挖掘机电液流量匹配控制系统特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压控制系统是挖掘机的重要组成部分,其性能好坏直接关系到整机的操控性和节能性。传统负载敏感系统通过最高负载压力反馈实现系统的压力闭环控制,满足系统所需的流量和压力要求。而电液流量匹配控制系统采用开环控制的方式,在控制电比例泵输出系统所需流量的同时控制电比例阀动作,且不需要预设泵与最高负载之间的压力裕度。该开环控制方式提高了系统的柔性,增加了系统的控制自由度,使挖掘机的操控性和节能性进一步提升成为可能。电比例泵和电比例阀之间的流量匹配控制方法及其在工程机械中的应用,是电液流量匹配控制系统的研究重点和难点。本论文以典型负载敏感系统作参照对比,研究电液流量匹配控制系统的流量匹配控制方法和特性,并将电液流量匹配控制系统应用于2吨挖掘机试验样机,选题具有广泛的工程应用背景和重要的学术研究价值。
     本文提出一种基于压力流量的复合控制方法,基于该方法的阀前补偿多路阀电液流量匹配控制系统融合了电液负载敏感系统电反馈压力闭环控制和普通电液流量匹配控制系统流量开环控制的优势,可根据不同工况实现系统压力闭环控制和流量开环控制的切换。当系统过流匹配时,电液流量匹配控制系统选用压力闭环控制方式,否则选用开环控制方式。该控制方法解决了基于阀前补偿多路阀的电液流量匹配控制系统过流引起的系统溢流与能耗问题,并有效抑制了执行机构瞬间停止或切换产生的压力冲击。典型挖掘工况试验表明,与传统负载敏感系统相比,采用压力流量复合控制方法的电液流量匹配控制系统节能达10%,工作效率提高10%。本文研制了挖掘机电液流量匹配控制系统试验样机,建立了基于AMESim和Adams软件的相应虚拟样机软件平台。提出了一种基于旁路流量卸荷阀的流量控制方法,采用该方法的阀前补偿多路阀电液流量匹配控制系统在系统过流时,旁路流量卸荷阀开启卸荷过多流量,有效解决了系统溢流与能耗问题。与传统负载敏感系统相比,带旁路流量卸荷阀的电液流量匹配控制系统稳定性得到增强,压力裕度减小0.6~0.7MPa,阶跃动态响应时间缩短0.5s左右。另外,针对基于LUDV(德语:Lastdruck Unabhangige Durchfluss Verteilung;中文:负载独立流量分配)多路阀的电液流量匹配控制系统,提出了一种改进节能性的控制方法,该方法使最大流量需求执行机构对应的控制阀口全开,同时使其他执行机构的控制阀口开度根据操控指令按比例增大,从而降低阀口的压力损失。典型挖掘工况试验结果表明,与LUDV负载敏感系统相比,采用该控制方法的电液流量匹配控制系统压力裕度降低了约0.8-1MPa,节能达到12%。本论文研究成果为应用电液流量匹配控制技术改善挖掘机等工程机械的操控性和节能性提供了理论支撑和工程应用示范。
     论文的主要研究内容如下:
     第一章,介绍了现有挖掘机典型液压控制系统的原理及特性,并由此引出了新型液压控制系统——电液流量匹配控制系统;阐述了电液流量匹配控制系统的研究背景和国内外研究现状,指出了本课题的研究目的和意义,概述了本论文的主要研究内容。
     第二章,分析了基于阀前补偿多路阀的电液流量匹配控制系统原理及特性,研制了挖掘机综合试验装置和试验样机,建立了虚拟样机联合仿真模型,对比研究了系统的响应、节能和稳定性能。重点解决了系统的流量饱和和过流匹配控制问题,设计了抗流量饱和控制器,提出了压力流量的复合控制方法。
     第三章,阐述了带旁路流量卸荷阀的阀前补偿多路阀电液流量匹配控制系统原理及特性,研究了不同流量匹配关系对挖掘机控制特性和系统能耗的影响。试验分析流量饱和工况系统的控制特性,并设计抗流量饱和流量分配器。对比分析了带旁路流量卸荷阀的电液流量匹配控制系统与负载敏感系统的响应性、节能性和稳定性。
     第四章,分析了电液流量匹配控制系统的流量误差因素及其影响。试验研究了系统负载压力对电比例泵流量特性的影响,并采取了基于压力特性的开环流量补偿方法,通过试验数据表对系统流量进行线性插值补偿。为适应高精度系统和工况要求,提出基于油缸速度的间接流量闭环控制方法,并对挖掘机单执行机构动作和复合动作进行变负载、变速度工况特性试验研究。
     第五章,分析了LUDV多路阀电液流量匹配控制系统的原理及特性。以阀前补偿多路阀系统为对比,详细阐述了LUDV多路阀电液流量匹配控制系统的动静态流量与压力特性。建立了基于Adams和AMEsim软件的机液耦合仿真模型。提出了改进节能性的阀口控制策略,仿真与试验对比研究了LUDV负载敏感系统和电液流量匹配控制系统的响应、稳定和节能性。
     第六章,对本论文所作的研究工作进行总结,给出主要的研究结论,指出课题的创新点,并对未来的研究工作进行展望。
Hydraulic system is an important part of excavator, and its performance is highly related to the operability and energy-saving of machinery. In the conventional load-sensing (LS) systems, the requirements of systems flow and pressure are met by closed-loop pressure control with the feedback of maximum load pressure. However, in the electrohydraulic flow matching control (EFMC) systems, when the electro-proportional valve opens, the electro-proportional pump supplies the required flow by open-loop flow control, and the pressure difference between the system pressure and maximum load pressure is not needed to be preset. Therefore, the flexibility and controllability of EFMC systems are improved. The control methods for flow matching between the electro-proportional pumps and electro-proportional valves are great challenges to mobile machinery. In this thesis, the characteristics and control methods of EFMC systems have been investigated and applied to a2-ton prototype excavator, as compared with the conventional LS system.
     In this thesis, a new method of pressure and flow compound control was proposed. Using the method proposed, the EFMC systems based upon pre-compensation multi-way valves had the advantages of closed-loop pressure control in electrohydraulic LS systems and the advantages of open-loop flow control in general EFMC systems. Therefore, the closed-loop pressure control and open-loop flow control could be chosen under different working conditions. When the flow of the EFMC system was excessive, closed-loop pressure control was used in the system, or alternatively open-loop flow control was adopted, hence the problems of energy loss and overflow could be solved. Moreover, the pressure shock of the system was effectively surpressed when the actuators instantaneously stopped or quickly switched. When compared with the conventional LS system in excavating test mode, the energy consumption of the EFMC system was reduced by10%and the efficiency was increased by10%in the EFMC system. An experimental prototype of a2-ton excavtor equipped with the EFMC system was developed, and a corresponding virtual prototype model was built based on AMEsim and Adams. Moreover, a new method for flow control was proposed by adding a bypass unloading valve in the EFMC system. According to the system pressure and maximum load pressure, the unloading valve could be opened to discharge excessive flow, hence the problems of overflow and energy loss could be effectively solved. Compared with the conventional LS system, the pressure margin of the EFMC system was reduced by0.6-0.7MPa and the step response time was shortened about0.5s in the EFMC system with the unloading valve, as well as the stability of the system was enhanced. Furthermore, a new control method for improving the energy efficiency has been proposed for the EFMC systems based on LUDV (Load Independent Flow Distribution) multi-way valves (LUDV-EFMC). Adopting the new method, when the flow demand of the actuator was highest, the corresponding control valve was fully opened, and the opening of the other valves were proportional to operator signals. The experimental results showed that, compared with the LUDV LS system in excavating test mode, the pressure margin of LUDV-EFMC was reduced by0.8-1MPa and energy consumption was decreased by12%in the LUDV-EFMC system. All research results could be used as references for the further investigation and application.
     The thesis is outlined as follows:
     In chapter1, the principles and characteristics of typical hydraulic systems in existing excvavtors were summarized, and a new kind of hydraulic system-the EFMC system was introduced. The research background and current research progress of EFMC systems were reviewed all over the world. Then, the main research objective, significance and topic of the study in the thesis were presented and discussed.
     In chapter2, the principles and characteristics of the pre-compensation EFMC (PC-EFMC) system were analyzed. The experimental prototype of the excavator was developed, and the virtual prototyping co-simulation model was built. The response, energy efficiency and stability of the PC-EFMC system were all investigated when compared with the conventional LS system. As key problems, the flow saturation and overhead flow matching control were solved. The controller with the capability of anti-saturation was designed, and the method of the pressure and flow compound control was proposed.
     In Chapter3, the principles and characteristics of the PC-EFMC system with an unloading valve as a bypass were analyzed in detail. The influences of different flow matching relationships on the operation characteristics and the energy loss of the excvavtor were studied. The system characteristics were experimentally investigated under the condition of flow saturation. The controller with the capability of anti-saturation was developed. The performance of response, energy efficiency and stability all were analyzed comparatively between the LS system and the PC-EFMC system with an unloading valve.
     In chapter4, the factors and impact of flow error in EFMC systems were analyzed. The influence of load pressure on the flow characteristics of the electro-proportional pump was experimentally studied, and an open-loop compensation method was presented to solve the effect based on pressure characteristics. With the experimental datasheet, the system flow was compensated by linear interpolation. To meet the requirements of high-precision system and working condition, a control method of indirect flow close-loop based on the cylinder velocity was proposed. Then, the velocity characteristics of single and compound action were experimentally investigated with different loads and reference velocities.
     In chapter5, the EFMC system based on LUDV multi-way valves (LUDV EFMC) was analyzed on the principle and characteristics. The dynamic, static flow and pressure characteristics of the LUDV EFMC system were studied in detail, as compared with the PC-EFMC system. Based on Adams and AMEsim, the simulation model of hydraulic-mechanical was built. A new control method for improving the energy efficiency has been proposed. Compared with the LUDV LS system, the response characteristics, energy efficiency and stability of LUDV EFMC system of the excavator were analyzed under the conditions of different actions and loads.
     In chapter6, all the research contents are summarized, and some new views are put forward in the future.
引文
[1]Inderelst M, Losse S, Sgro S, et al. Energy Efficient System Layout for Work Hydraulic of Excavators[C]. The Twelfth Scandinavian International Conference on Fluid Power, Tampere, Finland,2011.
    [2]Egawa M, Kawasaki H. Study of Electro-Hydraulic Energy Saving System EHESS for Construction Machinery[C]. The Twelfth Scandinavian International Conference on Fluid Powe, Tampere, Finland,2011.
    [3]Eriksson B. Mobile Fluid Power Systems Design:with a Focus on Energy Efficiency[D]. Ph.D. thesis,Department of Management and Engineering,Linkopings University,2010.
    [4]焦生杰.工程机械机电液一体化[M].北京:人民交通出版社,2000.
    [5]王庆丰,魏建华,吴根茂.工程机械液压控制技术的研究进展与展望[J].机械工程学报,2003,39(12):51-56.
    [6]Finzel R. Elektrohydraulische Steuerungssysteme fur mobile Arbeitsmaschinen[D]. Technische Universitat Dresden,2010.
    [7]Sgro S, Inderelst M, Murrenhoff H. Energy Efficiency of Mobile Working Machines[C].7th International Fluid Power Conference, Aachen, Germany,2010.
    [8]Shenouda A, Book W. Energy saving analysis using a four-valve independent metering configuration controlling a hydraulic cylinder[C].2005 SAE Commercial Vehicle Engineering Conference, Chicago,2005.
    [9]Zimmerman J, Ivantysynova M. Hybrid Displacement Controlled Multi-actuator Hydraulic Systems[C]. The Twelfth Scandinavian International Conference on Fluid Power, Tampere, Finland,2011.
    [10]Kontz M E, Huggins J D, Book W J, et al. Improved control of open-center systems for haptic applications[C]. ASME 2005 International Mechanical Engineering Congress and Exposition (IMECE2005), Orlando,FL, USA 2005.
    [11]Pedersen H C, Andersen T O, Hansen M R. Load sensing systems-A review of the research contributions throughout the last decades[C]. The 6th International Fluid Power Conference, Dresden, Germany, 2008:125-137.
    [12]高峰.液压挖掘机节能控制技术的研究[D].杭州:浙江大学,2001.
    [13]王庆丰,顾临怡,路甬祥.基于压差传感的电液进出口节流独立调节原理及控制特性研究[J].机械工程学报,2001,37(4):21-24.
    [14]Krus P. On Load Sensing Fluid Power Systems:With Special Reference to Dynamic Properties and Control Aspects[D]. Department of Mechanical Engineering, Linkping University,1988.
    [15]Lantto B. On fluid power control:with special reference to load-sensing systems and sliding mode control[D]. Linkoping University,1994.
    [16]尹永峰,苏彰道,张荣瑞.液压挖掘机的操作性能分析方法[J].重庆建筑大学学报,1995,17(3):43-48.
    [17]顾临怡,谢英俊.多执行器负载敏感系统的分流控制发展综述[J].机床与液压,2001,3:3-6.
    [18]叶鹏飞,勇郭,王勇刚,等.一种三位六通阀仿真分析研究[C].第五届全国流体传动与控制学术会议暨2008年中国航空学会液压与气动学术会议,北京,2008.
    [19]曾定荣.多路阀综合试验系统设计及试验研究[D].杭州:浙江大学,2010.
    [20]高峰,潘双夏.液压挖掘机负流量负荷传感控制策略[J1.农业机械学报,2005,36(7):111-113.
    [21]Djurovic M, Helduser S. New control strategies for electrohydraulic load sensing[C]. The Bath Workshop on Power Transmission and Motion Control, Bath,2004:201-210.
    [22]马永辉,徐宝富.工程机械液压系统设计计算[M].北京:机械工业出版社,1985.
    [23]Ukrainetz P, Bitner D, Nikiforuk P. Load Interaction in a Multi-Load Load Sensing Pump Driven Hydraulic System[C]. Proceeding of the 41st national conference on fluid power, Detroit,1986.
    [24]Zarotti L, Nervegna N. Saturation Problems in Load Sensing Architectures[C]. The 43rd National Conference on Fluid Power, Chicago, USA,1988.
    [25]Lantto B, Palmberg J O, Krus.P. Static and dynamic performance of mobile load-sensing systems with two different types of pressure-compensated valves[J]. Society of Automotive Engineers,1990:251-265.
    [26]Lantto B, Krus P, Palmberg J. Interaction between loads in load-sensing systems[C]. The 2nd Tampere International Conference on Fluid Power, Tampere, Finland,1991:19-21.
    [27]Zahe B. Energiesparende Schaliungen hydraulischer Aniriebe mit veranderlichem Versorgungsdruck and ihre Regelung[D]. Aachen:RWTH Aachen University,1993.
    [28]Aoki Y, Uehara K, Hirose K, et al. Load sensing fluid power systems[J]. SAE Trans,1994,103:139-153.
    [29]Kim S, Cho H, Lee C. Stability analysis of a load sensing hydraulic system[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Power and Process Engineering 1988,202(21):79-88.
    [30]张新海,何清华,张海涛.挖掘机负荷传感液压系统中的压力补偿[J].工程机械,2005,36(7):60-63.
    [31]吴根茂,邱敏秀,王庆丰,等.新编实用电液比例技术[M].杭州:浙江大学出版社,2006.
    [32]张大庆.液压挖掘机工作装置运动控制研究[D].长沙:中南大学,2006.
    [33]孔晓武.带长管道阀控系统的动态特性研究[D].杭州:浙江大学,2003.
    [34]Backe W, Zahe B. Electrohydraulic loadsensing[J]. Society of Automotive Engineers,1991:11-19.
    [35]Backe W, Zahe B. Electrichydraulic load sensing[J]. SAE Trans,1991,100:303-311.
    [36]Esders H. Elektrohydraulisches Load Sensing fur mobile Anwendungen[J]. Olhydraulik und Pneumatik, 1996,40(7):444-445.
    [37]Maiti R, Pan S, Bera D. Analysis of a Load Sensing Hydraulic Flow Control Valve[C].3rd JHPS International Symposium on Fluid Power Yokohama, Japan,1996:307-312.
    [38]Volker B. Veriustarme Leistungsentnahme aus einem hiydrauliknetz[C].12. AFK, Aachen,German,1996.
    [39]Book R, Goering C E. Load sensing hydraulic system simulation[J]. Applied Engineering in Agriculture, 1997,13(1):17-25.
    [40]顾临怡.大惯性负载进出口独立调节数字控制及多执行器复合控制研究[D].杭州:浙江大学,1998.
    [41]颜荣庆.现代工程机械液压系统分析[M].北京:人民交通出版社,1998.
    [42]Lettini A, Havermann M, Guidetti M, et al. Electro-Hydraulic Load Sensing:a Contribution to Increased Efficiency Through Fluid Power on Mobile Machines[C].2010.
    [43]Lettini A, Havermann M, Guidetti M, et al. Improved Functionalities and Energy Saving Potential on Mobile Machines Combining Electronics with Flow Sharing Valve and Variable Displacement Pump[C].7th International Fluid Power Conference, Aachen, Germany,2010:
    [44]Pedersen H C, Andersen T O, Hansen M R. A Review of the Research Contributions throughout the last Decades,[C]. The 4th International Fluid Power Conference, Dresden, German,2004.
    [45]Uehara K, Tominaga H. Energy saving on hydraulic systems of excavators[J]. SAE Trans 1982,821057.
    [46]Mettala" K, M. Djurovic M, Keuper G, et al. Intelligent Oil Flow Management with EFM:The Potentials of Electrohydraulic Flow Matching in Tractor Hydraulics[C]. The Tenth Scandinavian International Conference on Fluid Power, SICFP'07, Tampere, Finland,2007:25-34.
    [47]Munzer M E. Resolved Motion Control of Mobile Hydraulic Cranes[D]. Denmark:Aalborg University, 2002.
    [48]Murrenhoff H. Trends and some recent developments in Mobile Hydraulics[M].2007.
    [49]Djurovic M. Energiesparende Antriebssysteme fur die Arbeitshydraulik mobiler Arbeitsmaschinen' Elektrohydraulisches flow matching"[D]. Technische Universitat Dresden,2007.
    [50]Djurovic M, Helduser S. Elektrohydraulisches Load-Sensing[J]. Olhydraulik und Pneumatik,2004,11.
    [51]Djurovic M, Helduser S. Elektrohydraulisches Load-Sensing-Neue Losungen fur mobile Arbeitsmaschinen[J]. Olhydraulik und Pneumatik,2004,48(10):635-640
    [52]Djurovic M, Keuper G, Stachnik P. Intelligentes Olmanagementmit:EFM:Applikation und potentiale des elektrohydraulischen flow matching am beispiel traktor[C]. Kolloquium Mobilhydraulik, Braunschweig, 2006:1-10.
    [53]Fedde T, Harms, H.-H. An adaptive hydraulic system for mobile applications[C]. The 5th International Fluid Power Conference, Aachen,German,2006:95-106.
    [54]Fedde T. Elektrohydraulische Bedarfstromsysteme am Beispiel eines Traktors[D]. University of Braunschweig,2008.
    [55]Fedde T, Harms H-H. Adaptable hydraulic system for tractors[J]. VDI BERICHTE,2005,1895:261-268.
    [56]Fedde T, Lang T, Harms H H. An adaptable hydraulic system for tractors[C]. Power Transmission and Motion Control 2005, Bath,2005.
    [57]Fedde T, Lang T, Harms H H. An Adaptive Hydraulic System for Tractors[J]. Landtechnik,2006,60(3): 130-131.
    [58]Finzel R, Helduser S. Energy-Efficient Electro-Hydraulic Control Systems for Mobile Machinery/Flow Matching[C]. The 6th International Fluid Power Conference, Dresden,2008.
    [59]Finzel R, Helduser S. New electro-hydraulic control systems for mobile machinery. [C]. Fluid Power and Motion Control (FPMC2008), Bath,2008.
    [60]Finzel R, Helduser S, Djurovic M. Neue Losungen beim elektrohydraulischen Load-Sensing fur mobile Arbeitsmaschinen[C]. Fachtagung Baumaschinen, Dresden,2006.
    [61]Finzel R, Helduser S, Jang D S. Electro-hydraulic control systems for mobile machinery with low energy consumption [C]. The Seventh International Conference on Fluid Power Transmission and Control, Hangzhou,China,2009.
    [62]Finzel R, Helduser S, Jang D S. Electro-Hydraulic Dual-Circuit System to Improve the Energy Efficiency of Mobile Machines[C]. The 7th International Fluid Power Conference, Aachen, Germany,2010.
    [63]Jongebloed H, Buren D, Volkel U, et al. Energy-Saving Valve System for Mobile Applications-Load-Control-System (LCS)[C]. The 4th International Fluid Power Conference, Dresden,2004.
    [64]Hansen M R, Andersen T O, Pedersen H C. Robust Electric Load Sensing Applied to an Open Circuit Axial Piston Pump[C].2006 ASME International Mechanical Engineering Congress and Exposition,2006.
    [65]Hansen M R, Andersen T O, Pedersen H C, et al. Feasibility Study of Electronic Load Sensing Concept for Hydraulic Variable Displacement Pump[C].7th International Conference in Education and Mechatronics, Sweden,2006.
    [66]Hansen R H. Advanced Power Management of a Telehandler using Electronic Load Sensing[C]. The 10th International Workshop on Research and Education in Mechatronics, REM2009, Glasgow,United Kingdom, 2009.
    [67]Hansen R H, Andersen T O, Pedersen H C. Development and Implementation of an Advanced Power Management Algorithm for Electronic Load Sensing on a Telehandler[C]. The ASME Symposium on Fluid Power and Motion Control,FPMC 2010, Bath,United Kingdom,2010.
    [68]Hansen R H, Iversen A M, Jensen M S, et al. Modeling and Control of a Teletruck Using Electronic Load Sensing[C]. The ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis,ESDA2010, Istanbul, Turkey,2010.
    [69]Pedersen H C. Automated Hydraulic System Design and Power Management in Mobile Applications [D]. Department of Energy Technology,Aalborg University,2007.
    [70]Harms H H. Entwicklungstendanzen is der Mobilhyaraulik[C].11th Fluid Power Conference, Aachen,German,1994.
    [71]Helduser S, Djurovic M. Control Strategies for load-sensing in mobile machinery [C]. The Sixth International Conference on Fluid Power Transmission and Control, Hangzhou,China,2005.
    [72]Grosbrink B, Harms H H. Control concept for an advanced load-sensing system[C]. The Seventh International Conference on Fluid Power Transmission and Control, Hang Zhou,China,2009:201-204.
    [73]Grosbrink B, Harms H H. Alternating Pump Control for a Load-Sensing System[C]. The 7th International Fluid Power Conference, Aachen, Germany,2010.
    [74]Axin M. Displacement Controlled Fluid Power System with Flow Sharing Capabilities[D]. Department of Mechanical Engineering, Linkping University,2009.
    [75]Axin M, Eriksson B, Palmberg J O. Energy Efficient Load Adapting System Without Load Sensing: Design and Evaluation[C]. The 11th Scandinavian International Conference on Fluid Power, SICFP'09, Linkoping, Sweden,2009.
    [76]Axin M, Eriksson B, Palmberg J O, et al. Dynamic Analysis of Single Pump, Flow Controlled Mobile Systems[C]. The Twelfth Scandinavian International Conference on Fluid Power, Tampere, Finland,2011.
    [77]Eriksson B. Control Strategy for Energy Efficient Fluid Power Actuators[D]. Master's thesis,Department of Management and Engineering,Linkopings University,2007.
    [78]Eriksson B, Palmberg J O. How to handle auxiliary functions in energy efficient, single pump, flow sharing mobile systems[C]. The 7th International Fluid Power Conference, Aachen, Germany,2010.
    [79]Eriksson B, Rosth M, Palmberg J O. A High Energy Efficient Mobile Fluid Power System:Novel System Layout and Measurements[C]. The 6th International Fluid Power Conference, Dresden, Germany,2008.
    [80]Latour C. Elektrohydraulisches Flow Matching (EFM)-Die nachste Gene-ration von Load-Sensing Steuerungen[C]. Fachbeitrag Mobile 2006,Internationaler Fachkongress fur Mobilhydrau-lik, German,2006.
    [81]Latour C. Electrohydraulic Flow Matching (EFM)-The next generation of Load Sensing Controls [M]. Off Highway March.2007.
    [82]武宏伟.挖掘机负载敏感系统的联合仿真及能耗分析[D].太原:太原理工大学,2008.
    [83]权龙.工程机械多执行器电液控制技术的研究现状及最新进展[J].液压气动与密封,2010,30(1):40-46.
    [84]Baumgarten T S, Grosbrink B, Lang T, et al. A novel system layout for extended functionality of mobile machines[C]. Fluid Power and Motion Control (FPMC 2008), Bath,2008.
    [85]Borghi M, Zardin B, Mancarella F, et al. Energy Consumption of the Hydraulic Circuit of a Mid-Size Power Tractor[C]. The 7th International Fluid Power Conference, Aachen, Germany,2010.
    [86]Duqiang W. Modeling and experimental evaluation of a load-sensing and pressure compensated hydraulic system[D]. Canada:University of Saskatchewan,2003.
    [87]Eckhard S, Gerhard G. Mobile Hydraulics-An Overview[C]. The 5th International Fluid Power Conference, Aachen, Germany,2006.
    [88]Casoli P, Anthony A. Modeling of an Excavator-Pump Nonlinear Model and Structural Linkage/Mechanical Model[C]. The Twelfth Scandinavian International Conference on Fluid Power, Tampere, Finland,2011.
    [89]Cetinkunt S, Pinsopon U, Chen C, et al. Positive flow control of closed-center electrohydraulic implement-by-wire systems for mobile equipment applications[J]. Mechatronics,2004,14(4):403-420.
    [90]Chen C. Digital control of wheel loader bucket hydraulic system using closed center valves and variable displacement pump[D]. University of Illinois at Chicago, Chicago,1999.
    [91]Hamzaoglu T. ElektrohIdrollk akiS eSleStIrmenIn (efm) traktOr hIdrolIk sIstemlerlndekI potansIyellerI [J]. V. ULUSAL HIDROLIK PNOMATIK KONGRESI,2007:15-21.
    [92]Frankel J G. Development of a haptic backhoe testbed[D]. Georgia Institute of Technology,2004.
    [93]Frankel J G, Kontz M E, Book W J. Design of a testbed for haptic control of hydraulic systems[C].2004 ASME International Mechanical Engineering Congress and Exposition, Anaheim,USA,2004.
    [94]许益民.电液比例控制系统分析与设计[M].北京:机械工业出版社,2005.
    [95]李壮云,葛宜远.液压元件与系统[M].北京:机械工业出版社,1999.
    [96]宋鸿尧,丁忠尧.液压阀设计与计算[M].北京:机械工业出版社,1982.
    [97]Limin S, Shijie A, Hanbao C, et al. Study on Real-Time Test-Bench of Speed Governor Using Matlab/xPC Target[C]. The Eighth International Conference on Electronic Measurement and Instruments(ICEMI'2007), Xi'an,China,2007:327-331.
    [98]王敏,项昌乐,马越.基于xPC目标环境的数据采集系统[J].测试技术学报,2004,18(3):228-231.
    [99]Aaron R E, Wayne J B. A hardware-in-the-loop simulation testbed for emulating hydraulic loads representing the complete dig cycle of a construction machine[C].2008 ASME International Mechanical Engineering Congress and Exposition, Boston, Massachusetts, USA,2008.
    [100]Low K H, Wang H, Wang M Y. On the development of a real time control system by using xPC Target: solution to robotic system control[C].2005 IEEE International Conference on Automation Science and Engineering, Edmonton,Canada,2005:345-350.
    [101]Peilin S, Lidong M, Guangde Z, et al. Development of uniform hardware driver for Real-Time Windows and xPC Target[C].2009 Second International Conference on Information and Computing Science, Washington,USA,2009.
    [102]和平安,石圩,马鸿峰,et a1.基于xPC Target的TIG焊PID控制实时仿真[J].兰州理工大学学报,2009,35(1):13-16.
    [103]吉智,何凤有,窦春雨Matlab/xPCTarget实时数据采集平台研究[J].工程地质计算机应用,2008,4(52):1-5.
    [104]冀谦.小型液压挖掘机斗杆与铲斗回路分析与可控性研究[D].长沙:中南大学,2008.
    [105]王春行.液压控制系统[M].北京:机械工业出版社,1999.
    [106]朱世强,王宣银.机器人技术及其应用[M].杭州:浙江大学出版社,2001.
    [107]Liu Y, Hasan M S, Yu H N. Modelling and remote control of an excavator[J]. International Journal of Automation and Computing,2010,7(3):349-358.
    [108]Grossschmidt G, Harf M. Modelling and simulation of a hydraulic load-sensing system in the CoCoViLa environment[C]. Proceedings of the 6th International Conference of DAAAM Baltic Industrial Engineering, Tallinn, Estonia,2008.
    [109]徐绳武.柱塞式液压泵[M].北京:机械工业出版社,1985·
    [110]王炎,胡军科,杨波.负载敏感泵的动态特性分析与仿真研究[J].现代制造工程,2008,(12):84-87.
    [111]Kappi T. Semiempirical Model for Variable Displacement Pump with Load Sensing Regulator and Power Restrictor[C]. The 2001 ASME International Mechanical Engineering Congress and Exposition (IMECE 2001), New York,2001.
    [112]Kappi T, Ellman A. Modelling and Simulation of Proportional Mobile Valves[C]. The 4th JHPS International Symposium on Fluid Power, Tokyo,Japan,1999:15-17.
    [113]盛敬超.液压流体力学[M].北京:机械工业出版社,1981.
    [114]Kilic B. Dynamic modelling of a backhoe-loader [D]. Middle East Technical University,2009.
    [115]Kontz M E. Haptic enhancement of operator capabilities in hydraulic equipment[D]. Master's thesis,Georgia Institute of Technology,2002.
    [116]黎启柏.电液比例控制与数字控制系统[M].北京:机械工业出版社,1997.
    [117]刘静.挖掘机器人虚拟样机建模技术及其应用研究[D].杭州:浙江大学,2005.
    [118]Grossschmidt G, Harf M. Design of a Hydraulic-Mechanical Load-Sensing System using Object-Oriented Modelling and Simulation[C].21st European Conference on Modelling and Simulation ECMS 2007:Simulations in United Europe, Prague, Czech Republic,2007:383-390.
    [119]Lim T H, Cho H C, Lee H S, et al. Development of Hardware In the Loop System (HILS) for Hydraulic Excavator[C].22nd International Symposium on Automation and Robotics in Construction, Ferrara,Italy,2005.
    [120]Andersen T O, Hansen M R, Pedersen H C. Experimenting with Electrical Load Sensing on a Backhoe Loader[C]. The Sixth International Conference on Fluid Power Transmission and Control (ICFP'2005), Hangzhou,China,2005:171-175.
    [121]Andersen T O, Pedersen H C, Hansen M R. Controlling a Conventional LS-pump based on Electrically Measured LS-pressure[J]. Proceeding of the Fluid Power and Motion Control (FPMC'08). Bath University,2008.
    [122]Backe W, Feigel H J. Neue Moglichkeiten beixn elektrohydraulischen Load-Sensing[J]. O+P Olhydraulik and Pneumatik,1990,34(2):106-114.
    [123]Gyongy I J, Clarke D W. On the automatic tuning and adaptation of PID controllers[J]. Control engineering practice,2006,14(2):149-163.
    [124]张栋,许纯新,金立生,等.挖掘机单神经元比例-积分-微分节能控制系统[J].西安交通大学学报,2004,38(5):529-532.
    [125]陈欠根,纪云锋,吴万荣.负载独立流量分配(LUDV)控制系统[J].液压与气动,2003,(10):10-11.
    [126]杜海岩.工程机械概论[M].成都:西南交通大学出版社,2004.
    [127]顾临怡,谢英俊.多执行器负载敏感系统的分流控制发展综述[J].机床与液压,2001,(3):3-6.
    [128]Marani P, Ansaloni G, Paoluzzi R, et al. Test Methods for Flow Sharing Directional Valves[C]. PTMC Symposium 2006, Bath, UK,2006.
    [129]Wu D, Burton R, Schoenau G, et al. Analysis of a pressure-compensated flow control valve[J]. Journal of Dynamic Systems, Measurement, and Control,2007,129:203-211.
    [130]Heybroek K. Saving Energy in Construction Machinery using Displacement Control Hydraulics: Concept Realization and Validation [D]. Linkping University,2008.
    [131]Manasek R, Ostrava V. Simulation of a electrohydraulic load-sensing system with ac motor and frequency changer[C]. Proceedings of the 1st FPNI-PhD Symposium, Slovakia,2000:311-324.
    [132]Lim T H, Lee H S, Yang S Y. Simulator for Hydraulic Excavator[C]. ICCAS2005, KINTEX, Gyeonggi-Do, Korea,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700