城市客车油液混合动力系统匹配及控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当代社会,能源危机及环境污染越来越成为人们关注的话题,汽车是石油的主要消耗源同时其尾气排放也是城市空气的主要污染源。因此,当我们考虑要认真对待能源危机及环境污染问题时,显然需要从汽车的性能及使用方面寻求方案。此外,在大中城市中,交通拥堵现象日益严重,人们在蠕动的车流中消耗着时间,伴随着焦躁的心情,严重影响了人们的工作效率和生活品质。
     生活水平的提高把轿车代入了越来越多的家庭,同时也使得上述问题日益严重。现阶段,一个合理的解决以上问题的方案就是发展公共交通,鼓励大家乘坐承载效率更高的公交车辆出行。
     公交车辆因其运营需要,在行进过程中会频繁起停,公交司机作为专职司机需要长时间进行驾驶操作。且公交车辆乘客较多。故从降低驾驶疲劳,提高行车安全以及舒适性的角度出发,显然自动变速器是公交车辆动力传动系统的合理选择。自动变速器的换挡策略是指自动变速器的挡位在汽车行驶过程中,根据换挡参数的变化而执行的挡位变化的规律。换挡规律的制定是自动变速器开发过程的关键环节,它的好坏,直接影响到汽车的动力性、经济性,通过性,排放性,舒适性以及对环境的适应性。换挡规律的制定要根据具体情况来决定所采用的换挡策略,比如对换挡品质的要求和能够获得的车辆行驶参数。换挡策略可分为单参数、两参数和三参数换挡。按照汽车的加速性能或油耗表现,又可分为动力性换挡规律和经济性换挡规律。本文对在公交车辆中应用的自动变速器的换挡策略进行研究,提出换挡策略并通过建模仿真进行验证。
     站点停靠、等红绿灯使公交车辆的行驶过程含有较多的起步、加速、制动、减速等行驶工况,在车辆传动系统中增加蓄能元件以吸收制动减速时所消耗的动能,并在车辆起步加速时释放该能量以辅助车辆起步加速。这样既可提高车辆效率,降低燃油消耗,又可提高车辆的动力性能。因此本文提出在公交车辆的动力传动系统中增设液压蓄能元件,并通过理论分析计算获得合理参数,再通过建模仿真验证其性能。
     本课题结合企业项目“XQ6102SH2城市客车自动变速器开发试验研究”进行,该项目为一汽(无锡)客车厂为其城市客车XQ6102SH2搭载自主研发的四档自动变速器,包括配套的软硬件开发及整车试验研究。论文主要研究内容如下:
     (1)分析并建立了包括发动机,液力变矩器,自动变速器等模型在内的整车动力传动系统数学模型。
     (2)分析并建立了液压蓄能装置数学模型。
     (3)对换挡策略的研究:按照所选定的换挡参数数量,换挡策略可分为单参数、两参数和三参数换挡。按照汽车的加速性能或油耗表现,又可分为动力性换挡规律和经济性换挡规律。本文分析了自动换挡规律,在现有的几种典型换挡规律的基础上,通过对发动机特性参数的试验分析,提出将发动机负荷率作为综合性换挡规律的换挡参数。根据公交车辆运行工况特点,制定适合本试验车的最佳动力性和最佳经济性换挡规律,提出了基于经济动力性因数的综合性换挡规律。同时分析了特殊工况下公交车应采用的换挡策略。
     (4)建立了基于matlab/simulink的整车仿真模型并对换挡控制策略进行了仿真研究。对换挡控制策略的仿真结果表明所提出的基于经济动力性因数的综合性换挡控制策略具有更好的经济、动力性能。
     (5)对液力变矩器闭锁控制的研究:液力变矩器是车辆中理想的起步元件,汽车起步时液力变矩器较大的变矩比可帮助汽车平稳起步。并且,利用其液力传递的特性将发动机与变速器隔离,从而便于自动变速器自动换挡。但是,液力传递的效率要远低于机械传递,因此现代车辆上应用的液力变矩器都装有闭锁离合器用以在车辆起步完成后达到一定速度时将液力变矩器的输入泵轮和输出涡轮锁止为一体,变液力传动为机械传动从而提高其传动效率。本文针对所研究的公交车辆提出了液力变矩器闭锁控制策略。应用Matlab/Simulink建立的整车仿真模型对典型工况下液力变矩器的闭锁控制进行了仿真研究,仿真结果表明该控制策略可以很好的执行液力变矩器闭锁操作,提高整车燃油经济性能。
     (6)应用AMESim软件建立了并联式液压混合动力车辆模型,通过典型工况的仿真研究对液压蓄能装置的主要结构参数进行了优选。
     (7)设计了自动变速器电子控制系统,开发了自动变速器控制软件。基于FreescaleMC9s12XDT256单片机为自动变速器及液压蓄能器设计了电子控制单元。首先分析了电子控制单元的具体设计要求,然后依据设计要求设计开发了电子控制单元,分别介绍了电子控制单元软硬件设计要点。
     本文的主要创新之处在于首次提出应用发动机电子控制单元广播到CAN总线上的实际发动机百分转矩作为表征发动机负荷率的参数,并依据此参数制定了基于经济动力性因数的综合性换挡规律,从而能够更好的协调整车的经济性能与动力性能,尤其适合于像公交车这类载荷变化范围大,且变化频繁的车辆。
Nowadays, the energy crisis and environmental pollution has increasingly become the subject of attention, the car is a source of oil consumption, at the same time it's emissions are urban air pollution sources.Therefore, when we consider the energy crisis and environmental pollution problems to be taken seriously, it is clear that we need to seek the solution from the performance and the use of motor vehicles. In addition, in the large and medium-sized cities,traffic congestion is worsening day by day, people waste their life in creeping traffic, along with the mood of anxiety, it's a serious impact on people's work efficiency and quality of life.
     More and more families possess cars because of there improving income, and this makes the problems mentioned above more serious. At this stage, a reasonable program to solve the above problem is to develop pubilc transport, and encourage everyone to take the trip by more efficient public transport vehicles.
     Public transport vehicles because of its operational needs, and in the process of moving the frequent starts and stops, bus drivers take a long time as a chauffeur driving operation. And public transportation vehicle more passengers.Therefore, starting to reduce driver fatigue and improve driving safety and comfort point of view, obviously the automatic transmission is a reasonable choice of public transport vehicle powertrain. The automatic transmission shift strategy is the law of the automatic transmission gear the vehicle was performed according to the change of shift parameters of the gear change. The formulation of the shift schedule is a key link in the development process of the automatic transmission, it is good or bad, directly affect the car's dynamic economy, emissions, comfort, and adaptability to the environment. The shift schedule should be formulated according to the specific situation to determine the shift strategy, driving parameters such as shift quality requirements and the availability of vehicles. Shift strategy can be divided into a single parameter, the shift of two parameters and three parameters. Power Shift and economic shift schedule in accordance with the acceleration of the car or the fuel consumption performance can be divided into. Automatic transmission shift strategy in public transport vehicles to shift strategy and validated through the modeling and simulation.
     Site parking, traffic lights to make public transport the vehicle process contains more start, acceleration, braking, deceleration and other driving conditions, increase energy storage in the vehicle driveline components to absorb the kinetic energy consumed in the brake deceleration, and release the energy to assist the vehicle started to accelerate when the vehicle started to accelerate.This will not only improve vehicle efficiency, reduce fuel consumption, but also improve the dynamic performance of the vehicle. In this paper, additional bus vehicle powertrain components of the hydraulic accumulator, and through theoretical analysis and calculation for reasonable parameters, and then through the modeling and simulation to verify its performance.
     The subject combined with enterprise project "XQ6102SH2 urban bus automatic transmission development test", the project for the FAW (Wuxi) Bus plant for city buses XQ6102SH2 equipped with self-developed four-speed automatic transmission, including supporting software and hardware development and vehicle Experimental study. Paper as follows:
     (1) analysis and the establishment of a mathematical model of the vehicle powertrain including the engine, torque converter, automatic transmission model.
     (2) analysis and the establishment of the mathematical model of the hydraulic energy storage device.
     (3) shift strategy:shift in accordance with the selected number of parameters, the shift strategy can be divided into a single parameter, the shift of two parameters and three parameters. Power Shift and economic shift schedule in accordance with the acceleration of the car or the fuel consumption performance can be divided into. This paper analyzes the automatic shift schedule, on the basis of several typical shift schedule, test analysis through the characteristic parameters of the engine, the engine load rate as the shifting parameters of the shift schedule. According to the characteristics of public transport vehicles operating conditions, the development of optimum power for the test car and the best economic shift schedule, shift schedule based on the economic dynamic factor. Special conditions buses should be used to shift strategy.
     (4) the establishment of a simulation study based on the vehicle simulation model in Matlab/Simulink, and shift control strategy. Shift control strategy, simulation results show that the proposed comprehensive shift control strategy based on economic power factor has a better economy, dynamic performance.
     (5) Control of torque converter lockout:torque converter is the ideal starting components in the vehicle, the torque converter when the car started torque ratio that car a smooth start. And hydraulic transmission characteristics of the engine and transmission, isolation, and to facilitate the automatic transmission automatic transmission. However, the hydraulic efficiency of the transmission is far lower than the mechanical transmission, torque converter applications in modern vehicles are equipped with a locking clutch for the completion of the vehicle starting to reach a certain speed, the torque converter input pump wheel and the output turbine lock as a whole, variable hydraulic mechanical transmission, the transmission in order to improve its transmission efficiency.Torque converter lockout control strategy was proposed for the study of public transport vehicles., Matlab/Simulink vehicle simulation model of the typical conditions of a torque converter lockout control simulation, the simulation results show that the implementation of the control strategy can be a good torque converter locking operations, improve vehicle fuel economy performance.
     (6) Application AMESim software to establish a parallel hydraulic hybrid vehicle model, the main structural parameters of the hydraulic accumulator devices are optimized through the simulation study of the typical operating conditions.
     (7) The design of the automatic transmission electronic control system, the development of the automatic transmission control software. Based on the Freescale MC9s12XDT256 single-chip design of the electronic control unit for automatic transmission and hydraulic accumulators. First analysis of the specific design requirements of the electronic control unit, and then according to the design requirements of the design and development of the electronic control unit, electronic control unit hardware and software design features.
     The main innovation is the first proposed application of the engine electronic control unit broadcast to the CAN bus engine percentile torque as a parameter of the characterization of engine load rate, and economic momentum factor was developed based on this parameter change file rule, in order to be able to better coordination of economic performance and dynamic performance of the vehicle, especially suitable for such as bus load range, and frequent change of vehicles.
引文
[I]Harald Naunheimer, Bernd Bertsche, Joachim Ryborz, Wolfgang Novak. Automotive Transmissions Fundamentals[J]. Selection, Design, Springer,2011.[2]郑伟.HEV再生制动系统与ABS协调控制建模与仿真的研究[D].武汉理工大学硕士学位论文,2005年.[3]段幼华.混合动力轿车复式制动系统的研究[D].吉林大学硕士学位论文.2007年.[4]王鹏宇.混合动力汽车再生制动系统研究[D].吉林大学博士学位论文,2008年[5]Murphy BT, Bresie DA. Bearing loads in a vehicular flywheel battery[J]. SAE Paper 970213.[6]Kargul. Hydraulic Hybrids 101+Affordable Hybrids For A Petroleum and Carbon Constrained World. Presented to 2012 NTEA Work Truck Show—Clean Cities Coordinators,online version:www.epa.gov.[7]余志生.汽车理论(第四版)[M].机械工程出版社.2009-02.[8]江发潮,曹正清,肖春泽.发动机特性仿真研究[J].车用发动机,2006(6):18-26.[9]葛安林.车辆自动变速理论与设计[M].机械工程出版社.1993-05.[10]Lino Guzzella, Antonio Sciarretta. Vehicle Propulsion Systems Introduction to Modeling and Optimization, Second Edition,2007.[II]Pourmovahed A, Beachley NH, Fronczak FJ. Modeling of a hydraulic energy regeneration system-PartⅠ:analytical treatment. Transactions of the ASME, Journal of Dynamic Systems, Measurement, and Control 114:155-159.[12]崔功杰.工程车辆三参数最佳换挡及控制方法研究[D].长春:吉林大学.2009.[13]Kuzak.Dm, Shieds.B. K, Lee J J. Powertrain control strategy determination for computer-controlled transmissions[J]. Int.j. of Vehicle Design,1987-8(1):13-36.[14]周末.自动变速器换挡规律的研究[D].武汉:武汉理工大学,2006.[15]陈永东,电控机械式自动变速器换挡规律的研究[D].武汉:武汉理工大学,2007.[16]张金香.液力机械自动变速器的研究[D].兰州:兰州理工大学,2009.[17]仝鑫.自动变速器换挡规律及仿真[D].长春:吉林大学.2008.[18]江立飞.客车自动换挡原理研究及操控系统开发[D].大连:大连理工大学.2007.[19]葛安林,动态三参数换挡规律的研究[J], proceedings of IPC-6,1991.[20]葛安林等.动态三参数最佳换挡规律的研究[J].汽车工程,1992.[21]Ge Anlin, Jiang Jiaji, Wu Wenzhi. Research on Dynamic 3-Parameter Shift Schedule of Automatic Transmission[C].SAE paper:912488.[22]张友皇.4AT控制系统关键技术研究[D].合肥:合肥工业大学,2010.[23]张国胜,方宗德,牛秦玉等.最佳动力性换挡规律的制定与仿真研究[J].机械科学与技术,2005,7.[24]申昌禄,徐进军,周锋.汽车自动变速器换挡规律的计算[J].机械设计与制造,2004,12:15-17.[25]毕乾坤.城市公交车AMT换挡特性仿真系统的研究[D].吉林:吉林大学,2004.[26]刘文营.重型商用车电控机械式自动变速器换挡规律的研究[D].长春:吉林大学,2009.[27]朱振宇.城市公交车电控机械自动变速器换挡机构设计与换挡控制研究[D].武汉:武汉科技大学,2008.[28]The Math Works Inc. Full Product Family Help Version 6.5.1.199709(R13) Service Pack 1) [DB/OL]. www.math-works.com,2003.[29]S. Saha, T. Kosaka, N. Matsui and V. P. Sundarsingh. Regenerative Braking in a Low Power Lift Drive System.[C] 0-7803479.6/98/1998 IEEE p 827-833.[30]P. Schoeggl, etc. Virtual Optimization of Vehicle and Powertrain Parameters with Consideration of Human Factors[J].SAE Paper 2005011945.[31]史伟刚,汽车智能换挡系统的研究[D].吉林大学硕士学位论文,2003.[32]田元锁.自动变速器模糊控制系统[D].合肥:合肥工业大学.2010.[33]基于CAN1939的通信规范[Z].广西玉柴股份有限公司.2008-02.[34]SAE J1939-71:Vehicle Application Layer,2007.[35]汪志远、郑培、孙肇花等.基于MATLAB的液力机械自动变速器性能仿真[J].车辆与动力技术.2007,2.[36]张祥,杨志刚,张彦生.汽车AMT系统的Matlab/Simulink建模与仿真[J].系统仿真??学报,2007,19(14):3339-3343.[37]王正林等MATLAB/Simulink与控制系统仿真(第2版)[M].北京:电子工业出版社.2009.[38]张炳力,宋振翔,赵韩.基于Simulink的液力变矩器闭锁性能仿真[J].合肥工业大学学报,2010,9(33):1281-1284.[39]郑亚飞.轿车液力变矩器闭锁离合器动态特性研究[D].长春:吉林大学,2007.[40]许诺等.液力变矩器闭锁过程转速调节策略研究[J].工兵学报,2008,29(5):513-517.[41]付永领,祁晓野编.AMESim系统建模和仿真[M].北京航空航天大学出版社.2006年2月.[42]秦家升,游善兰.AMESim软件的特征及其应用[J].工程机械,2004,(12)[43]http://www.simwe.com/jour/prog/p001009.htm.[44]世冠工程(北京)有限公司.专家点评AMESim软件[J].航空制造技术,2008年第14期66-67.[45]Norman H. Beachley and Frank J.Fronczak. Advances in Accumulator Car Design[J].SAE International.972645.[46]Brigham Erickson, Zac Tselios,Becky Trierweiler and John Beard, Development of the MTU Automatic Shifting Manual Six Speed Transmission, SAE Paper 2006-01-0747.[47]Frank J.Fronczak,Bruce J.Holmes and Norman H. Beachley. Hydraulic Drive Systems and Potential Use for Automobiles and Airplanes [J]. SAE International.975581.[48]Robert D.Leopold.A New Definition of Fuel Efficiency in Commercial Vehicles[J].SAE International.2009-26-026.[49]Liu Yanfang and Xu Xiangyang. Analysis of the Performance of the Shifting Elements in AT[J].SAE International.2008-01-1522[50]P. Sivakumar and S.Pazhanikumar. Automatic Transmission Control Logic Specification for Tracked Vehicle Application[J].SAE INDIA 0301032[51]Kazuhiro Takatori,Shinichi Tazunegi and Naoki Takahashi. Development of All New 7-speed Automatic Transmission for RWD Vehicles[J].SAE International.2009-01-0512[52]童小冬.AMESim软件特征以及在掘进机液压控制系统中的应用[J].凿岩机械气动工具,2008年01期.[53]Toshinori Murahashi,Shiro Ssonoda,Naoki Yamada and Hiroaki Katoh.Development of??Engine Brake Control System for Commercial Vehicle With 6-Speed Automatic Transmission[J]. SAE International.2006-01-1674[54]江玲玲,张俊俊.基于AMESim与Matlab/Simulink联合仿真技术的接口与应用研究[J],机床与液压2008年第36卷1期[55]余佑官,龚国芳,胡国良.AMESim仿真技术及其在液压系统中的应用[J].液压气动与密封,2005(3):28-31.[56]朱文杰,翟尧,张翔.基于AMESim进行混合动力再生制动的建模[J].拖拉机与农用运输车2008年4月第35卷第2期.[57]姚时音,孙仁云,赵双,孙天建.基于AMESim的ABS液压电磁阀动态响应仿真研究[J].机床与液压2007年06期.[58]肖岱宗.AMESim仿真技术及其在液压元件设计和性能分析中的应用[J].舰船科学技术,2007,(S1).[59]王鹏宇,王庆年,段幼华.混合动力轿车再生制动系统动态仿真[J].中国科技论文在线.[60]Michael Duoba, Theodore Bohn and Henning Lohse-Busch. Investigating Possible Fuel Economy Bias Due To Regenerative Braking in Testing HEVs on 2WD and 4WD Chassis Dynamometers.//[C]SAE paper.[61]王春行液压伺服控制系统[M]北京:机械工业出版社,1989[62]李洪人液压控制系统[M]北京:国防工业出版社,1981[63]Niels J. Schouten,, Mutasim A.Salman, Naim A.Kheir.. Energy management strategies for parallel hybrid vehicles using fuzzy logic. Control Engineering Practice,2003, Vol.11: 171-177.[64]Chitoshi Yokota, Yoshimori Nakamura, Shigeru Yada. Development of the 2001 year model Civic. JSAE Review 2002, Vol.23:387-399.[65]王庆年,金启前等.传动系参数和控制参数对并联混合动力轿车性能的影响[J].吉林大学学报(工学版),35(3):243-248.[66]R.P.Kepner. Hydraulic Power Assist-A Demonstration of Hydraulic Hybrid Vehicle Regenerative Braking in a Road Vehicle Application[J].SAE International.2002-01-3128[67]Sarawoot Watechagit and Krishnaswamy Srinivasan. Modeling and Simulation of a Shift Hydraulic System fora Stepped Automatic Transmission[J].SAE International.2003-??01-0314[68]Robyn A.Jackey and Paul Smith,Steven Bloxham.Physical System Model of a Hydraulic Energy Storage Device for Hybrid Powertrain Applications[J].SAE International.2005-01-0810[69]Scott M.Finlayson and Tim R.Dickson. Accumulator Sizing and Evaluation Technique Based on Theoretical Optimum System Performance [J].SAE International.2005-01-2048[70]Young Jae Kim and Zoran Filipi. Simulation Study of a Series Hydraulic Hybrid Propulsion System for a Light Truck [J].SAE International.2007-01-4151[71]Young Jae Kim and Zoran Filipi. Series Hydraulic Hybrid Propulsion for a Light Truck-Optimizing the Thermostatic Power Management [J].SAE International.2007-24-0080[72]Rajit Johri and Zoran Filipi.Low-Cost Pathway to Ultra Efficient City Car:Series Hydraulic Hybrid System with Optimized Supervisory Control[J].SAE International.2009-24-0065[73]Tejinder Singh and Richard Olenzek.General Motors Small Front Wheel Drive Six speed Automatic Transmission Family [J].SAE International.2010-01-0857[74]James A.O'BrienⅡ,Gerald Roston and Matthew Witte. Optimal Accumulator Sizing for Mobile Applications [J]. SAE International.2011-01-0715[75]Hui Wang,Peirong Wu,and Guangqiang. Wu. Power Flow Analysis and Control Design of a Vehicular Hydraulic Energy Storage Transmission System[J].SAE International.952135.[76]Chan-Chiao Lin et al. Integrated Feed-forward Hybrid Electric Vehicle Simulation in SIMULINK and its Use for Power Management Studies. SAE 2001-01-1334.[77]Nobufusa Kobayashi,Takaaki Tokura,Kazuyushi shiiba,Toshihiro Fukumasu and Tomohiro Asami.Development of New Sports Shift Control System for Toyota's Automatic Transmission [J].SAE International.2008-01-0535.[78]Brigham Erickson, Zac Tselios, Becky Trierweiler and John Beard. Development of the MTU Automatic Shifting Manual Six-Speed Transmission[J]. SAE International.2006-01-0747.[79]郭孔辉.汽车操纵动力学[M].长春:吉林科学技术出版社,1991年12月[80]米奇克著,桑杰译.汽车动力学[M].北京:机械工业出版社,1972年.[81]Q.Zheng, K.Srinivasan and G.Rizzoni. Dynamic Modeling and Characterization of Transmission Response for Controller Design[J].SAE International.981094.[82]Cesar Henrique Ferreira Amendola. Gear Shift Strategies Analysis of the Automatic Transmission in Comparison With the Double Clutch Transmission.[J].SAE International.2006-01-2872.[83]汽车制动系统结构、性能和试验方法.GB12676-1999.[84]Daekyun Kim. Math-model Based Gear-shift Control Strategy for Advanced Vehicle Powertrain Systems. UMI Number:3224923.[85]. Martin Schmidt, Rolf Isermann, Bernd Lenzen, Gunter Hohenberg. Potential of Regenerative Braking Using an Integrated Starter Alternator.//[C]. S AE paper[86]Quan Zheng, B.S.,M.S. Modeling and Control of Powertrains with Stepped Automatic Transmissions UMI Number:9951755.[87]曾小华.混合动力客车节能机理与参数设计方法研究[D].吉林大学博士学位论文,2006年.[88]王保华,张建武,罗永革.并联混合动力客车再生制动仿真研究[J].汽车工程2005(27).6.[89]Sarawoot Watechagit and Krishnaswamy Srinivasan. Modeling and Simulation of a Shift Sydraulic System for a Stepped Automatic Transmission.[J].SAE International.2003-01-0314.[90]Zhenhui Yao.Powertrain Modeling for Real-Time Driving Simulation[J].UMI Number:3157711.[91]姚俊,马松辉.建模与仿真[M].西安:西安电子科技大学出版社.2002.[92]Kazunori Odonari, Shoichi Nakagawa, Hiroshi Matsumoto and Masaki Kaji. Study of Mount Technology on Alumina Multilayer Substrate for Automatic Transmission ECU[J].SAE International.2003-01-0620.[93]S. C. Davis, S. W. Diegel, and R. G. Boundy. Transportation Energy Data Book:Edition 28. Technical report, Oak Ridge National Laboratory (ORNL),2009.[94]H. S. Dunn and P. H. Wojciechowski. High-Pressure Hydraulic Hybrid with Regenerative Braking.7th Intersociety Energy Conversion Engineering Conference, pages 989-995,1972.[95].熊坚,胡永平.汽车制动过程的计算机仿真研究[J]云南工业大学学报,1995,(01)[96]A. Pourmovahed, NH Beachley, and FJ Fronczak. Modeling of a Hydraulic Energy??Regeneration System—PartⅠ:Analytical Treatment. Journal of Dynamic Systems, Measurement, and Control,114(1):155-159,1992..[97]张滨刚,姜正根.汽车制动过程的理论分析与试验[J].车辆与动力技术,1998,(04).[98]A. Stroganov and L. Sheshin. Efficient, Safe, and Reliable Recuperation:Regenerative Accumulator in Honeycomb Reciever. IFPC 7th International Fluid Power Conference, 3:177-187, March 2010[99]F. T. Elder and D. R. Otis. Simulation of a Hydraulic Hybrid Vehicle Powertrain. ASME, (73-ICT-50),1973.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700