工业计算机控制系统在岩土钻测装备中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对我国岩土施工装备的自动化水平不高的现状,设计了应用于包括岩土施工钻孔机械以及岩土热物理性质原位测试仪的岩土钻测装备工业计算机控制系统。
     文章对工业计算机控制系统进行了深入研究。整个系统包括硬件系统、控制算法以及上位机软件系统。硬件系统实现了对装备应用过程中各类参数的实时采集、信号处理以及控制输出,通过对装备的执行机构进行调节,实现控制动作;控制算法的设计实现了装备的自动控制策略,使装备按照预期的控制方式动作;而上位机软件的开发完成了人机交互界面的设计、建立工程数据库,可以对工程参数进行实时监控、生成数据报表以及实现对工况异常和事故的报警功能,最为重要的是对控制策略进行编程,实现上位机的数据处理以及控制输出功能。
     论文从上述几个方面对装备的工业计算机控制系统进行设计研究与开发。建立了应用于钻机与岩土热物理性质原位测试仪的工业计算机控制系统硬件,针对装备执行机构特性与实际工况进行了算法设计,同时应用工业组态软件对控制系统的上位机软件系统进行了设计开发,建立工程数据库、开发人机交互界面,对参数进行实时检测、生成数据报表,并进行了标度变换、数据处理以及控制算法程序设计。
     完成装备工业计算机控制系统研究开发后进行了试验研究,对关键参数的变送器进行了标定,对系统硬件进行安装调试,通过对装备的运行测试以及实际工程应用,检验了工业计算机控制系统在岩土钻测装备中的应用效果。结果表明该系统对装备控制动作正常,参数采集精确,系统运行稳定,控制效果达到了预期要求。
     该系统的开发旨在提高岩土工程施工效率。本研究利用现今广泛应用的工业控制领域中的关键技术,为提高岩土钻测装备自动化提供了一种新的思路。
Presently, the automation of general geotechnical engineering construction equipments is still not high in our country. It needs to make comprehensive research on technology and equipments for geotechnical drilling and rock and soil thermophysical properties measuring to make the construction more efficient and economical. It includes geotechnical rig research and in-situ measuring equipment of rock and soil thermophysical properties research. The information, automation and intelligence of the equipments is a direct reflection of geotechnical engineering construction level. Improving the level can raise the construction efficiency and reduce the construction cost to great extent. Also, it becomes a improtant standard of reaching the international leading level.
     To solve the problem above, this paper makes a deep research on industrial computer control system of the industrial automatic control field in present. And two industrial computer control systems which applied to geotechnical rig and in-situ measuring equipment of rock and soil thermophysical properties have been constructed according to the equipments’characteristics and application requirements.
     Industrial computer control system is an important part of the industrial automatic control technology. The whole system is composed of control system hardware, control algorithm and upper computer industrial configuration software. The system hardware constructs signal detection and control channels of the whole system. During the application processes, it realizes collection of various parameters, signal processing, control signal output and actuator control. The design of control algorithm makes the automatic control strategy to be realized. And it makes the equipments execute actions according to expected control mode. The development of upper computer configuration software realizes the creatings of software system and engineering database, editing of human machine interfaces. The parameters can be monitored real-timely. Data reports can be generated. And the software system can give alarm when the working conditions are abnormal. The most important is that the development of upper computer configuration software programmes various control procedures of data processing and control functions.
     In the industrial computer control system hardware of geotechnical rig, an industrial computer is applied as measuring and control core. Various sensors are adopted to collect the drilling parameters, and then the parameters will be processed and analog-digital converted by PLC input module. After data operation by upper computer, the control signal will be digital-analog converted and isolated. Finally, the control signal will be sent to proportional relief valve and variable displacement pump of hydraulic system to control the feeding and rotation system of the rig. In the algorithm design, incremental PID algorithm and its improved algorithm have been designed, according to the principles and models of the proportional relief valve and variable displacement pump and actual conditions. Accumulation compensation method is applied to inhibit integral saturation. Incomplete differential PID method is applied to decrease system oscillation. Differential forward method is applied to avoid system overshoot. PID algorithm with dead zone is applied to avoid frequent movement. The sampling period and control patameters of PID control has been adjusted. It make the feeding and rotation system of the rig realize closed loop PID control. It can much improve the bad situations of slow response, big overshoot and poor stability of the system when the control signal step changes. In the development of upper computer configuration software, Kingview 6.5 is applied to build the software system of the rig control system. Engineering document has been designed and the database has been established. All the configuration functions has been edited, and the parameters calculation formulas and automatic control strategy programs has been programmed. It realizes the functions of drilling parameters measuring and control.
     In the industrial computer control system hardware of in-situ measuring equipment of rock and soil thermophysical properties, the industrial computer is also applied as measuring and control core. Various sensors are adopted to collect the measuring engineering parameters. And then the parameters will be processed and analog-digital converted by intelligent analog module. After data operation by upper computer, the control signal will be digital-analog converted and isolated. Finally, the control signal will be sent to electric tee valve to control the opening, then to regulate the mixing proportion of high and low temperature flow, furthermore, to control the temperature difference of the ground heat exchanger entry and exit. It can ensure to input constant heat current into the ground heat exchanger. In the algorithm design, a pure time delay control algorithm of Smith predictor combined with incremental PID algorithm has been designed, according to the principles of electric tee valve and actual conditions. The sampling period of pure time delay control algorithm has been adjusted. Temperature difference control has the characteristics of big control inertia and long lag time. The pure time delay control can much improve the dynamic response characteristics of system, make the control more stable and fast, and reduce the overshoot. In the development of upper computer configuration software, MCGS 6.2 is adopted to build the software system of the measuring equipment. The develop process is the same as it of rig industrial computer control system.
     A series of experimental research of drilling and measuring equipments for geotechnical engineering have been conducted. Firstly, the hardware systems have been installed. The adjusting results show that the hardware communication is normal, signal measuring is accurate, operation state is stable and the functions of actuators are normal. By the no load operation experiment of actuators of rig hydraulic system, the results show that the movements of feeding system and rotation system are normal, the actuators’steady state performance is satisfactory, the linearity of electro-hydraulic proportional control is excellent. A continuous step response test of actuators of the in-situ measuring equipment of rock and soil thermophysical properties has been conducted. The result shows that the control element has the advantages of sensitive reaction and fast action speed. At last, the practical engineering applications were conducted. The results show that the control effects of the two equipments are quite good. And the construction efficiency and safety are improved greatly.
     To research on application of industrial computer control system in drilling and measuring equipment for geotechnical engineering, in order to improve the geotechnical engineering construction efficiency. In the research of this paper, the key technology of industrial control field was utilized. It provides a new idea of improving the automation level of geotechnical engineering equipments. More industrial automation control technology and theories should be applied in drilling and measuring equipments for geotechnical engineering in the future, so that it can overall improve the automation level of drilling and measuring equipments for geotechnical engineering and construction efficiency of our country.
引文
[1]鄢泰宁.岩土钻掘工程学[M].武汉:中国地质大学出版社,2001.8.
    [2]Leach Jack. Drilling advances[J]. World Oil,2006.12 Volume 227: P 17.
    [3]Waller M.D., Rowsell P.J.. Intelligent drilling control[J]. Transactions of the Institution of Mining & Metallurgy, Section A: Mining Industry, 1994, Volume 103: P A47~A51.
    [4]Rowsell P.J., Waller M.D.. Intelligent control of drilling systems[CA]. Proceedings-Drilling Conference, 1991, Netherland: P 261~272.
    [5]Hu Qin, Liu Qing you. Intelligent drilling: A prospective technology of tomorrow [CA]. International Oil and Gas Conference and Exhibition in China 2006 - Sustainable Growth for oil and Gas, China, 2006 . 12. Volume 1: P 363~367.
    [6]Rommetveit Rolv, etc. An integrated system for real-time optimization of the drilling process[CA]. 2004 IADC/SPE Drilling Conference, 2004, USA: P 275~282.
    [7]孙友宏等.岩土钻掘工程应用的又一新领域——地源热泵技术[J]探矿工程,2002.第197期增刊:P 7~12.
    [8]王庆华.浅层岩土体热物理性质原位测试仪的研制及传热数值模拟[D].长春:吉林大学博士论文,2009.4.
    [9]祝骅.现代工业控制技术及发展[J].江苏电器,2008.4: P 5~7.
    [10]肖建.工业计算机控制:过去、现在和未来(上)[J].电气时代,2003.8: P 82~83.
    [11]刘士荣.工业控制计算机系统及其应用[M].北京:机械工业出版社,2008.3.
    [12]陆向成.信息时代工业自动化的发展趋势[J].福建电脑,2002.9: P 8~9.
    [13]夏建全.工业计算机控制技术——原理与应用[M].北京:清华大学出版社.北京交通大学出版社2006.9.
    [14]姚立波.工业控制技术及应用[M].天津:天津大学出版社,2009.6.
    [15]Waller M.D., Rowsell P.J.. Intelligent drilling control[J]. Transactions of the Institution of Mining & Metallurgy, Section A: Mining Industry, 1994, Volume 103: P A47~A51.
    [16]Lloyd G.M., Bode D.J., Nickens H.V., Varnado S.G.. Practical application of real-time expert system for automatic well control[CA]. IADC/SPE 1990 Drilling Conference, 1990, USA: P 119~130.
    [17]McNair, Will L. Equipment available for automating rig operations [J].Oil and Gas Journal, 1990.4 Volume 88: P 46~51.
    [18]Rowsell P.J., Waller M.D.. Intelligent control of drilling systems[CA]. Proceedings-Drilling Conference, 1991, Netherland: P 261~272.
    [19]Rommetveit Rolv, etc. Automatic real-time drilling supervision, simulation, 3D visualization and diagnosis on ekofisk[CA]. SPE/IADC Drilling Conference and Exhibition 2008 - "Sustainable Strategies for Today's Realities", 2008.3: P 361~372.
    [20]Anon. Drill monitor systems tell the hole story[J]. Engineering and Mining Journal, 2006.12 Volume 207: P 44~47.
    [21]Haber-Haber Rodolfo. A classic solution for the control of a high-performance drilling process[J]. International Journal of Machine Tools and Manufacture, 2007.12 Volume 47: P 2290~2297.
    [22]Leach Jack. Drilling advances[J]. World Oil,2006.12 Volume 227: P 17.
    [23]Xu Hong , Tochikawa Tetsuro, Hatakeyama Takashi , Ota Hitoshi. Approach for improving the expert system for drilling optimization[CA]. Proceedings of the 1996 3rd Biennial Joint Conference on Engineering Systems Design and Analysis, ESDA. Part 7 (of 9), 1996, France. Volume 79: P 73~77.
    [24]Saligov S.G. The system of the automatic control of drilling solutions composition[CA]. Decision and Simulation in Engineering and Management Science - International Conference on Modelling and Simulation, ICMS'04, 2004. Spain: P 173.
    [25]左汝强.推进钻探技术与装备现代化加快矿产资源勘查开发[J].地质装备, 2008.1:P 11~14.
    [26]胡志坚.钻机负载自适应液压控制系统的研究[D].长春:吉林大学博士论文, 2007.5.
    [27]王其福.钻进过程监测与控制硬件系统研究及应用[D].北京:中国地质大学硕士论文, 2007.5.
    [28]王中译.国外地表岩心钻机的发展[J].地质装备, 2009.6:P 38~42.
    [29]张连山.国外石油钻机技术发展趋势[J].国外石油机械, 1996.6:P 1~9.
    [30]唐丽华,王洪英.国外几种典型的新型自动化钻机[J].石油机械,2005第33卷第11期:P 78~80.
    [31]夏柏如. SCC钻进系统和最优化控制钻进的试验与研究[D].北京:中国地质大学(北京)博士论文,1988.6.
    [32]鄢泰宁,龚元明,姚爱国,吴翔.钻探微机智能监测系统的研制与应用[J].长江水利教育,1997.4第14卷:P 58~60.
    [33]张义国等.ZCY系列参数监测系统[J].煤田地质与勘探,2002.10第30卷第5期:P 55~57.
    [34]赵大军等.JSL-30型钻机钻进参数检测系统的研究[J].地质与勘探,2006.5第42卷第3期:P 97~99.
    [35]孙友宏.地球物理参数随钻测量系统及钻机研制项目设计书[Z].长春:吉林大学,2006.6.
    [36]周策,汪光宅,李正前.X-3型钻进参数仪软硬件设计[J].探矿工程,1997.3:P 44~46.
    [37]滕子军.对国内钻参仪实现监控钻进的可行性探讨[J].探矿工程,2001.6:P 54~55.
    [38]滕子军.用钻进参数仪实时优化钻进参数[J].探矿工程,2000第4期:P 46~47.
    [39]叶敦范,补家武.一种同步采集钻探参数的微机系统[J].南昌大学学报(理科版),1998.6第22卷第2期:P 186~190.
    [40]史晓亮等.多参数钻进实验台的硬件系统设计[J].地质装备,2002.9:P 33~35.
    [41]蒋维平,孟宪民.钻井工程实时多参数监测控制系统的研究[J].中国煤炭地质,2008.5第20卷第5期:P 68~71.
    [42]桂暖银等.可移式多功能微机自动控制钻进实验台的研建[J].探矿工程,1998.6:P 24~26.
    [43]张弭等.DBS系列数控变频电动钻机[J].石油钻采工艺,2003.2:P 44~46.
    [44]张忠海,陈以田,张启君.多功能旋挖钻机智能控制技术探讨[J].建筑机械化,2004.9:P 59~60.
    [45]张忠海,吴永成,杨梅.徐工RD18Z旋挖钻机智能化控制技术[J].建筑机械化,2006.3:P 23~25.
    [46]Signhild Gehlin. Thermal Response Test Method Development and Evaluation[D]. Lule?, Sweden: Division of Water Resources Engineering Department of Environmental Engineering Lule? University of Technology, 2002.
    [47]Warren A. Austin,Ⅲ. Development of an in SITU system for measurement for ground thermal properties[D]. Oklahoma, USA: Oklahoma State University, 1998.5.
    [48]李晓东,于明志,李雨桐.基于地源热泵的便携式岩土热物性测试仪的研制与应用[J].电子技术应用,2004第5期:P 28~29.
    [49]李晓东,于明志,方肇洪.基于地源热泵的便携式岩土热物性测试仪及其方法[P].山东建筑工程学院地源热泵研究所,2006.2.27.
    [50]于明志,方肇洪.现场测量深层岩土热物性方法[J].工程热物理学报,2002.5第23卷第3期:P 354~356.
    [51]胡健等.浅层地温能参数测试仪[P].天津市管道工程集团有限公司,2009.1.
    [52]张立克,常建军.工控机的现状与前景[J].水利电力机械,2007.1第29卷第1期:P 64~65.71.
    [53]黄峰等.基于工控机的数据采集系统[J].汽车工艺与材料,2000第2期:P 38~41.
    [54]伍宗富,梅彬运.工控机在智能系统中的应用研究[J].广西轻工业,2007.3第3期:P 60~61,2.
    [55]曾孟雄等.智能检测控制技术及应用[M].北京:电子工业出版社,2008.6.
    [56]李曼珍.纯滞后系统的Smith预估器算法[J].仪器仪表用户,2004.3:P 18~20.
    [57]朱晓东,王军,万红.基于Smith预估的纯滞后系统的控制[J].郑州大学学报(工学版),2004.3第25卷,第1期:P 77~81.
    [58]姜学军,刘新国,李晓静.计算机控制技术(第2版)[M].北京:清华大学出版社,2009.7.
    [59]方来华,吴爱国,何熠.组态软件核心技术研究[J].化工自动化及仪表,2004,31第1期:P 33~35.
    [60]谌彦.工业过程监控组态软件的研究与开发[D].武汉:华中科技大学硕士论文, 2004.4.
    [61]丁景祥.钻探测试控制分析系统的研究[J].西部探矿工程,2001.第6期:P 86~88.
    [62]蒋勇.实时技术决策系统在钻井工程中的应用研究[D].成都:西南石油学院硕士论文,2003.5.
    [63]张杰.孔内典型工况识别技术研究及其在高精度钻参仪中的实现[D].武汉:中国地质大学(武汉)硕士论文,2009.5.
    [64]焦阳,凌振宝,王君,赵大军.基于单片机的钻机参数监测仪的研制[J].吉林大学学报(地球科学版),2008.1第38卷,第1期:P 371,471,571.
    [65]Kucs Richard, etc. Automated real-time hookload and torque monitoring[CA]. SPE/IADC Drilling Conference and Exhibition 2008 - "Sustainable Strategies for Today's Realities", 2008.3: P 460~473.
    [66]焦阳.钻机参数监测仪的研制[D].长春:吉林大学硕士论文,2006.5.
    [67]聂云飞,齐明侠,刘桂春.智能仪表在钻机控制方面的应用[J].石油矿场机械,2006.第35卷第3期: P 67~72.
    [68]鄢泰宁,曹鸿国,乌效鸣.检测技术及勘察工程仪表[M].武汉:中国地质大学出版社,1996.5.
    [69]郭静.钻井工程实时多参数监测系统[D].重庆:重庆大学工程硕士论文,2001.4.
    [70] S7-200CN可编程序控制器系统手册[Z].西门子中国有限公司.2000.3.
    [71]谭威.基于PLC的工业控制系统的设计与实现[D].武汉:华中科技大学硕士论文,2007.1.
    [72]司马莉萍.组态王与西门子S7-200的几种通信方式[J].PLC&FA,2005.1: P 74~76,67.
    [73]陈朝东,张莉.PLC在钻机控制系统中的应用[J].计算机自动测量与控制,2001.9第2卷
    [74]李粤.液压系统PLC控制[M].北京:化学工业出版社,2009.9.
    [75]刘桂芹.电液比例控制技术在工程钻机中应用的研究[D].武汉:中国地质大学(武汉)硕士论文,2006.5.
    [76]谭威.旋挖钻机钻孔作业系统节能控制的研究[D].长沙:中南大学博士论文,2007.9.
    [77]李文庭.钻机闭环测控系统的设计[D].长春:吉林大学硕士论文,2008.6.
    [78]陈跃坡.液压系统动态性能试验测试平台仿真研究[D].厦门:集美大学硕士论文,2008.4.
    [79]马群,王萍.电液比例溢流阀控制系统动态特性仿真分析[J].机床与液压,2007.1第35卷第1期:P 215~216.
    [80]孟继梅,韩晓明.基于闭环控制的压力控制系统研究[J].液压与气动,2009第9期:P 31~33.
    [81]刘建民.电液比例控制泵及其应用技术研究[D].上海:同济大学硕士论文,2005.2.
    [82]孙友宏,胡志坚.工程地质参数随钻测量钻机电液比例液压系统的设计[J].工程机械,2008.7第39卷: P 56~59,63.
    [83]刘桂芹等.钻机液压系统中电控比例变量泵的特性测试分析[J].矿业研究与开发,2005.8,第25卷第4期:P 47~48,80.
    [84]成大先.机械设计手册(第五版)单行本:液压控制[M].北京:化学工业出版社,2010.1.
    [85]庞海荣.全液压钻机电液比例技术的应用研究[D].西安:煤炭科学研究总院西安分院,2003.7.
    [86]郑军海.注塑机液压伺服系统设计与实现[D].济南:山东大学,2009.5.
    [87]袁秀英等.组态控制技术[M].北京:电子工业出版社,2003.8.
    [88]孙旭霞,李生民,张维娜.工业自动化通用组态软件——“组态王”的功能分析及应用[J].仪器仪表用户,2001,第8卷,第4期:P 29~31.
    [89]王立等.基于组态王的监控系统应用研究[J].微计算机信息(测控自动化),2008,第24卷第2-1期:P 111~112,308.
    [90]刘德田.组态软件图形开发的设计与实现[D].大连:大连理工大学硕士论文,2005.3.
    [91]张淑红,陶自春.基于组态王的传感器实验台监控系统[J].自动化仪表,2008,5第29卷,第5期:P 42~44.
    [92]刘耀.基于组件技术的组态软件的研究与设计[D].长沙:中南大学硕士论文,2004.5.
    [93]王庆华等.BTR-4000型地层热物性原位测试仪及其应用[J].吉林大学学报(地球科学版),2009.3第39卷第2期: P 347~352.
    [94]李丽新等.地下耦合地源热泵计算机测控系统的设计与实验研究[J].太阳能学报,2005.8第26卷第4期:P 464~467.
    [95]李梅等.基于ADAM模块的恒温恒湿空调监控系统[J].仪表技术与传感器,2008.2: P 74~75.
    [96]杨申等.Smith预估控制改进算法的研究[J].广东电力,2009.7,第22卷,第7期: P 13~17,42.
    [97]杨启伟,陈以.基于数字Smith预估补偿的温度控制仿真[J].桂林电子工业学院学报,2006.4,第26卷,第2期: P 109~111.
    [98]冯国良等.纯滞后控制系统采样周期的选择[J].重庆大学学报,2003.6,第26卷,第6期: P 125~128.
    [99]苏刚,薛鹏骞,徐建华.对史密斯预估器的改进[J].辽宁工程技术大学学报(自然科学版),2000.10,第19卷,第5期: P 513~515.
    [100]杨世兴,郭秀才,杨洁.测控系统原理与设计[M].北京:人民邮电出版社,2008.8.
    [101]梁伟栋,郭浩.MCGS组态软件设计及其应用[J].广东自动化与信息工程,2005第1期:P 33~35.
    [102]罗永道,张云生.通用组态软件在实时控制系统的应用[J].工业控制计算机,2004第17卷第10期:P 41~42.
    [103]金文兵.由组态软件、智能仪表及PLC等组成的工业控制系统[J].电力自动化设备,2005.6第25卷第6期:P 73~76.
    [104]王国庆等.基于组态软件和PLC的制浆机清洗监控系统的设计[J].三峡大学学报(自然科学版),2009.4第31卷第2期:P 69~71.
    [105]郭巍.组态软件关键技术及在测控系统中的应用[D].济南:山东科技大学,2006.5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700