系统的动态分析及模拟试验研究,机械开发,1996, 9: 13~18
    [91] Rooks and Brian W,Software synchronization for radial forging machine manipulators,Industrial,1996,23(6): 19~23
    [92]陈先惠,王野牧,吕振民,3MN模具研配液压机的双缸同步系统的研制,机床与液压,1999, 5: 10~11
    [93]王野牧,陈先惠,吕振民,电液比例阀控制液压同步系统动态研究,沈阳工业大学学报,1996,18(4): 79~82
    [94]刘俭,许忠华,郭颖,液压缸同步控制的研究,控制理论与应用,2002,21(4): 13~14
    [95]张志伟,张福波,王国栋,一种双液压缸同步控制方法及其仿真研究,机床与液压,2003, 3: 232~233
    [96]杨德荣,权龙,用电液伺服阀补偿周步偏差的同步控制方法,液压与气动,2001, 9: 7~9
    [97]苏金明,阮沈勇,MATLAB实用教程,北京:电子工业出版社, 2008
    [98]葛哲学,精通MATLAB,北京:电子工业出版社, 2008
    [99]薛定宇,陈阳泉,控制数学问题的MATLAB求解,北京:清华大学出版社, 2007
    [100]黄道平,MATLAB与控制系统的数字仿真及CAD,北京:化学工业出版社, 2004
    [101]黄永安,马路,刘慧敏,MATLAB 7.0/Simulink 6.0建模仿真开发与高级工程应用,北京:清华大学出版社, 2005
    [102]张广红,80MN等温锻造液压机控制系统研制:[硕士学位论文],天津:天津大学, 2005
    [103]朱荣辉,超低速液压机控制系统开发:[硕士学位论文],天津:天津大学, 2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700