换热器在线防、除垢技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
N,N-二甲基甲酰胺(N,N-dimethyllformamide)又名甲酰二甲胺,简称DMF,DMF生产工艺中的换热器在换热冷却过程中在换热管内壁生成一层污垢,造成设备生产能力下降、物料流失、能耗增大、生产成本上升。为解决此问题,提出了内置弹簧和液固流态化结合除垢以及脉冲除垢新方法,并进行了实验研究。
     首先分析了实际工业换热器中结垢物的成分,结果表明结垢物主要由甲酸钠、碳酸钠和碳酸氢钠组成。结垢机理为结晶结垢和微粒沉积结垢混合机理。
     内置弹簧除垢实验,研究了DMF溶液进口温度T、流体流速u、弹簧直径与换热管内径之比r、弹簧螺距与换热管内径之比φ对换热器在线防、除垢效果的影响,通过正交试验得到了一组最优组合条件:u=1.0 m/s、T=50℃、φ=1.5、r=0.8。
     液固流态化实验表明,在一定的操作条件下,流化颗粒可以使污垢减少40%左右,起到一定的防、除垢效果,随着颗粒数目的增加和颗粒直径的增大,污垢形成速率降低,结垢量减少。
     内置弹簧和液固流态化结合除垢实验表明,加入弹簧后污垢的形成机理并没有发生变化,在相同实验条件下,与单独液固流态化除垢方法相比,两者结合的方法可以使污垢减少20%—50%。
     脉冲防、除垢实验研究了球形钢珠的数量、弹簧的长度、泵的停止时间、泵的运行时间等因素对除垢效果的影响,颗粒数量越多、弹簧越长,除垢效果越好。脉冲实验结果表明该方法可以使换热器污垢减少50%—70%。
     对五种换热器在线防、除垢技术进行了对比与评价,提出工业装置改进思路,并简述其工作原理。
Fouling is formed on the tube wall when the heat exchanger in the N, N-dimethylformamide(DMF)production process is cooled down,which can lead to decline of production capacity、material loss、increased energy consumption、rise of production cost.In order to solve this problem,some innovative anti-fouling methods were put forward in this paper,and experiments were conducted in our lab.
     First,the composition of fouling was analyzed.The result shows that the fouling is composed of sodium formate、sodium carbonate and sodium bicarbonate.The experiment showed that the scaling mechanism was crystallization scaling combined with particulate scaling.
     The effects of inlet temperature of DMF(T)、liquid velocity(u)、ratio of spring diameter and tube diameter(r)、ratio of screw-pitch and tube diameter(φ)on the anti-fouling of heat exchangers were investigated and analyzed.The optimal parameters were gotten through the orthogonal experiment:u=1.0 m/s,T=50℃,φ=1.5,r=0.8.
     The experiment of liquid-solid fluidized bed showed that:the fluidized particles can reduce the scale by 40%,the rate of sacling forming and the fouling weight decreased with the increase of particle number and particle diameter.The scaling mechanism was not affected by inserting spring,but the method of liquid-solid fluidized bed combined with inserted spring can improve the anti-fouling effect by 20%-50%comparing with method of liquid-solid fluidized bed under the same experimental conditions.
     The effects of particle number、length of spring、off- time of pump、pump operating time on anti-fouling of heat exchanger were investigated through pulse experiment,the results showed that the anti-fouling effect increased with the increase of particle number and length of spring.
     Finally,five on-line methods were compared and evaluated,improvement idea of industrial plant was proposed and its principle was simply introduced.
引文
[1]杨善让,徐志明.换热设备的污垢与对策[M].北京:科学出版社,1995.
    [2]Steingagen R,Steingagen H M and Maani K.Problems and costs due to heat exchanger fouling in New Zealand industries[J].Heat Transfer Engineering,1993,14(1):19-30.
    [3]Garrett-Price B A.Fouling of heat exchangers-characteristics,costs,prevention,control and removal[M].Park Ridge:Noyes Publication,1985.
    [4]马红钦,朱慧铭,谭欣,赵林,温金德,李志方.流化床预热脱硅技术研究[J].有色金属,2001,53(3):24-27.
    [5]张锁龙,肖立川,刘敏珊,董其伍.管内置弹性珠换热管的换热及结垢性能研究[J].化学工程,2005,33(5):22-25.
    [6]程立新,杨杰辉.换热设备防结垢技术进展[J].石油化工设备,2000,29(4):21-24.
    [7]施明恒,赵言冰,刘中良.固体颗粒强化液体沸腾换热和抗垢特性的研究[J].东南大学学报,2002,32(3):419-423.
    [8]李国柱,丛海涛,罗宗仁.循环水系统水冷设备腐蚀原因及对策[J].石油化工腐蚀与防护,2003,20(5):37-38.
    [9]LGS软件工作室.化学品电子手册[M].北京:化学工业出版社,2006.
    [10]王玉荣.国内外DMF的生产与消费[J].化工科技市场,2004,(12):32-37.
    [11]刘兴泉,唐毅,戴汉松.N,N-二甲基甲酰胺的生产与应用[J].化工科技,2002,10(1):46-49.
    [12]Epstein N.Fouling in heat exchangers.Proceedings of the 6~(th)Int Heat Transfer Conference[C].Washington:Hemissphere,1979,(6):235-253.
    [13]Mwaba M G,Golriz M R,Gu J.A semi-empirical correlation for crystallization fouling on heat exchanger surfaces[J].Applied Thermal Engineering,2006,(26):440-447.
    [14]王睿.传热面的结垢机理与阻垢剂阻垢作用机理的研究[D].大连:大连理工大学,1996.
    [15]Helalizadeh A,Müller-Steinhagen H,Jamialahmadi M.Mixed salt crystallization fouling[J].Chemical Engineering and Processing,2000,(39):29-43.
    [16]Bott T R.Aspects of crystallization fouling[J].Experimental Thermal and Fluid Science,1997,14:356-360.
    [17]Rogues H,Girou A.Kinetics of the formation conditions of carbonate tartars[J].Water Research,1974,8(11):907-920.
    [18]Troup D H,Richardson J A.The link between the corrosion and calcium carbonate scaling susceptibilities of heat transfer surfaces[J].Materials and Corrosion,1978,29(5):312-316.
    [19]lzumi K,Takahashi S,Sawa T.Int Symposium on Fresh Water from the Sea[C].Athen,1978,201-206.
    [20]杨传芳,徐敦颀,沈自求.表面材质及Mg~(2+)对CaCO_3结垢的影响[J].高校化学工程学报,1994,8(4):313-317.
    [21]Banchero J G,Gordon S H.Fouling of heat transfer equipment[M].New York:Hemisphere Publication Corporation,1997.
    [22]Recht N.Proc 6~(th)Int Heat Transfer Conference:Heat Transfer[C].Washington:Hemisphere,1987,235-243.
    [23]Dawe R A,Zhang Y.Kinetics of calcium carbonate scaling using observations from glass micromodels[J].Journal of Petroleum Science and Engineering,1977,18(3):179-183.
    [24]Kern D Q,Seaton R E.A theoretical analysis of thermal surface fouling[J].British Chemical Engineering,1959,4(5):258-262.
    [25]王新祥.换热设备结垢机理的研究进展[J].现代化工,2002,22(4):22-25.
    [26]Hasson D,Zahavi J.Mechanism of calcium sulfate scale deposition on heat transfer surfaces[J].Industrial & Engineering Chemistry Fundamentals,1970,9(1):1-10.
    [27]Müller-Steinhagen H M,Branch C A.Influence of thermal boundary conditions on calcium carbonate fouling in double pipe heat exchangers[J].Chemical Engineering and Processing,1988,24(22):65-73.
    [28]Ritter R B.Heat transfer in a gray planar medium with linear anisotropic scattering[J].Trans ASME J Heat Transfer,1975,97:77-79.
    [29]Karnaukhow L R,Stefains S K,Ciric A R.Proceeding 6th Intern Symposium on Fresh Water from the Sea[C].Athens,1978,211-216.
    [30]Chernozubov V B,Douglas J M,Jognson S W.Proceedings 4th Intern Symposium on Fresh Water from the Sea[C].Heidelgerg,1973,57-59.
    [31]栗田工业水处理药剂手册编委会.水处理药剂手册[M].章振夫泽.北京:中国石化出版社,1994,119.
    [32]张少峰,刘燕.换热设备防、除垢技术[M].北京:化学工业出版社,2003.
    [33]Najibi S H,Müller-Steinhagen H,Jamialahmadi M.Calcium sulphate scale formation during sub-cooled flow boiling[J].Chemical Engineering Science,1997,52:1265-1284.
    [34]Watkinson A P,Louis L,Brent R.Scaling of enhanced heat exchanger tube[J].Canadian Journal of Chemical Engineering,1974,52:558-562.
    [35]Hasson D,Avriel M,Resnick W.Mechanism of calcium carbonate deposition on heat transfer surfaces[J].I&EC Fundamentals,1968,7:59-66.
    [36]Story M K.Surface temperature effects on the fouling characteristic of cooling water:[M.S.Thesis].USA:Oregon State University,1975.
    [37]Watkinson A P,Martinez O.Scaling of heat exchanger tubes by calcium carbonate[J].ASME J Heat Transfer,1975,(11):504-508.
    [38]任晓光,刘长厚.传热表面对电解质溶液中CaSO_4结垢过程的影响[J].化工学报,2001,52(7):654-656.
    [39]薛福连.新型螺旋换热器的节能效益分析[J].武汉化工,1999,(3):29-31.
    [40]Somerscales E F C,Knudsen J G.Fouling of Heat transfer,Proceedings of A Conference[C].New York:Hemisphere Publishing Corporation,1981.
    [41]Epstein N.Thinking about heat transfer fouling:15×5 matrix[J].Heat Transfer Engineering,1983,4(1):43-56.
    [42]俞秀民,传热设备污垢清洗及其传热强化技术[J].石油化工设备,1990,19(2):35-37.
    [43]俞秀民,俞天兰,叶施仁.列管式水冷设备自转塑料纽带自动除垢防垢技术[J].湘潭大学自然科学学报,1998,(3):120-123.
    [44]Match M P.Scale control in high temperature distillation utilized fluidized bed heal exchangers[J].Research and Development Rept.,1970,571.
    [45]Allen C A,Grimmett E S.Liquid-fluidized-bed heat exchanger design parameters.Department of Energy,1978,(4):1570.
    [46]Richardson J F,Zaki W N.Sedimentation and fluidization[J].Transactions of the Institute of Chemical Engineers,1954,32:35-53.
    [47]Klaren D G.Development of a vertical flash evaporator[Ph.D.Thesis].Delft University of Technology,1975.
    [48]Merjer J A M.Inhibition of calcium sulfate scale by a fluidized bed[Ph.D.Thesis].Delft University of Technology,1984.
    [49]Veenman A W.A review of new development in desalization by distillation process[J].Desalization,1978,27:21-39.
    [50]Kollbach J St,Rautenbach R.Continuous cleaning of heat transfer in heat exchanger with recirculating fluidized bed[J].Heat Transfer Engineering,1987,8(4):26-32.
    [51]Meijer J A M.Prebention of calcium sulfate scale deposition by a fluidized bed[J].Desalination,1983,47(5):3-15.
    [52]Rautenbach R,Kollbach J.New developments in fluidized bed heat transfer for prevention fouling[J].Swiss Chemistry,1986,8(5):47-55.
    [53]Rautenbach R,Erdmann C,Kolbach J St.The fluidized bed rechnique in the evaporation of wasterwaters with severe fouling/scaling potential-larest development,applications,limitations[J].Desalination,1991,81(1-3):285-298.
    [54]俞秀民,龚曙光,俞天兰.低水量立式水冷设备自动除垢防垢技术[J].化工机械,1998,25(4):16-18.
    [55]陈鸿斌.换热器的结垢及其管内插入物在线清洗[J].医药工程设计,1997,(6):1-4.
    [56]王勤获.管内弹簧插入物在线污垢清洗与强化传热技术[J].炼油设计,1994,24(3):57-62.
    [57]罗棣庵,尤先先.高效强化换热技术-大空隙率绕花丝多孔体[J].压力容器.1995,12(1):24-32.
    [58]Müller-Steinhagen H,Zhao Q,Reiss M.Ion implantation-A new method of preparing low fouling metal surfaces.Enginereing Foundation Conf-Understanding heat exchanger fouling and its mitigation[C],Italy,1997.
    [59]Cho Y I,Fan C F,Choi B G.Use of electronic anti-fouling technology with filtration to prevent fouling in a heat exchanger[J].International Journal of Heat and Mass Transfer,1998,41(19):2961-2966.
    [60]陈寿椿.重要无机化学反应(第三版)[M].上海:上海科学技术出版社,1994.
    [61]李述文,范如霖.实用有机化学手册[M].上海:上海科学技术出版社,1981.
    [62]樊能廷.有机合成事典[M].北京:北京理工大学出版社,1992.
    [63]艾伯特·梅兰[美]著,孔德琨,陈志武,徐辉远译.工业溶剂手册[M],北京:冶金工业出版社,1984.
    [64]马红钦,朱慧铭,谭欣,赵林,王再云,温金德.脱硅中液固循环流化床清沾传热[J].化工学报,2003,54(3):288-293.
    [65]Bohnet.Fouling of heat transfer surface[J].Chemical Engineering & Technology,1987,10:113-125.
    [66]Hatch G B,Evaluation of scaling tendencies[J].Materials Protection and Performance,1973,12(4):49-55.
    [67]刘德沛,邵云海.脉冲循环流化床-污水处理技术[J].工程应用,2005,12(3):19-21.
    [68]张琦,王国恒.一种新型干燥装置-脉冲流化床干燥器[J].工业炉,2005,27(2):9-11.
    [69]席志鹏.洗漂企业污水工程实例之佛山市顺德明洋纺织印染有限公司污水处理工程实例[J].环境,2005,(8):90-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700