微型HCCI自由活塞发动机燃烧过程数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自由活塞发动机结构简单,更适合向微型化发展,将均质充量压燃方式(Homogeneous Charge Compress Ignition,HCCI)这种新型燃烧方式与微型自由活塞式发动机相结合,不仅可以解决微燃烧室壁面的火焰淬熄问题,同时可以解决HCCI所面临的着火控制难的问题,另外,微型自由活塞发动机的能量转化为电能的效率高。因此,开展基于HCCI燃烧方式的微型自由活塞式发动机的研究,有望突破目前燃烧室尺寸微小化带来的燃烧限制瓶颈,对开发微型动力机电装置具有重要意义。
     本文针对微型HCCI自由活塞发动机的工作特点,分别建立了完全理想条件下(即绝热、无漏气)微HCCI自由活塞发动机燃烧过程的二维模型,以及考虑传热和漏气影响的二维模型。依据活塞运动速度与其所受压力的相互关系,应用STAR-CD中的多个子程序实现了活塞运动过程与缸内气体化学动力学的耦合,建立了模拟活塞工作过程的动网格程序。使用STAR/KINetics软件,即CFD软件STAR—CD与详细化学动力计算软件包CHEMKIN结合,实现了化学反应与流动的耦合计算,对微型HCCI自由活塞发动机单次冲击的整个工作过程进行了数值模拟。通过完全理想条件下的工作过程模型进行了变参数研究,获得了不同冲程、不同初始当量比、不同压缩比(即自由活塞初始速度)情况下,着火时刻特性以及燃烧特性变化规律,为进一步获得控制燃烧过程的因素提供了理论依据;通过加入传热模型和漏气模型分别研究了传热和漏气对微型HCCI自由活塞发动机整个单次冲击工作过程的影响,得出了传热对微HCCI自由活塞发动机整个工作过程影响相对较小,而漏气对整个工作过程具有较大影响的结论。
     本文详细研究了微自由活塞发动机的工作过程中燃烧规律,以及微发动机的动力性能,为进一步开发该微型动力装置提供了理论依据。
The structure of free-Piston Engine is simple, which is better suited to the development for micro.The method combinated HCCI with micro free-piston engine can not only avoid flame-quenching near the combustion chamber wall, but also solve the problem of ignition control of HCCI at the same time.Moreover, the efficiency of the energry of micro free-piston engine conversing to power is high. Therefore, the research based on HCCI combustion micro-free piston engine is expected to exceed restrictions by the smaller Combustor, and impact on the development of Power-Micro Electro Mechanical greatly.
     For the work characteristics of the micro HCCI free-piston engine, the two-dimensional models of the engine combustion under ideal conditions (adiabatic, no leakage), and considering the influnence of leakage and heat transfer respectively are established. According to relationship between the pressure on the piston and its velocity, the moving mesh procedures for simulating the piston work process are established to achieve the coupling gas chemical kinetics with the kinematics of piston. In this paper, the auther make use of the means of the chemical reaction coupled with the flow computing to model the whole working process of the HCCI free-piston engine single shot, using the software of STAR/Kinetics. The paper used the method of varying the influencing parameters to obtain the change of igniting time and combustion characteristic under the conditions of different stroke, different initial equivalence ratio, different compression ratio (initial piston velocities), further more, the paper provided the theory for controlling the combustion process. The influence of heat transfer and Leakage for the micro HCCI free-piston engine single shot process is researched respectively by the model contained the leakage or heat transfer, and got the conclusions that heat transfer impact on the entire operation process relatively small,and the influence of leakage is relatively larger.
     Finally, the paper studies the combustion characteristic in the micro HCCI free-piston engine operation process and the micro-engine dynamic performance, providing the theory for developmenting the micro-Power device.
引文
[1]周志宏.直线发电机方案设计-自由活塞内燃直线发电机研究进展(二),石油机械,Vol.31(11),2003
    [2]lan A.Combustors for micro-gas turbine engines.Journal of Fluids Engineering,vol.120,Pg.109-117,1998
    [3]O.M.Nielsen,K.Jensen,and M.A.Schmidt,"Thermophotovoltaic Generation of Electricity inMicroFuelConverters.Website:http://www-mtl.mit.edu/mtlhome/6res/AR2002/02_mems/microfuel_converters.pdf Viewed:10/1 2004
    [4]stein,Alan H.Micro-heat engines,gas turbines,and rocket engings_The MIT Microenging Project,American Institute of Aeronantics and Astronautics Journal.Pg.1-12,1997
    [5]Aichlmayr,H.T.A Review of Free-Piston Engine History,Fundamentals,and Application,ASME Journal for Engineering of Gas Turbines and Power,Vol.130,Pg.118-126,2002
    [6]A.C.Fernandez-pello,A.P.Pisano,K.Fu,et al.MEMS Rotary Engine Power System,International Workshop on Power MEMS(Power MEMS 2002),Ibaraki,Japan,November 12-13,2002
    [7]K.Fu,A.Knobloch,et al.Microscale Combustion Research for Applications to MEMS Rotary IC Engine,Proc.2001 Natonal Heat trnfer Conference,Anaheim,CA,June 10-12,2001
    [8]C.M.Spadaccini and J.Peck.Development of Hydrocarbon-fueled silicon Conbustors for Micro Gas Turbine Engines,http://www-mtl.mit.edu/mtlhome/6Res/AR2002/02_mems/hydrocarbon_ fueled_silllicon.pdf,viewed 12-9,2002
    [9]Dae Hoon Lee and Sejin Kwon.Heat transfer and quenching analysis of combustion in a micro combustion vessel,Combustion and flame,P8-12,2002
    [10]Yei-Chin Chao and Jia-Ruei.A study of micro combustion in a micro platinum tube,Transaction of Heat and transfer,vol.233,2002,P274-285
    [11]李德桃等.微型发动机燃烧室德模拟研究,机械工程学报,2002,10,P59-61
    [12]钟北京,洪泽恺,微燃烧器内甲烷催化燃烧的数值模拟[J].热能动力工程,2003,18(6):P584-588
    [13]张永生,周俊虎,杨卫鹃,等.T型微细管道内氢气空气预混合燃烧实验研究。中国电机工程学报,2005,25(21):P128-131.
    [14]胡国新,王明磊,微细通道内可燃气体的预混燃烧实验与微型发动机燃烧方案[J].热能动力工程,2003,18(4):P352-355.
    [15]曹海亮,徐进良.微尺度环形燃烧室的燃烧特性。自然科学进展,2006,16(7):P874-880
    [16]H.T.Aichlmayr.Design Considerations,Modeling,and Analysis of Micro-Homogeneous Charge Compression Ignition Combustion Free-Piston Engines."[D].Minneapolis:The University of Minnesota,2002.
    [17]H.T.Aichlmayr,D.B.Kittelson,Micro-HCCI Combustion:Experimental Characterization and Development of a Detailed Chemical Kinetic Model with Coupled Piston Motion.Combustion and Flame 135(2003)227-248
    [18]M.Christensen,B.Johansson,Supercharged Homogeneous Charge Compression Ignition."SAE Technical Paper 980787.1998.
    [19]Kong S C,Marriott D,Reitz D R.Modeling and Experiments of HCCI Engine Combustion Using Detailed Chemical Kinetics with Multidimensional CFD.SAE Paper 2001-01-1026,2001.
    [20]Lavy J,Dabadie J-C,Angelberger C et al.Innovative Ultra-Low Nox Controlled Auto-Ignition Combustion Process for Gasoline Engines:The 4-Space Project.SAE Paper 2000-OI 一 1837,2000.
    [21]Li G,Bo T,Chen C et al.CFD Simulation of HCCI Combustion in a 2-Stroke DI Gasoline Engine.SAE Paper 2003-01 一 1855,2003.
    [22]Cao L,Zhao H,Jiang X et al.Numerical Study of Effects of Fuel Injection Timings on CAI/HCCI Combustion in a Four-Stroke Gdi Engine.SAE Paper 2005-41-0144,2005.
    [23]解茂昭.均质压燃HCCI发动机数学模拟与挑战.大连理工大学学报.2003.44(2):157-164
    [24]Benkenida A,Angelberger C.Toward a Three-Dimensional CFD Model for HCCI Combustion in Diesel Engines.Combustion Science and Technology,2004,176(5-6):667-683.
    [25]Gustavsson J,Golovitchev V I,Helmantel A.3-D Modeling of Conventional and HCCI Combustion Diesel Engines.SAE Paper 2004-01-2964,2004.
    [26]Hong S J,Assanis D N,Wooldridge M S.Multi-Dimensional Modeling of No and Soot Emissions with Detailed Chemistry and Mixing in a Direct Injection Natural Gas Engine SAE Paper 2002-01-1112,2002.
    [27]Kawanabe H,Ishiyama T,Fujiwara N.Analysis of Premixed Charged Compression Ignition Combustion Using PDF Method with Multidimensional CFD.SAE Paper 2004-01-1913,2004.
    [28]Zhang Y Z,Kung E H,Haworth D C.A PDF Method for Multidimensional Modeling of HCCI Engine Combustion:Effects of Turbulence/Chemistry Interactions on Ignition Timing and Emissions.International Symposium on Combustion,Abstracts of Accepted Papers,2004:16-17.
    [29]解茂昭.内燃机计算燃烧学(第二版).大连:大连理工大学出版社,2005.
    [30]Saijyo K,Kojima T,Nishiwaki K.Computational Fluid Dynamics Analysis of the Effect of Mixture Heterogeneity on Combustion Process in a Premixed Charge Compression Ignition Engine.International Journal of Engine Research,2005,6(5):487-495.
    [31]Chen J.Direct Numerical Simulation of Fundamental Processes in Engines Computational Engineering and Science Conference,2005.
    [32]Amsden A A.KIVA-3V:A Block-Structured KIVA Program for Engines with Vertical or Canted Values.Los Alamos National Laboratory LA-13313-MS,1997.
    [33]Han Z W,Reitz R D.A Temperature Wall Function Formulation for Variable-Density Turbulence Flows with Application to Engines Connective Heat Transfer Modeling.International Journal of Heat and Mass Transfer,1997,40(3):613-625.
    [34] Yang J, Pierce P, Martin J K et al. Heat Transfer Predictions and Experiments in a Motored Engine SAE Paper 881314,1988.
    [35] Dryer F L. "The Phenomenology of Modeling Combustion Chemistry," Fossil Fuel Combustion-a Source Book, 121-213, W. Bartok and A.F. Sarofim, Eds. New York:Wiley Interscience, 1991.
    [36] Livengood J, Wu P. Correlation of Autoignition Phenomenon in Internal Combustion Engines and Rapid Compression Machines. Proceedings of the Combustion Institute, 1955, 5(1):347-356.
    [37] Douaud A M, Eyzat. P. Four-Octane-Number Method for Predicting the Anti-Knock Behavior of Fuels in Engines. SAE Paper 780080, 1978.
    [38] Ryan-III T W, Callahan T J. Homogeneous Charge Compression Ignition of Diesel Fuel. SAE Paper 961160, 1996
    [39] Najt P M, Foster D E, Compression-Ignited Homogeneous Charge Combustion. SAE Paper 830264, 1983.
    [40] Ohyama Y. Simultaneous Control of AirlFuel Ratio and Intake, Exhaust Valve Timing for HCC1 Operation. SAE Paper 2003-01-1084,2003.
    [41] Agrell F, Angstrom H-E, Eriksson B et al. Control of HCCI During Engine Transients by Aid of Variable Valve Timings through the Use of Model Based Non-Linear Compensation. SAE Paper 2005-01-0131, 2005.
    [42] Griffiths J F. Reduced Kinetic Models and Their Application to Practical Combustion Systems. Progress in Energy and Combustion Science, 1995, 21(1):25-107.
    [43] Halstead M P, Kirsch L J, Quinn C P. The Autoignition of Hydrocarbon Fuels at High Temperatures and Pressures-Fitting of a Mathematical Model. Combustion and Flame, 1977, 30(1):45-60.
    [44] Kong S-C, Patel A, Yin Q et al. Numerical Modeling of Diesel Engine Combustion and Emissions under HCCI-Like Conditions with High Egr Levels. SAE Paper 2003-01-1087, 2003.
    [45] Cox R A, Cole J A. Chemical Aspects of the Autoignition of Hydrocarbon-Air Mixtures. Combustion and Flame, 1985, 60(2): 109-123.
    [46] Hu H, Keck J C. Autoignition of Adiabatically Compressed Combustible Gas Mixtures. SAE Paper 872110, 1987.
    [47] Griffiths J F, Hughes K J, Schreiber M et al. A Unified Approach to the Reduced Kinetic Modeling of Alkane Combustion. Combustion and Flame, 1994,99(3-4):533-540.
    [48] Li H, Miller D L, Cemansky N P. Development of a Reduced Chemical Kinetic Model for Prediction of Preignition Reactivity and Autoignition of Primary Reference Fuels SAE Paper 960498, 1996.
    [49] Zheng J, Yang W, Miller D L et al. Prediction of Pre-Ignition Reactivity and Ignition Delay for HCCI Using a Reduced Chemical Kinetic Model. SAE Paper 2001-01-1025, 2001.
    [50] Zheng J, Yang W, Miller D L et al. A Skeletal Chemical Kinetic Model for the HCCI Combustion Process. SAE Paper 2002-01-0423, 2002.
    [51]Tanaka S,Ayala F,Keck J C.A Reduced Chemical Kinetic Model for HCCI Combustion of Primary Reference Fuels in a Rapid Compression Machine.Combustion and Flame,2003,133(4):467-481.
    [52]黄豪中,苏万华一个新的用于HCCI发动机燃烧研究的正庚烷化学反应动力学简化模型.内燃机学报,2005,23(1):43-51.
    [53]王志,帅石金,王建听.高辛烷值燃料HCCI燃烧特性的变参数研究.内燃机学报,2004,22(1):17-26.
    [54]Schreiber M,Sakak S A,Lingens A et al.A Reduced Thermokinetic Model for the Autoignition of Fuels with Variable Octane Ratings.Proceedings ofthe Combustion Institute,1994,25(1):933-940.
    [55]Bourdon A,Rymer G,blanker R.Optimization of a 5-Step Kinetic Scheme for HCCI Applications.SAE Paper 2004-01-0559,2004.
    [56]Zheng J,Miller D L,Cernansky N P.A Global Reaction Model for the HCCI Combustion Process.SAE Paper2004-01-2950,2004.
    [57]Westbrook C K,Dryer F L.Chemical Kinetics and Modeling of Combustion Processes Proceedings of the Combustion Institute,1981,18(1);765-767.
    [58]Wagner A F.The Challenges of Combustion for Chemical Theory.Proceedings of the Combustion Institute,2002,29(1):1173-1200.
    [59]Westbrook C K,Pitz W J.Detailed Kinetic Modeling of Autoignition Chemistry.SAE Paper 872107,1987.
    [60]Eng J A,Leppard W R,Sloane T M.The Effect of Di-Tertiary Butyl Peroxide(Dtbp)Addition to Gasoline on HCCI Combustion.SAE Paper 2003-01-3170,2003.
    [61]Easley W L,Agarwal A,Lavoie G A.Modeling of HCCI Combustion and Emissions Using Detailed Chemistry.SAE Paper 2001-01-1029,2001.
    [62]Jeuland N,Montagne X,Duret P.Engine and Fuel-Related Issues of Gasoline Cai (Controlled Auto Ignition)Combustion SAE Paper 2003-01 一 1856,2003.
    [63]Ogink R,Golovitchev V.Gasoline HCCI Modeling:An Engine Cycle Simulation Code with a Multi-Zone Combustion Model.SAE Paper 2002-01-1745,2002.
    [64]Nakano M,Mandokoro Y,Kubo S et al.Effects of Exhaust Gas Recirculation in Homogeneous Compression Ignition Engines.International Journal of Engine Research,2000,I(3):269-279.
    [65]Naik C V,Pitz W J,Sjtiberg M et al.Detailed Chemical Kinetic Modeling of Surrogate Fuels for Gasoline and Application to an HCCI Engine.Proceedings of the Joint Meeting of the U.S.Sections of The Combustion Institute,2005.
    [66]Gregory P.Smith D M G,Michael Frenklach,Nigel W.Moriarty,Boris Eiteneer,Mikhail Goldenberg,C.Thomas Bowman,Ronald K.Hanson,Soonho Song,William C.Gardiner,Jr.,Vitali V.Lissianski,and Zhiwei Qin.Gri-Mech 3.0.http://www.me.berkeley.edu/gri~mech/
    [67]Westbrook C K,Mizobuchi Y,Poinsot T J et al.Computational Combustion.Proceedings of the Combustion Institute,2005,30(1):125-157.
    [68]梁霞,尧命发.二甲基醚均质压燃化学动力学简化模型的研究.内燃机学报,2005,23(4):329-335.
    [69]夏必忠,傅新等.液压自由活塞发动机的能量平衡分析.内燃机工程,2002(3):76-80
    [70]C.K.Westbrook,"Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems." In Proceedings of the Combustion Institute,The Combustion Institute,Pittsburgh,PA.Invited Topical Review.vol.28,pp.1563-1577.2000.
    [71]Computational Fluid Dynamics Software STAR-CD version 3.22User Guide
    [72]Computational Fluid Dynamics Software STAR-CD version 3.15 Tutorial Manual

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700