基于线性图理论的可扩展单元复合仿真方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂的工程系统涉及多个学科领域,是由机械、液压、控制等多个子系统融合的有机整体,其性能是各学科领域技术的综合体现,如重载锻压操作机是典型的复杂机液耦合系统。针对这类多领域系统的仿真,统一的建模表达是核心问题之一。而现有的多领域统一建模方法,还存在以下不足:难以应用到矢量表达的机械系统;对于柔性体、间隙等精细模型的描述有很大限制;有的建模方法难于实现计算机程序自动建模。因此,发展和完善多领域统一建模的理论方法,对于解决复杂工程系统的整体性能仿真具有重要意义。
     图论方法是多领域统一建模方法之一,本文基于线性图建模方法,研究和发展了一种模块化的多领域建模方法——可扩展单元线性图复合仿真方法,以实现跨能量域的统一模型表达。论文对可扩展单元线性图建模的基本原则、拓扑结构的封装和标准化组件的定义等方面进行研究。建立了通过端口连接,将单元线性图拼装成系统整体线性图模型的复合建模方法。借助Modelica语言开发了标准化组件库,利用Dymola平台进行求解计算。本文采用可扩展单元线性图统一表达了机械刚柔体动力学、含间隙机械动力学、机液耦合系统的仿真模型,并在重载锻压操作机的仿真计算中得以应用。
     论文的主要研究成果与特色如下:
     (1)将传统线性图理论与面向对象、模块化封装技术相结合,研究建立可扩展单元线性图模型,并且基于该模型实现复合建模方法:通过单元拓扑矩阵与变量矩阵的运算,自动获取组件的单元方程;再由连接方程联立所有单元方程,并通过耦合组件的方程实现跨学科域能量的交互,以形成整个多领域系统的状态方程。
     (2)定义了转动矢量边线,使得机械转动与平动合并在同一个单元线性图中进行分析,从而简化建模过程。针对运动副组件的模块化,提出了机构功能点、开口边线、自封闭边线等概念,对传统线性图的工具元素进行了扩充;依据复杂机械组合件的独立性,把它们作为整体建立独立的模块,以取代传统环境中的基本元件连接建模。
     (3)将线性图方法应用到间隙、含柔性构件的机构动力学分析建模中。引入间隙矢量边线以及与间隙相关的机构功能点,并结合的Dubowsky二状态机构间隙模型,创建含间隙机构的复合单元模型;通过定义柔性位移矢量边线、柔性转角矢量边线,以及运用牛顿欧拉方程和三次曲线拟合方法,分析表达了柔性组件的复合单元模型。
     (4)定义了液压端口、液压功能点与液压矢量边线等图论要素,创建了液压组件的可扩展单元线性图,以及液压单元拓扑矩阵,并着重以图解形式表达了机液耦合系统,从而成功地把线性图建模理论拓展到含有复杂平面机构的机液系统。
     (5)针对锻造操作机的结构和作业特点,运用可扩展单元线性图方法建立了该系统的复合模型,通过仿真计算模拟了操作机锻造顺应过程的受载状况,揭示了操作机缓冲锻件变形冲击载荷的作用规律。
     理论分析和应用研表明,本文提出的基于可扩展单元线性图模型的复合建模方法在多领域统一建模理论上取得了一些进展,扩展了应用范围,提高了建模效率,为复杂的多领域系统整体性能仿真提供了有效的建模方法和工具。
The complicated engineering system will be involved in the multidiscipline fileds, including mechanical, hydraulic, and controlling system, etc., and is intergreted into an organic whole with those subsystems. Then the characteries of such system should be realized with the technologies belonged to every discipline field, i.e., the heaven forging manipulator is a typical mechano-hydraulic coupling system. It is a kernel question to realize modelling with an unified tool for simulating multidiscipline system. However, there are three main disadvantages in the achieved approaches of unified modelling now, and they are follows: it is difficult to express the mechanical multibody system described with vector variables; the moldeling range is limited in a large extent, such as joint clearences, flexible bar, etc. specific mold; some unified methods could not be realized automatically by computer.
     Therefore, the development and complement of unified modelling method is a beneficial topic for simulating the whole functions of multidisciplinary system. Graph theory is one of the unified modelling methods. Based on the traditional linear graph theory, the paper proposed the Extensible Elementary Linear Graph method (EELG), which could realize composable simulation for multidiscipline system, and perform inter-energy domain expression in a unified way. We focused on the research of modelling rules, encapsulating topology, and standardizing multidisciplinary components, etc. By connecting the modules’port successively, the system linear graph will be obtained by assemblizing modules’elementary linear graphs. Some librarys of standard multidisciplinary components were developed with Modelica lauguage, and then the system equations will be solved on Dymola platform. With EELG method, it can be simulated that the system can include mechanical rigid and flexible dynamics, joint clearences dynamics, mechano-hydraulic coupling analysis, and so on.
     The main thesis research results and characteristics are as follows:
     (1) Combining the conventional linear graph theory with the technologies of modularization, encapsulation and object-oriented, we researched the extensible elementary linear graph and composable modeling based on the former. In the EELG framework, the component-level dynamic equations would be automatically generated by matrixes operation of topology matrixes and vector variables. Furthermore, the connection of variables between two components could be created by the relational expressions of linking two ports, and the inter-energy transformation can be realized by coupling components. Then the sate equations of the whole multidisciplinary system could be formed by collecting these terminal equations.
     (2) By defining the rotation vector in modelling of mechanical members, one can analyze rotational and translational motion in a same elementary linear graph, and then both of the modelling process and fainal results became simpler. For kinematic pairs modularizing, the kinematic function vertices, opening edges and self-closed edges were introduced to the elementary linear graph, and enrich the symbols of the linear graph theory. The various combinations consisted of mechanical members were dealt with as a whole module separativly, instead of being assembled with many basic modules belonged to conventional package.
     (3) We extended the linear graph theory to the dynamic analysis of kinematic clearances and flexible beams. With firstly introdcing clearance vectors edges and the kinematic function vertices related to clearance, we combined it with the Dubowsky classical models in two state motions, and created the elementary composable model of kinematic clearances. By originally defining the elastic rotational vectors edges, elastic transational vectors edges, we adopted Newton-Euler equations and cubic polynomial fitting curve, and analyzed the elastic component for expressing elementary composable model.
     (4) With the definition of hydraulic ports, hydraulic function points, and hydraulic vectors edges, we established the elementary encapsulation linear graph of hydraulic members, and elementary topology vectors. We also solved the key issue of mechano-hydraulic coupling in the form of linear graph. Finally, we successfully applied the linear graph theory to mechano-hydraulic systems, which are the association of planar mechanism in rotation, general motion, or translation and hydraulic devices.
     (5) According to the structure and working, we created the composable model for heaven forging manipulator with EELG method. By simulating the load condition in forging process, the relation of manipulator acting and deformation shock would be obtained.
     By summarizing theorical analysis and application, it is validated that the proposed approach of the extensible elementary linear graph made some achievements in multidisciplinary composable simulation. And then the modelling range was enlarged, and the simulating efficient was improved. So the effective method and tool were provided for simulating multidisciplinary system.
引文
[1] Xiong, G.L., Chen, X.B., Guo, B., Co-simulation technology for complex produet design. System Modelling & Simulation, 2002, l (1): 75-84.
    [2] Pecheux, F., Lallement, C., Vachoux, A., VHDL-AMS and Verilog-AMS as alternative hardware description languages for efficient modelling of multidiscipline systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2005, 24(2): 204-224
    [3] Aubert, V., Garcia-Sabiro, S., VHDL–AMS: an unified language to describe multi-domain, mixed-signal designs, mechatronic applications. Proceedings of FDL 1999: 2nd Forum on Design Languages, France, 1999.
    [4] Broenink, J.F., 20-sim software for hierarchical bond-graph/block-diagram models. Simulation Practice and Theory. 1999, 7(5): 481-492.
    [5]张和明,熊光楞.基于Web的多学科协同设计与仿真平台及其关键技术.计算机集成制造系统CIMS. 2003, 9(8): 704 - 709.
    [6]贺建军.复杂机电系统机电耦合分析与解耦控制技术, [博士学位论文].长沙:中南大学. 2004.
    [7]赵轶,张百海.基于键图的电机伺服系统的建模与仿真.系统仿真学报. 2005, 17(6): 1509-1511.
    [8]王艾伦,钟掘.复杂机电系统的全局耦合建模方法及仿真研究.机械工程学报. 2003, 39(4): 1-5.
    [9]王中双.键合图理论及其在系统动力学中的应用, [博士学位论文].哈尔滨:工程技术大学, 2000.
    [10] Van, A.J., Breedveld, P., Modelling of physical systems for the design and control of mechatronic systems. Annual Reviews in Control, 2003, 27 (1): 87-117.
    [11] Karnopp, D.C., Margolis D.L., Rosenberg R.C., System Dynamics a Unified Approach, 2nd Edn, NewYork: Wiley-Interscience, 1990.
    [12] Moojin, K., Wonky, M., Daesung B., et al. Dynamic simulation of electromechanical robotic systems driven by D.C. motors. Robotica. 2004, 22(5): 523-531.
    [13] Rideout, D.G., Louca, L.S., Stein, J.L., System partitioning and physical-domain model reduction through assessment of bond graph junction structure. Proceedings of. IMAACA’04, Bond Graph Techniques for Modelling Dynamic Systems, Genoa, Italy, 2004.
    [14]杨其全.面向功率键合图的通用仿真软件的开发, [硕士学位论文].大连:大连铁道学院. 2002.
    [15]万昌江.组件型数字化样机多层次协同建模理论方法及应用研究. [博士学位论文].杭州:浙江大学. 2005.
    [16]陈晓波,熊光楞,柴旭东.仿真在复杂产品设计中的应用及面临的挑战.系统仿真学报. 2002, 14(8):1034-1039.
    [17]郭斌,熊光楞,陈晓波.支持复杂产品设计的协同仿真平台研究.机械与电子. 2002, 4(6): 26-28.
    [18]于涛.面向对象的多领域复杂机电系统键合图建模和仿真的研究, [博士学位论文].北京:北京机电研究所,机械科学研究院. 2006.
    [19]李韶华,杨绍普,李皓玉.基于ADAMS-MATLAB联合仿真的汽车悬架半主动控制.系统仿真学报. 2007, 19(10): 2304-2307.
    [20]邢科礼,冯玉,金侠杰等.基于AMESim/Matlab的电液伺服控制系统的仿真研究.机床与液压, 2004, 10 (7): 57-58.
    [21] Sinha, R., Liang, V.C., Paredis, C.J.J., et al., Modelling and simulation methods for design of engineering systems. ASEM Journal of Computing and Information Science in Engineering, 2001, 1(1): 84-91.
    [22] Brück, D., Elmqvist, H., Mattsson, S., Dymola for multi-engineering modelling and simulation. Proceedings of the Second International Modelica Conference, The Modelica Association, Oberpfaffenhofen, Germany, 2002.
    [23] Elmqvist, H., Mattsson, S.E., Otter, M., Modelica-The new object-oriented modelling Language. Proceedings of the 12th European Simulation Multiconference (ESM’98), The Society for Computer Simulation (SCS), Manchester, UK, 1998.
    [24] Elmqvist, H., Sven, E., Modelica-A Language for physical system modelling, visualization and interaction. Proceedings of the IEEE International Symposium on Computer-Aided Control System Design, Kohala Coast, HI, 1999.
    [25]陈晓波,熊光楞,郭斌等.基于HLA的多领域建模研究.系统仿真学报. 2003, 15(11):1 537-1 542.
    [26] Topcu, O., Oguztuzun, H., Developing an HLA-based naval maneuvering simulation, Naval Engineers Journal, 2005, 117(1): 23-40.
    [27]陈晓波.面向复杂产品设计的协同仿真关键技术研究, [博士学位论文].北京:清华大学. 2003.
    [28]李伯虎,柴旭东,毛媛.现代仿真技术发展中的两个热点-ADS与SBA.系统仿真学报. 2001, 13(l):101-105.
    [29] Paynter, H.M., Analysis and Design of Engineering Systems, MIP Press, Cambridge, Mass, 1961.
    [30] Rosenberg, R.C., Karnopp, D.C., Introduction to Physical System Dynamics, McGraw-Hill, New York, 1983.
    [31] Karnopp, D.C., Margolie D., RosenBerg, R.C., Systems Dynamics:A Unified Approach, 2nd Edn, John Wiley and Sons (editors), New York, 1990.
    [32] Borutzky, W., Cellier, F.E., Tearingalgebraic loops in bond graphs. Transactions of the Society for Computer Simulation, 1996, 13(2):102-115.
    [33] Kamel, A.E., Vittecoq, E., Simulation of dynamical systems using the Multibody approach and Bond Graphs: A comparative study. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Orlando, FL, 1997.
    [34] Jang, J., Changsoo, H., Proposition of a modelling method for constrained mechanical systems based on the Vector bond graph. Journal of the Franklin Institute, 1998, 335(3): 451-469
    [35] Naamane, A., Giambiasi, N., Damiba, A., Generalized discrete event simulation of bond graph. Simulation. 2001, 77 (1-2): 4-22.
    [36]李旭宇.复杂机电耦合系统的并行设计方法研究, [博士学位论文],中南大学, 2004.
    [37] Branin, F.H., The Algebraic-Topological Basis for Network Analogies and the VectorCalculus, Symposium on Generalized Networks, Brooklyn, New York, 1966.
    [38] Diestel, R., Graph Theory, electronic editon, Springer-verlag, New York, 2000.
    [39]王树禾.图论.北京:科学出版社. 2004.2.
    [40]陈惠开.应用图论.北京:人民邮电出版社. 1982.
    [41] Roe, P.H. (Ed.), Networks and Systems, Addison-Wesley, 1966.
    [42] Koenig, H., Tokad, Y., Kesavan, H., Analysis of Discrete Physical Systems, McGraw-Hill, 1967.
    [43] Andrew, G., Kesavan, H.K., The vector-network model: a new approach to vector dynamics. Mechanism and Machine Theory, 1975, 10(1): 57-75.
    [44] Li, T.W., Dynamics of rigid body systems: A vector-network approach. [M.A.Sc. Dissertation], University of Waterloo, Canada, 1985.
    [45] Wittenburg, J., Wolz, U., MESA VERDE: a symbolic program for nonlinear articulated- rigid-body dynamics. Proceedings of ASME Design Engineering Conference, Cincinnati, O.H., 1985.
    [46] Sheth, P.N., Uicker, J.J., IMP (Integrated Mechanisms Program), a computer- aided design analysis system for mechanisms and linkage. Proceedings of ASME Pap 71-Vibr-80 for meeting, 1971.
    [47] Sheth, P.N., Uicker, J.J.,Generalized symbolic notation for mechanisms. Journal Engineer Industry Transaction ASME, 1971, 93 Ser B (1): 102-112
    [48] Baciu, G., Kesavan H.K., From particle-mass to multibody systems graph-theoretic modelling. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans. 1997, 27(2): 1299-1310.
    [49] McPhee, J., Ishac, M.G., Andrews, G.C., Wittenburg’s formulation of multibody dynamics equations from a graph-theoretic perspective. Mechanism and Machine Theory, 1996, 31(2):201-213.
    [50] McPhee, J., On the use of linear graph theory in multibody system dynamics. Nonlinear Dynam,. 1996, 9(1-2): 73-90.
    [51] McPhee, J., Automatic generation of motion equations for planar mechanical systems using the new set of“Branch Coordinates”. Mechanism and Machine Theory, 1998, 33(6): 805-823.
    [52] McPhee, J., Shi, P.F., Piedboeuf, J.C., Dynamics of multibody systems using virtual work and symbolic programming. Mathematical and Computer Modelling of Dynamical Systems, 2002, 8(2): 137-155.
    [53] McPhee, J., Schmike, C., Redmond, S., Dynamic modelling of Mechatronic Multibody Systems with Symbolic Computing and Linear Graph Theory. Mathemtical and Computer Modelling of Dynamical System, 2004, 3(1): 1-23.
    [54] Huang, T., Whitehouse, D.J., The use of graph theory to formulate the linear dynamic characteristics of rigid body systems. Proceedings of the Royal Society-Mathematical, Physical and Engineering Sciences (Series A), 1997, 453(1961): 1299-1310.
    [55] Shi, P.F., Flexible multibody dynamics: a new approach using virtual work and graph theory. [PhD Dissertation], Systems Design Engineering, University of Waterloo, Waterloo, 1998.
    [56] Shi, P.F., McPhee, J., Heppler, G.R., A Deformation Field for Euler-Bernoulli Beams with Applications to Flexible Multibody Dynamics. Multibody System Dynamics, 1998, 2001, 5(1): 79-104.
    [57] Han, L., Paredis, C.J.J., Khosla, P.K., Object-Oriented Libraries of Physical Components in Simulation and Design. Proceedings of 2001 Summer Computer Simulation Conference, Orlando, FL, 2001.
    [58] Diaz-Calderon, A., Paredis, C.J.J., Khosla, P.K., Automatic generation of system-level dynamic equations for mechatronic systems. Computer-Aided Design, 2000, 32(5-6): 339-354.
    [59] Diaz-Calderon, A., Paredis, C.J.J., Sinha, R., et. al,, Composable models for simulation- based design. Engineering with Computers. 2001, 17 (2): 112-128.
    [60] Diaz-Calderon, A., Paredis C.J.J., Khosla, P.K., On the synthesis of the system graph for 3D mechanics. Proceedings of 18th the American Control Conference, San Diego, CA, 1999.
    [61]闵春平,窦文华.机电一体化设计基于VHDL-AMS的多刚体系统建模与仿真方法.电子学报. 2002, 30(11): 1685-1689.
    [62]闵春平,窦文华.机电一体化系统多能量域集成产品建模与仿真技术.系统仿真学报. 2002, 14(6): 681-685.
    [63]闵春平.基于本体的跨领域虚拟样机技术研究, [博士学位论文].长沙:国防科技大学. 2003.
    [64]朴明伟.面向结构的多刚体动力学系统线图.系统仿真学报. 2003, 15(10): 1402-1404.
    [65] Rowell, D. (Ed.), Linear Graph Modelling: Two-Port Energy Transducing Elements, Massachusetts Institute of Technology Department of Mechanical Engineering, 2004.
    [66] Rowell, D. (Ed.), Linear Graph Modelling One-Port Elements, Massachusetts Institute of Technology Department of Mechanical Engineering, 2004.
    [67] Rowell, D. (Ed.), Linear Graph Modelling: State Equation Formulation, Massachusetts Institute of Technology Department of Mechanical Engineering, 2004.
    [68] Schmitke, C., McPhee, J., Forming Equivalent Subsystem Components to Facilitate the Modelling of Mechatronic Multibody Systems. Multibody System Dynamics, 2005, 14(1): 81–109.
    [69] Schmitke, C., McPhee, J., Effective use of subsystem models in multibody and mechatronic system dynamics. International Journal for Multiscale Computational Engineering, 2003, 1(2): 139–159.
    [70] Anderson, M., Object-oriented modelling and simulation of hybrid systems, [PhD Dissertation], Department of Automatic Control, Lund Institute of Technology, Lund, Sweden, 1994.
    [71]黄华.多领域统一建模语言分析器研究与实现, [硕士学位论文].武汉:华中科技大学. 2005.
    [72] Trent, H.M., Isomorphisms between oriented linear graphs and lumped physical systems. Journal of the Acoustic Society of America, 1955, 27(1): 500–527.
    [73] Auslander, L., Trent, H.M., Incidence matrices and linear graphs. Journal of Mathematics and Mechanics, 1959, 8(2): 827–835.
    [74] Auslander, L., Trent, H.M., On the realization of a linear graph given its algebraic specification, Journal of the Acoustical Society of America, 1961, 33(35): 1183-1192.
    [75] Williams, T.W., Maxwell L.M., Decomposition of a graph and the introduction of a new class of subgraphs, SIAM Journal on Applied Mathematics, 1971, 20 (3): 385-389
    [76]陈树柏.网络图及其应用.北京:科学出版社. 1982.
    [77]王树禾.图论及其算法.合肥:中国科学技术大学. 1990.10.
    [78]兰家隆.刘军.应用图论及算法,成都:电子科技大学出版社. 1995.
    [79]肖位枢.图论及其算法,北京:航空工业出版社. 1993.
    [80]孙亲锡,谭丹.电路理论——电阻性网络.武汉:华中科技大学出版社. 2002.
    [81]王鹏,李伯虎,柴旭东等基于仿真组件技术的CGF系统体系结构和实现.系统仿真学报. 2007, 19(5): 1041-1044.
    [82] Visser, W.P.J., Broomhead M.J., A Generic Object-Oriented Gas Turbine Simulation Environment. Proceedings of ASME Turbo Expo 2000, Munich, Germany, 2000.
    [83]徐鲁兵.面向对象的航空发动机性能仿真系统设计与实现, [硕士学位论文].西安:西北工业大学. 2007.
    [84]童时中.模块化原理设计方法及应用.北京:中国标准出版社, 2000.
    [85] JimLedin著.焦宗夏,王少萍译.仿真工程.北京:机械工业出版社, 2003.9.
    [86]肖田元,张燕云等.系统仿真导论.北京:清华大学出版社, 2000.7.
    [87] Sinha, R., Paredis, C.J.J., Gupta, S.K., Khosla, P.K., Capturing articulation in assemblies from component geometry. Proceedings of ASME Design Engineering Technical Conference, Atlanta, GA, 1998.
    [88] Sinha, R., Paredis, C.J.J., Khosla, P.K., Kinematics Support for Design and Simulation of Mechatronic Systems, Proceedings of the IFIP TC5 WG5.2 Fourth Workshop on Knowledge Intensive CAD to Knowledge Intensive Engineering, ISBN:0-7923-7619-6, 2001.
    [89] Sinha, R., Paredis, C.J.J., Khosla, P.K., Integration of Mechanical CAD and Behavioral Modelling. Proceedings of IEEE/ACM Workshop on Behavioral Modelling and Simulation, Orlando, FL, USA, 2000.
    [90] Diaz-Calderon, A., Paredis, C.J.J., Khosla, P.K., Reconfigurable models: a modelling paradigm to support simulation-based design. Proceedings of 2000 Summer Computer Simulation Conference, Vancouver, BC, Canada, 2000.
    [91] Ozawa, M., Biswas, G., Zhu, L., Task Distribution and Lumped Parameter Modelling in Multi-Disciplinary Product Development. Proceedings of ASME Design Engineering Technical Conferences, Las Vegas, Nevada, 1999.
    [92] Kloas, M., Friesen, V., Simons, M., Smile: A Simulation Environment for Energy Systems. Proceedings of 5th International IMACS-Symposium on Systems Analysis and Simulation, Berlin, Germany, 1995.
    [93]钟掘,陈先霖.复杂机电系统耦合与解耦设计——现代机电系统设计理论的探讨.中国机械工程. 1999, 10(9): 1051-1055.
    [94] Durfee, W.K., Wall, W.B., Rowell, D., et al., Interactive software for dynamic system modelling using linear graphs, IEEE Control System Magzine, 1991, 11(4): 60–66.
    [95] Muegge, B., Graph-theoretic modelling and simulation of planar mechatronic systems, [M.A.Sc Dissertation], University of Waterloo, Systems Design Engineering, 1996.
    [96]刘延柱,洪嘉振,杨海兴.多刚体系统动力学.北京:高等教育出版社. 1989.
    [97]张策.机械动力学.北京:高等教育出版社, 2000.
    [98] Schiehlen, W., Multibody system dynamics: roots and perspectives. Multibody System Dynamics, 1997, 1 (2): 149-188
    [99] Sharf, I., Geometric Stiffening in multibody dynamics formulations. Journal of Guidance, Control, and Dynamics, 1995, 18(4):882-890.
    [100]宗志坚,费修莹,郑文.机械系统拓扑结构的通用表达模型设计.机械科学与技术.2000, 19(4): 531-535.
    [101]姚建初.约束机械系统动力学分析建模研究与系统实现, [硕士学位论文].武汉:华中科技大学. 2003.
    [102] Yoo, W.S., Kim, K.N., Kim, H.W., Developments of multibody system dynamics: computer simulations and experiments. Multibody System Dynamics, 2007, 18 (1): 35-58.
    [103]齐培正.基于图论的多体动力学仿真, [硕士学位论文].吉林:吉林大学. 2006.
    [104]尹冠生.理论力学.西安:西北工业大学出版社. 2000.
    [105]杨廷力.机械系统基本理论.北京:机械工业出版社.1996.
    [106]杨基厚.机构运动学与动力学.北京:机械工业出版社. 1987.
    [107] Haines, R.S., Survey: 2-dimensional motion and impact at revolute joints, Mechanism and Machine Theory, 1980, 15(5): 361–370.
    [108]张佳楫.含间隙机构运动副动力学模型研究, [硕士学位论文],西安:西安电子科技大学. 2006.
    [109] Dubowsky, S., Freudenstein F., Dynamic analysis of mechanical systems with clearance, Part 1: Format ion of dynamic model. ASME Journal Engineer Industry, 1971, 93B: 305-309.
    [110] Dubowsky, S., Freudenstein F., Dynamic analysis of mechanical systems with clearance, Part 2: Dynamic response. ASME Journal Engineer Industry, 1971, 93B: 310–316.
    [111] Winfrey, R.C., Anderson R.V., Gnilka C.W., Analysis of elastic machinery with clearance, Transaction ASME Journal Engineer Industry, 1973, 95B: 695-703.
    [112] Deck, J.F., Dubowsky S., On the limitations of predictions of the dynamic response of machines with clearance connections. Journal Mechanical Design, 1994, 116(3): 833-841.
    [113]靳春梅,邱阳,等.基于FMD理论的间隙机构动力学研究.机械工程学报.2001, 7(37): 18–22.
    [114]贾晓红,季林红,金德闻,等.新型三球销移动副的间隙模型研究.清华大学学报. 2000, 7(40): 125-128.
    [115] Garciaorden, J.C., Analysis of joint clearances in multibody systems. Multibody System Dynamics, 2005, 13(4): 401-420.
    [116] Ravn, P., A continuous analysis method for planar multibody systems with joint clearance. Multibody System Dynamics, 1998, 2(1): 1-24.
    [117] Xu, X.R., Chung, W.J., Choi, Y.H., New method for the dynamic analysis of robot manipulators with flexible links. Advances in Modelling and Analysis B, 2000, 43(1-2): 1-15.
    [118] Gasparetto, A., On the modelling of flexible-link planar mechanisms: Experimental validation of an accurate dynamic model. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2004, 126 (2): 365-375.
    [119] Mordfin, T.G., Tadikonda, S.S.K., Truth models for articulating flexible multibody dynamic systems. Journal of Guidance, Control, and Dynamics, 2000, 23 (5): 805-811.
    [120] Erdman, A.G., Sandor, G.N., Oakberg, R.G., A general method for kineto-elastodynamic analysis of mechanisms. ASME Journal Engineer Industry, 1972, 94(4): 1193-1205.
    [121] Huang, Y., Lee, C.S.G., Generalization of Newton-Euler formulations of dynamic equations to nonrigid manipulators. ASME Journal, Dynamic System, Measure, Control. 1988, 110(3), 308-315.
    [122]阎绍泽,季林红,范晋伟.柔性机械系统动力学的变形耦合方法.机械工程学报. 2001,8(37): 1-4.
    [123]李哲.含间隙弹性平面连杆机构动力学分析.机械工程学报. 1994, 10(30):134-139.
    [124]赵玉成,王跃社,等.柔性曲柄摇杆机构的动力学分析及实验研究.西安交通大学学报. 2005, 7(39): 710–714.
    [125] Jasinski, P.W., Lee, H.C., Sandor G.N., Stability and steady state vibrations in a high-speed slider-crank mechanism. ASME Journal Application Mechanism, 1970, 37(4): 1069-1076.
    [126]王中双,陆念力,等.平面柔性多体系统完全动力学问题的回转键合图法.中国机械工程. 2005,12(16): 2093- 2097.
    [127]李壮云.液压元件与系统.北京:机械工业出版社. 2005.
    [128]沈千里.工程机械液压系统动力匹配及控制技术研究, [硕士学位论文].吉林:吉林大学. 2004.
    [129]李永堂.液压系统建模与仿真.北京:冶金工业出版社. 2003.
    [130]蔡廷文.液压系统现代建模方法.北京:中国标准出版社. 2002.
    [131]刘海丽.基于AMESim的液压系统建模与仿真技术研究, [硕士学位论文].长沙:西北工业大学. 2006.
    [132] Vugdelija, M., Stojanovic, Z., Determination of a time step interval in hydraulic systems, transients simulation. Advances in Engineering Software. 2000, 31 (2): 143-148
    [133]贺利乐.建设机械液压与液力传动,北京:机械工业出版社. 2004.
    [134]周盛.液压自由活塞发动机运动特性及其数字阀研究, [博士学位论文].杭州:浙江大学. 2006.
    [135]孙林.基于键合图理论的气动系统仿真软件的研究, [硕士学位论文].哈尔滨:哈尔滨工业大学. 1998.
    [136]王士刚.液压系统可视化动态建模技术及其软件实现方法研究, [博士学位论文].大连:大连理工大学. 2001.
    [137] Johansson, B., Modelling of multi-domain systems: model representation and information management. Licentiate Thesis No. 895, ISBN: 91-7373-072-6. Link?ping Institute of Technology, Sweden, 2001.
    [138]雷光芳,高雨荣.液压系统建模与仿真.北京:冶金工业出版社. 2003.
    [139]李华聪.液压仿真软件ZJUSIM的开发与参数优化研究, [硕士学位论文].长沙:西北工业大学. 2006.
    [140]姚世平.多态连续无级变速的液压机械传动系统设计研究, [硕士学位论文].北京:北京理工大学. 1985.
    [141] Elmqvist, H., Mattsson, S.E., Otter M., Modelica: the new object-oriented modelling language. Proceedings of the 12th European Simulation Multiconference, Manchester, UK, 1998.
    [142] Modelica Association, Modelica-A unified object-oriented language for physical systems modelling. Language Specification Version 2.1, 2004.
    [143] Broenink, J.F., Object-oriented modelling with bond graphs and modelica. Proceedings of ICBGM99, International Conference on Bond Graph Modelling and Simulation, San Francisco, CA, 1999.
    [144]刘敏,基于Modelica的多领域物理系统建模平台的研究与开发,硕士学位论文,华中理工大学,2005.
    [145] Modelica Association, Modelica specification, version 2.0. http://www.modelica.org/doc. shtml.
    [146] Modelica Association, Modelica Libraries, http://www.modelica.org/libraries.shtml.
    [147] Fritzson, P., Engelson, V., Gunnarsson, J., An integrated Modelica environment for modelling, documentation and simulation. Proceedings of Summer Computer Simulation Conference '98, Reno, Nevada, USA, 1998.
    [148] Fritzson, P., Bunus, P., Modelica-A general object-oriented language for continuous and discrete-event system modelling and simulation. http://www.ida.liu.se/labs/pelab/modelica/ IEEE-paper-mar26-final.pdf.
    [149] Michael, M.T., Introduction to Physical Modelling with Modelica, Kluwer Academic Publishers, 2001.
    [150] Elmqvist, H., Brück, D., Otter, M., Dymola user’s manual.dynasim AB, Research Park Ideon, Lund, Sweden, 1996.
    [151] Astrom, K.J., Elmqvist, H., Mattsson, S.E., Evolution of continuous-time modelling and simulation. Proceedings of the 12th European Simulation Multi-conference (ESM'98), Manchester, UK, 1998.
    [152]任志彬,孟光,李防战,等.基于Dymola的航空发动机尾喷管建模与仿真.计算机仿真. 2005, 18(4): 40-44.
    [153] Soejima, S., Examples of usage and the spread of Dymola within Toyota. Proceedings of Modelica Workshop 2000 Proceedings, Lund, Sweden, 2000.
    [154] Brück, D., Elmqvist, H., Mattsson, S., Dymola for multi-engineering modelling and simulation. Proceedings of 2nd International Modelica Conference, 2002.
    [155]万胜狄.锻造机械化与自动化.北京:机械工业出版社. 1983.
    [156] Raibert, M., Craig, J., Hybrid position/force control of manipulators. ASME Journal Dynamic Systems, Measurement, and Control, 1981, 102(2): 126-133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700