基于蓄能器和组合功能加载油缸的安全阀试验技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于蓄能器输出流量大、一种组合油缸阻力损失小的特点,并结合常用安全阀结构特征和参数要求,提出了一种液压支架大流量安全阀试验方法和试验系统装置。通过分析研究STA-500安全阀试验台在设计和调试过程中的技术难题,提出并解决了系统建造中的关键技术一降低阻力损失、控制蓄能器流量和系统参数的配置方法;通过STA-500和其它系统测试结果的比对分析,研究基于蓄能器试验系统的性能一输出流量能力、测试精度、测试结果的重复性等;以STA-500安全阀试验台参数为基础,建立安全阀试验系统流量函数方程和振动分析模型,分析该系统的稳态流量特性和动态振动特性及影响因数,提出系统的基于蓄能器为动力源和一种组合功能加载油缸的安全阀试验系统的技术。
Based on the characteristics of high flow output of accumulator and the small resistance loss of combination cylinder, a kind of test method and test system device for hydraulic support high flow relief valve were put forward, which also combined common relief valve structure and parameters requirements. In the process of designing and debugging STA-500 relief valve test bench, the key technology namely reducing resistance loss, controlling the accumulator flow and configuration method of system parameters were put forward and solved through analysing technical problems. Comparing the STA-500 results systems with other test results, the performance of the test system based on the accumulator was researched, which included outputting flow capacity, testing precision, testing results repeatability etc. Meanwhile, structure technology of valve test system based on the accumulator for power supply and a combination cylinder was put forward with establishing the system flow function equation and the vibration model of system and analyzing the steady-state flow characteristics and dynamic vibration characteristics and influence factors.
引文
1. 张剑慈,吴忠,周兆忠等.流量阀液压试验系统的测试与应用[J].机械研究与应用,2003,16(1):50~51
    2. 李永堂,雷步芳,高雨茁.液压系统建模与仿真[M].北京.冶金工业出版社,2003
    3. 兰华.液压支架安全阀联动系统冲击试验的分析[J].山西机械.2002(6):25~26,
    4. 郭崇志,梁寒雨.安全阀在线检测新技术研究[J].石油机械,2009,37(8):28~31
    5. 孙玲,李鸿岩.液压支架用大流量安全阀研究[J].辽宁工程技术大学学报,2009,28(增刊):277-279
    6. 姜顺平.煤矿用安全阀性能的分析和研究[J].煤矿机械,2009,30(7):33~34
    7. 王勇.大流量安全阀试验系统模型对比分析[J].煤矿开采,2007,12(1):95~97
    8. 王勇,姜金球.柱塞式安全阀性能分析与改进研究[J].液压与气动,2006,12:94~96
    9. 鲁永秋,高钦和,蒋威.液压系统的压力、流量数据采集系统设计[J].机床与液压,2008,36(11):124~130
    10.胡学军,滕达,谈宏华等.基于MATLAB的液压试验台的数据采集与处理[J].自动化技术与应用,2010,29(3):83~85
    11.汪忠士,刘利,陈明,李青松.两种滤波算法在液压数据采集系统中的应用与研究[J].机床与液压,2005.1:103~104
    12.蔡伟,薄涵亮.组合阀流动阻力数值实验[J].核科学与工程,2007,27(4):322~326
    13.师好智,万曼影.某特殊结构单向阀的充气振动研究[J].机床与液压,2006,7:150~153
    14.冀宏,傅新,杨华勇等.几种典型液压阀口过流面积分析及计算[J].机床与液压,2003(3):14~16
    15.许同乐,张新义.液压容腔的仿真研究[J].煤炭学报,2008,33(9):1072~1074
    16.陈殿京,刘殿坤.安全阀流场数值模拟研究[J].流体机械,2008,36(10):24~27
    17.李哲,魏志军.调压阀内流场数值模拟及动态特性分析[J].北京理工大学学报,2007,27(5):390~394
    18.张贺,蔡江辉,张继福等.信息熵度量的离群数据挖掘算法[J].智能系统学报,2010,5(2):150~155
    19.孙庆先,陈秋平,方涛等.基于模糊聚类的多尺度空间数据挖掘模型及其矿山应用[J].上海交通大学学报,2008,42(2):194~197
    20.翟京.安全阀溢流流量与压力的对应关系[J].煤矿开采2005,10(2)32~36
    21.王国法.液压支架技术[M].北京:煤炭工业出版社.1999
    22.吴石,张文平.阀门流场的数值模拟及流噪声的实验研究[J].阀门,2005,(1):7~10
    23.伍悦滨,曲世琳.给水管网中阀门阻力实验研究[J].哈尔滨工业大学学报,2003,35(11):1311~1313
    24.黄燕,周密,罗志远等.核动力装置稳压器安全阀可靠性建模[J].核动力工程,2008,29(5):77~79
    25.姚荣康,朱昌明.带皮囊式蓄能器的油压缓冲器的冲击研究[J].振动与冲击,2006,15(1):153~155
    26.郑建光,刘长海.电动球阀流量特性实验研究[J].阀门,2005,(1):17一19
    27.张楚华.三维流体诱发振动的理论模型与数值模拟[J].西安交通大学学报,2007,41(5):512~525
    28.丁问司,黄晓东.自配流型液压冲击器建模与仿真[J].振动与冲击,2010,29(2):103~106
    29.李吉.液压支架内液体冲击问题的数学模拟[J].阜新矿业学院学报,1990,9(4):35~38
    30.杜长龙.液压支架安全阀性能研究及其设计[J].中国矿业大学学报,1991,20(1):33~34
    31.B.H.霏林[苏联].机械化支架液压系统[M].北京:燃料化学工业出版社,1973
    32.C.T.库兹涅佐夫[苏联].液压支架的使用及其改进的途径[M].北京:煤炭工业出版社,1984
    33.李秀轩.液压支架大流量安全阀的研究[J].煤矿机电.2001,2:22~23
    34.李昌熙,杜长龙.液压支架用大流量安全阀的设计研究[J].中国矿业学院学报.1988,2,19~20
    35.叶奇防.陈江平.制冷系统用两级先导式电磁阀动力学特性的仿真与实验[J].低温工程,2008,4:51-56
    36.陶文铨.数值传热学[M].陕西:西安交通大学出版社,2001
    37.徐克鹏,蔡虎.大型汽轮机主汽调节阀的实验与数值分析[J].动力工程,2003,23(6):2785~2789
    38.陶正良.蔡定硕.电站调节阀内流场的三维数值模拟及实验研究[J].工程热物理学报,2003,24(1):63~65
    39.相晓伟,毛靖儒.汽轮机调节阀全工况三维流场特性的数值研究[J].西安交通大学学报,2006,40(3):289—293
    40.张阿舟,诸德超.实用振动工程(2)振动控制与设计[M].北京:航空工业出版社,1997
    41.王勇.一种大流量安全阀试验系统可行性分析[J].煤矿开采.2007,12(5):15~17
    42.王勇,姜金球.综采支架液压控制技术发展与展望[J].煤矿开采.2005,3:5~8
    43.陈殿京.安全阀内部流场研究进展[J].流体机械,2004,3(11):25~28
    44.温殿江,由宏新.振动对安全阀动作性能影响[J].石油化工设备,2002,31(6):7~9
    45.李继周.落锤对立柱与安全阀系统冲击计算[J].煤炭学报1998,23(1):37~39
    46.王祖温,包钢等.精密减压阀振动现象的仿真分析[J].机床与液压,2001,2:34~55
    47.王冬梅,陶正良等.高压蒸汽阀门内流场的二维数值模拟及流动特性分析[J].动力工程,2004,24(5):690~697
    48.冀宏,谭正生.流量放大阀主阀心复位运动的数值解析[J].兰州理工大学学报,2009,35(5):51~55
    49.冀宏,谭正生.轮式装载机转向液压系统的振动控制[J].机床与液压,2008(10):44~46
    50.宋鸿尧.液压阀设计与计算[M].北京:机械工业出版社,1982
    51.章宏甲,黄谊.液压传动[M].北京:机械工业出版社,1992
    52.盛敬超.液压流体力学[M].北京:机械工业出版社,1980
    53.蔡亦钢.流体传输管道动力学[M].浙江:浙江大学出版社,1990
    54.王祖温.日本气动技术的现状和发展[J].液压与气动,1993,4:3~6
    55.丁问司,汪娇娇.铁道车辆减振器调压阀三维流场仿真[J].机床与液压,2010,38(13):134~136
    56.郑淑娟,权龙.插装阀液压锥阀内部流场的三维动态仿真分析[J].液压气动与密封,2007,26(4):30-31
    57.何秀华,蒋权英.特殊无活动部件阀压电泵机理分析与数值模拟[J].排灌机械,2008,26(2):27~30
    58.郑丽,李清廉.减压器开启过程内部流场的动态仿真和特性研究[J].火箭推进,2009,35(1):36~40
    59.毕向秋,章巧芳.气动钉枪外缸充气过程数值模拟及特性参数[J].轻工机械,2007,25(6):32~35
    60.温正,石良成Fluent流体计算应用教程[M].北京:清华大学出版社,2009
    61.熊光楞.计算机仿真应用[M].北京:清华大学出版社,1988
    62.曹晓光,王汝佳.CFX软件仿真密闭室中植物净化汽车排放污染物[J].东北林业大学学报,2009,37(10):122~123
    63.康涛,胡克.CFX与USAERO的水下机器人操纵性仿真计算研究[J].机器人,2005,27(6):535~538
    64.陈青,权龙.基于CFD方法的某液压系统耦合仿真[J].振动、测试与诊断,2010,30(1):47~50
    65.杨顺辉,陶兴华.计算流体动力学在冲击器设计和模拟中的应用[J].石油钻探技术,2008,36(5):40~42
    66.刘志远,郑源ANSYS—CFX单向流固耦合分析的方法[J].水利水电工程设计,2009,28(2):29~31
    67.陈青,权龙.基于CFD方法的某液压系统耦合仿真[J].振动、测试与诊断,2010,30(1):47~50
    68.冯进,张慢来.安全阀水动力特性的CFD模拟和研究[J].核动力工程,2007,28(5):31~35
    69.李新淼,张建卓.基于FLUENT的大流量安全阀流场数值模拟[J].煤矿机械,2009,30(8):44~46
    70.韩宁.应用FLUENT模拟阀门内部流场[D].武汉:武汉大学出版社,2005
    71.葛如海,王桃英.基于动网格和UDF技术的气缸动态特性研究[J].机床与液压,2010,38(21):12~15
    72.中华人民共和国煤炭行业标准MT122.2-2008.矿用单体液压支柱第2部分:阀2009
    73.中华人民共和国煤炭行业标准MT419-1995.液压支架用阀
    74. J.W. Bsc(Min), Rapid yielding props in action[J], S.A. Mining&Engineering Journal. February 1977
    75. J. Suh, S.H. Frankel, L. Mongeau, M.W. Plesniak, Compressible large eddy simulations of wall-bounded urbulent flows using a semi-implicit numerical scheme for low Mach number aeroacoustics[J], Journal of Computational Physics,2006,215:526-551
    76. L. Shuqing. Modeling and simulation of hydraulic cylinderand analysis of dynamic performance[C], Proceedings ofFirst International Conference of Modeling and Simulmion, Vol I-Modeling and Simulation in Science and Technology,2008:171~174
    77. I.G. Currie. Fundamental Mechanics of Fluids(Third Edition)[M], Marcel DekkerInc,2003
    78. J.M. Bergada and J. Watton. A direct solution for flowrate and force along a cone-seated poppet valve for laminar flow conditions[J], Proc. Instn Mech. Engrs, Journal of Systems and Control Engineering,2004, 218:197~210
    79. W. Borutzky, B. barnard, and J. Thoma. An orfice model for laminar and turbulent conditions[J]. Simulation Practice and Theory,2002,10:141~152
    80. K. Dasgupta and R. Karmakar. Dynamic analysis of pilot operated pressure relief valve[J]. Simulation Modelling Practice and Theory,2002,10:35~49
    81. H.E. Merritt. Hydraulic Control Systems[M]. John Wiley and Sons,1967
    82. J.J. Shu. A finite element model and electronic analogue of pipeline pressure transients with frequency-dependent friction[J] Transactions of the ASME, Journal of Fluids Engineering,2003,125:194~199
    83. J.A. Stone. Discharge coefficients and steady state flow forces for hydraulic poppet valves[J]. ASME Journal of Basic Engineering,1960,82:144~152
    84. E. Urata. Thrust of a poppet valve. Bulletin of the JSME,1969,12(53):1099~1109
    85. W. Zielke. Frequency-dependent friction in transient pipe flow[J]. IEEE transactions on Journal of Basic Engineering,1968,March.
    86. P.S. Zung and M.H. Perng. Nonlinear dynamic model of a two-stage pressure relief valve for designers[J]. ASME Journal of Dynamic Systems, Measurement, Control,2002,124:62-66
    87. C.H. Shin, J.M. Ha and C.G. Lee. Transient pressure characteristics in a pressure regulating system by using 1-D analytic valve modeling[J]. Journal of Mechanical Science and Technology,2008,22:374~381
    88. M. Shams, R. Ebrahimi, A. Raoufi and B.J. Jafari. CFD-FEA Analysis of Hydraulic Shock Absorber Valve Behavior[J]. International Journal of Automotive Technology,2007,8(5):615~622
    89. Duym, S. Simulation tools, modelling and identification, for an automotive shock absorber in the con-text of vehicle dynamics[J]. Vehicle System Dynamics,2000,33(4):261~289
    90. Duym, S. and Reybrouck, K. Physical Characterization of nonlinear shock absorber dynamics[J]. European J. Mechanical Engineering,1998,43(4):181~188
    91. Krakov, M. S. Influence of rheological properties of magnetic fluid on damping ability of magnetic fluid shock absorber[J]. Magnetism and Magnetic Materials,1999,201:368-371
    92. Lee, C. T. and Moon, B. Y. Study of thesimulation model of a displacement-sensitive shock absorber of a vehicle by considering the fluid force[J]. Automobile Engineering,2005,219:965~975
    93. Lee, C. T. and Moon, B. Y. (2006). Simulation andexperimental validation of vehicle dynamic characteristics for displacement-sensitive shock absorber using fluid-flow modelling[J]. Mechanical Systems and Signal Processing,2006,20:373~388.
    94. Morinaga, H., Kuboto, M. and Kume, H. Mechanism analysis of shock absorber rattling noise[J]. SAE Review,1997,18(2):198~198
    95. Purdy, D. J. Theoretical and experimental investigation into an adjustable automotive damper[J]. Proc. Institution of Mechanical Engineers, Part D, J. Automobile Engineering,2000,214(3):265~283
    96. Surace, C, Worden, K. and Tomlinson, G. R. (1992). An improved nonlinear model for an automotive shock absorber[J]. Nonlinear Dynamics,1992,3(6):413~429
    97. Tallec, P. L. and Mouro, J. Fluid structure interaction with large structural displacements[J]. Computer Methods in Applied Mechanics and Engineering,2001,190:3039~3067
    98. Yakhot, V. and Orszag, S. A. Renormalization group analysis of turbulence I; Basic Theory[J]. Sci. Comput,1986,1:1-51
    99. J. Schmidt, W. Peschel and A. Beune. Experimental and theoretical studies on high pressure safety valvessizing and design supported by numerical calculations CFD[J]. Chem. Eng. Technol.,2009,32(3):252~262
    100.王勇,姜金球.一种组合功能液压油缸[P].中国,发明,ZL200710000543.3,2009.2.18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700