一分钟整体蛋白液相色谱法的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质组学、蛋白药物和来自动植物等天然产物中的蛋白的分离和纯化的研究都需要液相色谱法快速分离技术。Peter Carr小组最近提出快速分离的目标:一维液相色谱分离要在1~10 min内完成,二维液相色谱分离要在10~100 min内完成。尽管这个建议是针对多肽提出的,但是也可以作为整体蛋白快速分离的目标。在本文中,利用蛋白质在液-固界面的不连续迁移和色谱饼这种柱技术,首次建立了一分钟整体蛋白液相色谱法。一般的快速分离仅仅包含了蛋白分离过程,而一分钟整体蛋白液相色谱在1 min内完成分离过程和色谱饼再生过程。分别用标准蛋白检测了反相色谱法、离子交换色谱法和疏水相互作用色谱法三种模式的一分钟整体蛋白液相色谱法,蛋白质分离度没有明显地损失。除了分离速度快分离能力强,该技术还有负载量高的优点。
     论文包括了以下6个部分:
     1.绪论
     说明了色谱法快速分离的意义。介绍了一维快速分离蛋白质的方法,包括非多孔固定相、整体固定相、灌注色谱法、高温快速液相色谱法和色谱饼法;还介绍了二维色谱快速分离蛋白质的方法,包括了常规的使用多根不同机理色谱柱的二维液相色谱法(2D-LC)和使用一根有两种正交分离能力色谱柱的单柱二维液相色谱法(2D-LC-1C)。
     2.多孔反相填料对整体蛋白的高速、高分离度和高负载量分离
     使用侧孔装填技术把3μm的C18反相多孔填料装填在超薄色谱饼(1 mm×10 mmI.D.,78μL)中,用于7种标准蛋白混合物的分离。首次比较了小柱床体积的色谱饼和大柱床体积的色谱柱(50mm×4.6mm I.D.,830μL)分离小分子和整体蛋白的效果。由于小分子在色谱柱(饼)床上的迁移是连续的,导致色谱饼分离小分子的效果远远差于色谱柱。而蛋白质在液-固界面存在“粘附能”,使得蛋白质在色谱柱(饼)床上的迁移是不连续,造成色谱饼分离蛋白质的效果与色谱柱相当。由于色谱饼内径大柱长短的特殊结构,其动力学性质远好于色谱柱,可以在高达10 mL/min的流速下使用。在优化条件下用色谱饼在30 s内分离了7种蛋白。在5 min内连续5次快速分离蛋白质。表明当固定相和蛋白质之间的作用力是非选择性作用力时,一分钟整体蛋白液相色谱法是可以实现的。在1 min内还基线分离了总量是1 mg的7种蛋白的混合物,实现了高速、高分离度和高负载量的“三高”效果。该方法有希望用于临床例行分析。
     3.多孔弱阳离子交换填料对整体蛋白的“三高”分离
     比较了两种弱阳离子交换商品填料TSKgel CM-5PW和PolyCAT A分离蛋白的效果,填料PolyCAT A(粒径,3μm;孔径,150 nm)更适合实现一分钟整体蛋白液相色谱法。PolyCAT A色谱饼(1 mm×10 mm I.D.)和色谱柱(50 mm×4.6 mm I.D.)的分离能力相当。然而,色谱饼的动力学性质更好。在优化的条件下,在18 s内分离了4种标准蛋白。分离速度比整体固定相和无孔填料都要快,分离效果也更好。在10 min内连续进行了10次的蛋白分离,证明了当固定相和蛋白质之间的作用力是静电相互作用力时,也可以实现一分钟整体蛋白液相色谱法。另外用PolyCAT A色谱饼在1 min内快速分离了总量1 mg的4种蛋白混合物。
     4.无孔疏水填料快速分离整体蛋白
     用装填2.5 gm的无孔疏水填料的色谱饼(10 mm×10 mm I.D.)和色谱柱(35 mm×4.6 mm I.D.)来分离蛋白质。在优化的条件下,用色谱柱在3.5 min内可以分离7种蛋白的混合物,而使用色谱饼仅仅需要2.1 min就可以完成类似的分离。色谱饼的动力学性质更好,可以在更大的流速下分离蛋白质,更适合快速分离。尽管得到的结果大于1min,但是比较接近一分钟整体蛋白液相色谱法的目标。5.无孔反相色谱填料对整体蛋白的“三高”分离
     用装有1.0μm无孔反相填料色谱饼(7.5 mm×10 mm I.D.)首次在常规色谱条件下1min分离1μg和40μg的7种标准蛋白,并且在1 min内几乎完全分离0.5 mg该7种蛋白的混合物,达到高速、高分离度和高负载的“三高”效果。开辟了用常规液相色谱仪快速分离高负载蛋白的新途径。6.多孔二维色谱(SAX-HIC)填料及其在疏水模式下的一分钟整体蛋白色谱法
     与相应模式的一维色谱填料相比,二维色谱填料有改善分离选择性的优点,因此合成了一种多孔强阴离子交换-疏水相互作用二维色谱(SAX-HIC)填料来改善填料在HIC模式下的分离能力。用该填料装填的二维色谱饼(1 mm×10 mm I.D.)在HIC模式下分离蛋白。在5 mL/min流速下1 min内不仅快速分离了6种蛋白质,还平衡了色谱柱。其分离速度和效果是一般的疏水填料难以达到的。该结果证明了由疏水相互作用力控制的疏水色谱完全可能实现一分钟整体蛋白色谱法。
The study on the separation of intact proteins in proteomics, protein drugs and the purification of proteins in native plants and animals need very fast separation by high-performance liquid chromatography (HPLC). Peter Carr's group suggested that one-dimensional liquid chromatography (1D-LC) should be accomplished in 1~10 minutes, and two-dimensional LC (2D-LC) should be accomplished in 10~100 minutes. Although it aimed at peptides, the suggestion could be also used as an important reference criterion of protein separation. Based on discontinuous migration of proteins on liquid-solid interface and new column technology of chromatographic cake, one minute-liquid chromatography (OMLC) of intact proteins which has been a dream of separation scientists for a long time is firstly established in the thesis. Compared with conventional fast separation only involving the process of protein separation itself, the OMLC includes the total time of separation and column re-generation. The OMLC was tested with reversed-phase liquid chromatography (RPLC), ion-exchange chromatography (IEC), hydrophobic-interaction chromatography (HIC) using standard proteins under the condition that in comparison with their corresponding to conventional LC, the. resolution of intact proteins in this thesis does not significantly lose. Besides high speed and high resolving power, the technology has the advantages of high loading capacity.
     The thesis includes the following six sections:
     1 Introduction
     The significance of fast separation by LC was briefly introduced. One-dimensional methods of rapid separation of intact proteins including non-porous stationary phase, monolithic stationary phase, perfusion chromatography, high temperature fast chromatography and chromatographic cake were simply introduced and reviewed. Both conventional two-dimensional liquid chromatography (2D-LC) and two-dimensional liquid chromatography using only a single column (2D-LC-1C) which exhibits excellent resolution in two modes were also introduced and reviewed.
     2 Separation of intact proteins with porous reversed-phase packings with high speed, high resolution and high sample loading
     Ultrashort chromatographic cake (1 mm×10 mm I.D.,78μL) packed with 3μm porous C18 reversed-phase packings from lateral hole of the cake was employed for the separation of seven standard proteins. The resolution for intact proteins and small solutes between such a small packed bed volume of chromatographic cake and a large pack bed volume of column (50 mm×4.6 mm I.D.,830μL) were firstly compared. Continuous migration of the small molecules in the packed bed of column and cake resulted in that the resolution of small solutes was extremely poorer with the cake than the column, but due to the existence of "adhesive energy" of intact proteins on the liquid-solid interface the discontinuous migration of intact proteins resulted in almost the comparable resolution between the cake and the column. However, the cake having better hydrodynamic property than column showed moderate back pressure at high flow rate up to 10 mL/min. Under an optimized condition, the mixture of seven proteins was completely separated in 30 s. Five consecutive separations within 5 minutes were carried out with the cake also, indicating one minute-liquid chromatography (OMLC) of intact proteins can be accomplished when the molecular interactions between protein and stationary phase is non-selective force. The OMLC has been a dream of separation scientists for a long time now becomes realism. The mixture of seven proteins was well separated within 1 minute under the sample loading of 1 mg and thus the separation of intact proteins in this circumstance also achieves the "three high" purpose of high speed, high resolution and high sample loading. The method is expected to be used in clinically routine analysis.
     3. Separation of intact proteins using porous weak cation-exchange packings with "three high" purpose
     The comparison of separations of intact proteins with two commercial weak cation-exchange packings, TSKgel CM-5PW and PolyCAT A, was carried out. It was found that PolyCAT A (particle size,3μm; pore size,150 nm) was more suitable for achieving the OMLC. The resolution of the PolyCAT A cake (1 mm×10 mm I.D.) was comparable with the PolyCAT A column (50 mm×4.6 mm I.D.). However, the cake showed better hydrodynamic property than the column. The complete separation of 4 standard proteins was achieved in 18 s under an optimized condition with the cake. The speed and resolution is better than non-porous stationary phase and monolithic stationary phase reported in literatures. Ten consecutive separations within 10 minutes were carried out using the cake, really accomplishing the OMLC, when the molecular interaction between protein and stationary phase is electrostatic force. Also, fast separation was achieved in 1 minute under the loading of 1 mg mixture of 4 proteins.
     4. Fast separation of protein with non-porous HIC packings
     Both the chromatographic cake (10 mm×10 mm I.D.) and column (35 mm×4.6 mm I.D.) packed with 2.5μm non-porous HIC packings were employed for the separation of standard proteins. Under optimized conditions, the mixture of seven proteins could be separated within 3.5 min with the column, and a comparable resolution was obtained in 2.1 min with the cake. The cake, which can be used at higher flow rate, is more suitable for fast separation due to its better hydrodynamic property. Although the result is more than one minute, it is closed (2-3.5 min) to the OMLC.
     5. Separation of intact proteins with "three high" purpose using non-porous RPLC packings
     A chromatographic cake (7.5 mm×10 mm I.D.) having larger diameter than its thickness is firstly employed to completely separate 1.0μg and 40μg of the mixture of seven standard proteins within 1 minute under conventional chromatographic conditions. Also,0.5 mg of the mixture was almost completely separated within 1 minute. The mixture of proteins was separated with high speed, high loading and high resolution. A new approach for rapid separation of proteins was put forward using conventional HPLC under high loading.
     6. Porous 2D (SAX-HIC) packings employed for the OMLC in HIC mode
     Taking the advantage of two dimensional packings (2D-packings) having a better selectivity than its corresponding one dimensional packings, a kind of porous two-dimensional packings of strong anion-exchange (SAX) and HIC was synthesized.
     The packed 2D (SAX-HIC) cake (1 mm×10 mm I.D.) was used to separate standard proteins in HIC mode. The mixture of six standard proteins could be almost completely separated and the cake was re-generated within one minute under the flow rate of 5 mL/min. Such a fast and good resolution could not be obtained with normally commercial HIC columns. This fact indicates that OMLC is validly carried out for the retention mechanism of protein dominated by hydrophobic-interaction force.
引文
[1]Olson K. C., Gehant R. L. Applications of ultrafast HPLC to process development of recombinant DNA-derived proteins [J]. Biotechnology Progress,1992,8:562-566
    [2]Francois I., Sandra K., Sandra P. Comprehensive liquid chromatography:Fundamental aspects and practical considerations-A review [J]. Analytica Chimica Acta,2009,641:14-31
    [3]Stoll D. R., Li X., Wang X., et al. Fast, comprehensive two-dimensional liquid chromatography [J]. Journal of Chromatography A,2007,1168:3-43
    [4]Zhao G., Dong X., Sun Y. Ligands for mixed-mode protein chromatography:Principles, characteristics and design [J]. Journal of Biotechnology,2009,144:3-11
    [5]Mclaughlin L. W. Mixed-mode chromatography of nucleic acids [J]. Chemical Reviews,1989,89: 309-319
    [6]Horvath C., Melander W., Molnar I. Solvophobic interactions in liquid chromatography with nonpolar stationary phases [J]. Journal of Chromatography,1976,125:129-156
    [7]Horvath C., Melander W., Molnar I. Liquid chromatography of ionogenic substances with nonpolar stationary phases [J]. Analytical Chemistry,1977,49:142-154
    [8]Billiet H. A. H., Schoenmakers P. J., Galan L. D. Retention and selectivity characteristics of a non-polar perfluorinated stationary phase for liquid chromatography [J]. Journal of Chromatography, 1981,218:443-454
    [9]Fausnaugh J. L., Kennedy L. A., Regnier F. E. Comparison of hydrophobic-interaction and reversed-phase chromatography of proteins [J]. Journal of Chromatography,1984,317:141-155
    [10]Arakawa T. Thermodynamic analysis of the effect of concentrated salts on protein interaction with hydrophobic and polysaccharide columns [J]. Archives of Biochemistry and Biophysics,1986,248: 101-105
    [11]Liu P., Yang H., Geng X. Mixed retention mechanism of proteins in weak anion-exchange chromatography [J]. Journal of Chromatography A,2009,1216:7497-7504
    [12]Chen H., Horvath C. High-speed high-performance liquid chromatography of peptides and proteins [J]. Journal of Chromatography A,1995,705:3-20
    [13]Maa Y, Horvath C. Rapid analysis of proteins and peptides by reversed-phase chromatography with polymeric micropellicular sorbents [J]. Journal of Chromatography,1988,445:71-86
    [14]Unger K. K., Jilge G., Kinkel J. N.,et al. Evaluation of advanced silica packings for the separation of biopolymers by high-performance liquid chromatography:Ⅱ. Performance of non-porous monodisperse 1.5-μm silica beads in the separation of proteins by reversed-phase gradient elution high-performance liquid chromatography [J]. Journal of Chromatography,1986,359:61-72
    [15]Jilge G., Janzen R., Giesche H., et al. Evaluation of advanced silica packings for the separation of biopolymers by high-performance liquid chromatography:Ⅲ. Retention and selectivity of proteins and peptides in gradient elution on non-porous monodisperse 1.5-μm reversed-phase silicas [J]. Journal of Chromatography,1987,397:71-80
    [16]Janzen R., Unger K. K., Giesche H., et al. Evaluation of advanced silica packings for the separation of biopolymers by high-performance liquid chromatography:Ⅳ.Mobile phase and surface-mediated effects on recovery of native proteins in gradient elution on non-porous, monodisperse 1.5-μm reversed-phase silicas [J]. Journal of Chromatography,1987,397:81-89
    [17]Janzen R., Unger K. K., Giesche H., et al. Evaluation of advanced silica packings for the separation of biopolymers by high-perforamnce liquid chromatography:Ⅴ.Performance of non-porous monodisperse 1.5-μm bonded silicas in the separation of proteins by hydrophobic-interaction chromatography [J]. Journal of Chromatography,1987,397:91-97
    [18]Kalghatgi K., Horvath C. Rapid analysis of proteins and peptides by reversed-phase chromatography [J]. Journal of Chromatography,1987:398:335-339
    [19]Kalghatgi K., Horvath C. Rapid peptide mapping by high-performance liquid chromatography [J]. Journal of Chromatography,1988,443:343-354
    [20]Bonn G.K., Kalghatgi K., Home W. C., et al. Rapid metal-interaction chromatography of proteins and peptides on micropellicular sorbents [J]. Chromatographia,1990,30:484-488
    [21]Issaeva T., Kourganov A., Unger K. Super-high-speed liquid chromatography of proteins and peptides on non-porous Micra NPS-RP packings [J]. Journal of Chromatography A,1999,846:13-23
    [22]Wagner K., Racaityte K., Unger K. K., et al. Protein mapping by two-dimensional high performance liquid chromatography [J]. Journal of Chromatography A,2000,893:293-305
    [23]Burke D. J., Duncan J. K., Dunn L. C., et al. Rapid protein profiling with a novel anion-exchange material [J]. Journal of Chromatography,1986:353,425-437
    [24]Mazsaroff I., Rounds M. A., Regnier F. E. Facile preparation of a non-porous strong anion-exchange column for proteins [J]. Journal of Chromatography,1987,411:452-455
    [25]Rounds M. A., Regnier F. E. Synthesis of a non-porous, polystyrene-based strong anion-exchange packing material and its application to fast high-performance liquid chromatography of proteins [J]. Journal of Chromatography,1988,443:73-83
    [26]Kato Y., Kitamura T., Mitsui A., et al. High-performance ion-exchange chromatography of proteins on non-porous ion exchangers [J]. Journal of Chromatography,1987:398:327-334
    [27]Kato Y., Kitamura T., Nakatani S., et al. High-performance hydrophobic interaction chromatography of proteins on a pellicular support based on hydrophilic resin [J]. Journal of Chromatography,1989, 483:401-405
    [28]Yamasaki Y., Kitamura T., Nakatani S., et al. Recovery of proteins and peptides with nanogram loads on non-porous packings [J]. Journal of Chromatography,1989,481:391-396
    [29]Kato Y., Nakatani S., Kitamura T., et al. Reversed-phase high-performance liquid chromatography of proteins and peptides on a pellicular support based on hydrophilic resin [J]. Journal of Chromatography,1990,502:416-422
    [30]Zhu J., Bo C., Gong B. Preparation of strong cation exchange packings based on monodisperse hydrophilic non-porous resins and their application for fast separation of proteins [J]. Chinese Journal of Chromatography,2006,24:129-134
    [31]Gong B., Zhu J., Li L., et al. Synthesis of non-porous poly(glycidylmethacrylate-co-ethylenedimethacrylate) beads and their application in separation of biopolymers [J]. Talanta,2006, 68:666-672
    [32]强克娟,朱金霞,卜春苗等.快速弱阴离子交换无孔聚合物固定相的制备及用于蛋白质的高效液相色谱分离[J].分析测试学报,2007,26:8-11
    [33]Bo C., Gong B., Hu W. Preparation of immobilized metal affinity chromatographic packings based on monodisperse hydrophilic non-porous beads and their application [J]. Chinese Journal of Chemistry, 2008,26:886-892
    [34]Warth L. M., Fritz J. S., Naples J. O. Preparation and use of latex-coated resins for anion chromatography [J]. Journal of Chromatography,1989,462:165-176
    [35]Strasburg R. F., Fritz J. S., Naples J. O. Low-capacity latex-coated resins for anion chromatography [J]. Journal of Chromatography,1991,547:11-19
    [36]Miura Y, Fritz J. S. Benzenepolycarboxylic acid salts as eluents in anion chromatography [J]. Journal of Chromatography,1989,482:155-163
    [37]Huber C. G., Oefner P. J., Bonn G. K. Rapid analysis of biopolymers on modified non-porous polystyrene-divinylbenzene particles [J]. Chromatographia,1993,37:653-658
    [38]MacNair J. E., Patel K. D., Jorgenson J. W. Ultrahigh-pressure reversed-phase capillary liquid chromatography:isocratic and gradient elution using columns packed with 1.0-μm particles [J]. Analytical Chemistry,1999,71:700-708
    [39]Patel K. D., Jerkovich A. D., Link J. C., et al. In-depth characterization of slurry packed capillary columns with 1.0-μm nonporous particles using reversed-phase isocratic ultrahigh-pressure liquid chromatography [J]. Analytical Chemistry,2004,76:5777-5786
    [40]Nguyen D. T., Guillarme D., Rudaz S., et al. Chromatographic behaviour and comparison of column packed with sub-2 μm stationary phases in liquid chromatography [J]. Journal of Chromatography A, 2006,1128:105-113
    [41]Hjerten S., Liao J. L., Zhang R. High-performance liquid chromatography on continuous polymer beds [J]. Journal of Chromatography,1989,473:273-275
    [42]Svec F., Frechet J. M. J. Continuous rods of macroporous polymer as high-performance liquid chromatography separation media [J]. Analytical Chemistry,1992,64:820-822
    [43]Viklund C., Svec F., Frechet J. M. J., et al. Monolithic, "molded", porous materials with high flow characteristics for separations, catalysis, or solid-phase chemistry:control of porous properties during polymerization [J]. Chemistry of Materials,1996,8:744-750
    [44]Guiochon G. Monolithic columns in high-performance liquid chromatography [J]. Journal of Chromatography A,2007,1168:101-168
    [45]Minakuchi H., Nakanishi N., Soga N., et al. Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatography [J]. Analytical Chemistry,1996,68:3498-3501
    [46]Fields S. M. Silica xerogel as a continuous column support for high-performance liquid chromatography [J]. Analytical Chemistry,1996,68:2709-2712
    [47]Vlakh E. G., Tennikova T. B. Applications of polymethacrylate-based monoliths in high-performance liquid chromatography [J]. Journal of Chromatography A,2009,1216:2637-2650
    [48]Zou H., Huang X., Ye M., et al. Monolithic stationary phases for liquid chromatography and capillary electrochromatography [J]. Journal of Chromatography A,2002,954:5-32
    [49]Petro M., Svec,F., Frechet J. M. J. Molded continuous poly(styrene-co-divinylbenzene) rod as a separation medium for the very fast separation of polymers:Comparison of the chromatographic properties of the monolithic rod with columns packed with porous and non-porous beads in high-performance liquid chromatography of polystyrenes [J]. Journal of Chromatography A,1996, 752:59-66
    [50]Gusev I., Huang X., Horvath C. Capillary columns with in situ formed porous monolithic packing for micro high-performance liquid chromatography and capillary electrochromatography [J]. Journal of Chromatography A,1999,855:273-290
    [51]Oberacher H., Premstaller A., Huber C. G. Characterization of some physical and chromatographic properties of monolithic poly(styrene-co-divinylbenzene) columns [J]. Journal of Chromatography A, 2004,1030:201-208
    [52]Liapis A. I., Meyers J. J., Crosser O. K. Modeling and simulation of the dynamic behavior of monoliths:Effects of pore structure from pore network model analysis and comparison with columns packed with porous spherical particles [J]. Journal of Chromatography A,1999,865:13-25
    [53]Jandera P., Urban J., Moravcova D. Polymetacrylate and hybrid interparticle monolithic columns for fast separations of proteins by capillary liquid chromatography [J]. Journal of Chromatography A, 2006,1109:60-73
    [54]Moore R. E., Licklider L., Schumann D., et al. A Microscale electrospray interface incorporating a monolithic, poly(styrene-divinylbenzene) support for on-line liquid chromatography/tandem mass spectrometry analysis of peptides and proteins [J]. Analytical Chemistry,1998,70:4879-4884
    [55]Premstaller A., Oberacher H., Huber C. G. High-performance liquid chromatography-electrospray ionization mass spectrometry of single- and double-stranded nucleic acids using monolithic capillary columns [J]. Analytical Chemistry,2000,72:4386-4393
    [56]Premstaller A., Oberacher H., Walcher W., et al. High-performance liquid chromatography-electrospray ionization mass spectrometry using monolithic capillary columns for proteomic studies [J]. Analytical Chemistry,2001,73:2390-2396
    [57]Walcher W., Oberacher H., Troiani S., et al. Monolithic capillary columns for liquid chromatography-electrospray ionization mass spectrometry in proteomic and genomic research [J]. Journal of Chromatography B,2002,782:111-125
    [58]Wang Q. C, Svec F., Frechet J. M. J. Macroporous polymeric stationary-phase rod as continuous separation medium for reversed-phase chromatography [J].,1993,65:2243-2248
    [59]Petro M., Svec F., Gitsov I., et al. Molded monolithic rod of macroporous
    poly(styrene-co-divinylbenzene) as a separation medium for HPLC of synthetic polymers: "on-column" precipitation-redissolution chromatography as an alternative to size exclusion chromatography of styrene oligomers and polymers [J]. Analytical Chemistry,1996,68:315-321
    [60]Svec F., Geiser L. Monolithic stationary phases for HPLC and sample preparation [J]. LC-GC North America,2006,24:22-27
    [61]Wang Q. C., Svec F., Frechet J. M. J. Reversed-phase chromatography of small molecules and peptides on a continuous rod of macroporous poly(styrene-co-divinylbenzene) [J]. Journal of Chromatography,1994,669:230-235
    [62]Xie S., Allington R. W., Svec F., et al. Rapid reversed-phase separation of proteins and peptides using optimized'moulded'monolithic poly(styrene-co-divinylbenzene) columns [J]. Journal of Chromatography A,1999,865:169-174
    [63]Legido-Quigley C., Marlin N., Smith N. W. Comparison of styrene-divinylbenzene-based monoliths and Vydac nano-liquid chromatography columns for protein analysis [J]. Journal of Chromatography A,2004,1030:195-200
    [64]Peterson D. S. Solid supports for micro analytical systems [J]. Lab on a Chip,2005,5,132-139
    [65]Gu C., Lin L., Chen X., et al. Effects of inner diameter of monolithic column on separation of proteins in capillary-liquid chromatography [J]. Journal of Chromatography A,2007,1170:15-22
    [66]Levkin P. A., Eeltink S., Stratton T. R., et al. Monolithic porous polymer stationary phases in polyimide chips for the fast high-performance liquid chromatography separation of proteins and peptides [J]. Journal of Chromatography A,2008,1200:55-61
    [67]Tennikova T. B., Svec F., Belenkii B. G. High-performance membrane chromatography. A novel method of protein separation [J]. Journal of Liquid Chromatography & Related Technologies,1990,13: 63-70
    [68]Svec F., Frechet J. M. J. Molded rigid monolithic porous polymers:An inexpensive, efficient, and versatile alternative to beads for the design of materials for numerous applications [J]. Industrial & Engineering Chemistry Research,1999,38,34-48
    [69]Peters E. C., Petro M., Svec F., et al. Molded rigid polymer monoliths as separation media for capillary electrochromatography.2. Effect of chromatographic conditions on the separation [J]. Analytical Chemistry,1998,70:2296-2302
    [70]Coufal P., Cihak M., Suchankova J. et al. Methacrylate monolithic columns of 320 μm I.D. for
    capillary liquid chromatography [J]. Journal of Chromatography A,2002,946:99-106
    [71]Holdsvendova P., Coufal P., Suchankova J. Methacrylate monolithic columns for capillary liquid chromatography polymerized using ammonium peroxodisulfate as initiator [J]. Journal of Separation Science,2003,26:1623-1628
    [72]Grafnetter J., Coufal P., Tesarova E., et al. Optimization of binary porogen solvent composition for preparation of butyl methacrylate monoliths in capillary liquid chromatography [J]. Journal of Chromatography A,2004,1049:43-49
    [73]Gu B., Chen Z., Thulin C. D., et al. Efficient polymer monolith for strong cation-exchange capillary liquid chromatography of peptides [J]. Analytical Chemistry,2006,78:3509-18.
    [74]Gu B., Li Y., Lee M. L. Polymer monoliths with low hydrophobicity for strong cation-exchange capillary liquid chromatography of peptides and proteins [J]. Analytical Chemistry,2007,79: 5848-5855
    [75]Peters E. C., Petro M., Svec F., et al. Molded rigid polymer monoliths as separation media for capillary electrochromatography.1. Fine control of porous properties and surface chemistry [J]. Analytical Chemistry,1998,70:2288-2295
    [76]Thabano J. R. E., Breadmore M. C., Hutchinson J. P., et al. Capillary electrophoresis of neurotransmitters using in-line solid-phase extraction and preconcentration using a methacrylate-based weak cation-exchange monolithic stationary phase and a pH step gradient [J]. Journal of Chromatography A,2007,1175:117-126
    [77]Lee D., Svec F., Frechet J. M. J. Photopolymerized monolithic capillary columns for rapid micro high-performance liquid chromatographic separation of proteins [J]. Journal of Chromatography A, 2004,1051:53-60
    [78]Urban J., Moravcova D., Jandera P. A model of flow-through pore formation in methacrylate ester-based monolithic columns [J]. Journal of Separation Science,2006,29:1064-1073
    [79]Geiser L., Eeltink S., Svec F., et al. Stability and repeatability of capillary columns based on porous monoliths of poly(butyl methacrylate-co-ethylene dimethacrylate) [J]. Journal of Chromatography A, 2007,1140:140-146
    [80]Svec F. Preparation and HPLC applications of rigid macroporous organic polymer monoliths [J]. Journal of Separation Science,2004,27:747-766
    [81]Frankovic V., Podgornik A., Krajnc N. L., et al. Characterisation of grafted weak anion-exchange
    methacrylate monoliths [J]. Journal of Chromatography A,2008,1207:84-93
    [82]Wieder W., Bisjak C. P., Huck C. W. Monolithic poly(glycidyl methacrylate-co-divinylbenzene) capillary columns functionalized to strong anion exchangers for nucleotide and oligonucleotide separation [J]. Journal of Separation Science,2006,29:2478-2484
    [83]Bisjak C. P., Bakry R., Huck C. W., et al. Amino-functionalized monolithic poly(glycidyl methacrylate-co-divinylbenzene) ion-exchange stationary phases for the separation of oligonucleotides [J]. Chromatographia,2005:S31-S31
    [84]Svec F., Frechet J. M. J. Modified poly(glycidyl metharylate-co-ethylene dimethacrylate) continuous rod columns for preparative-scale ion-exchange chromatography of proteins [J]. Journal of Chromatography A,1995,702:89-95
    [85]Sykora D., Svec F., Frechet J. M. J. Separation of oligonucleotides on novel monolithic columns with ion-exchange functional surfaces [J]. Journal of Chromatography A,1999,852:297-304
    [86]Wang M., Xu J., Zhou X. Preparation and characterization of polyethyleneimine modified ion-exchanger based on poly(methacrylate-co-ethylene dimethacrylate) monolith [J]. Journal of Chromatography A,2007,1147:24-29
    [87]Ueki Y., Umemura T., Li J., et al. Preparation and application of methacrylate-based cation-exchange monolithic columns for capillary ion chromatography [J]. Analytical Chemistry,2004,76:7007-7012
    [88]Strancar A., Koselj P. Application of compact porous disks for fast separations of biopolymers and in-process control in biotechnology [J]. Analytical Chemistry,1996,68:3483-3488
    [89]Strancar A., Podgornik A., Barut M., et al. Short monolithic columns as stationary phases for biochromatography [J]. Advances in Biochemical Engineering,2002,74,49
    [90]Savina I. N., Galaev I. Y., Mattiasson B. Anion-exchange supermacroporous monolithic matrices with grafted polymer brushes of N,N-dimethylaminoethyl-methacrylate [J]. Journal of Chromatography A, 2005,1092:199-205
    [91]Pucci V., Raggi M. A., Svec F., et al. Monolithic columns with a gradient of functionalities prepared via photo initiated grafting for separations using capillary electrochromatography [J]. Journal of Separation Science,2004,27:779-788
    [92]Rohr T., Hilder E. F., Donovan J. J., et al. Photografting and the control of surface chemistry in three-dimensional porous polymer monoliths [J]. Macromolecules,2003,36:1677-1684
    [93]Eder K., Huber C. G., Buchmeiser M. R. Surface-functionalized, ring-opening metathesis
    polymerization-derived monoliths for anion-exchange chromatography [J]. Macromolecular Rapid Communications,2007,28:2029-2032
    [94]Krenkova J., Gargano A., Lacher N. A., et al. High binding capacity surface grafted monolithic columns for cation exchange chromatography of proteins and peptides [J]. Journal of Chromatography A,2009,1216:6824-6830
    [95]Fujimoto C., Kino J., Sawada H. Capillary electrochromatography of small molecules in polyacrylamide gels with electroosmotic flow [J]. Journal of Chromatography A,1995,716:107-113
    [96]Hoegger D., Freitag R. Acrylamide-based monoliths as robust stationary phases for capillary electrochromatography [J]. Journal of Chromatography A,2001,914:211-222
    [97]Plieva F. M., Andersson J., Galaev I. Y., et al. Characterization of polyacrylamide based monolithic columns [J]. Journal of Separation Science,2004,27:828-836
    [98]Hjerten S. Continuous beds:high resolving cost-effective chromatographic matrices [J]. Nature,1992, 356,810-811
    [99]Zhu G., Yuan H., Zhao P., et al. Macroporous polyacrylamide-based monolithic column with immobilized pH gradient for protein analysis [J]. Electrophoresis,2006,27:3578-3583
    [100]Xie S., Svec F., Frechet J. M. J. Rigid porous polyacrylamide-based monolithic columns containing butyl methacrylate as a separation medium for the rapid hydrophobic interaction chromatography of proteins [J]. Journal of Chromatography A,1997,775:65-72
    [101]Liao J., Li Y, Hjerten S. Continuous beds for microchromatography:Reversed-phase chromatography [J]. Analytical Biochemistry,1996,234:27-30
    [102]Ericson C., Hjerten S. Reversed-Phase electrochromatography of proteins on modified continuous beds using normal-flow and counterflow gradients. Theoretical and practical considerations [J]. Analytical chemistry,1999,71:1621-1627
    [103]Garcia M. C., Marina M. L., Torre M. Perfusion chromatography:an emergent technique for the analysis of food proteins [J]. Journal of Chromatography A,2000,880:169-187
    [104]Collins W. E. Protein separation with flow-through chromatography [J]. Separation & Purification Reviews,1997,26:215-253
    [105]Afeyan N. B., Fulton S. P., Regnier F. E. Perfusion chromatography packing materials for proteins and peptides [J]. Journal of Chromatography,1991,544:267-279
    [106]Regnier F. E. Perfusion chromatography [J]. Nature,1991,350:634-635
    [107]Fulton S. P., Afeyan N. B., Gordon N. F., et al. Very high speed separation of proteins with a 20-μm reversed-phase sorbent [J]. Journal of Chromatography,1991,547:452-456
    [108]Fulton S. P., Shahidi A. J., Gordon N. F., et al. Large-scale processing & high-throughput perfusion chromatography [J]. Nature Biotechnology,1992,10:635-639
    [109]Roobol-Boza M., Shochat S., Tjus S. E., et al. Perfusion chromatography-a new procedure for very rapid isolation of integral photosynthetic membrane proteins [J]. Photosynthesis Research,1995,46: 339-345
    [110]Rassi Z. E., Clinkenbeard P. A., Clinkenbeard K. D. High-performance liquid chromatography of Pasteurella haemolytica leukotoxin using anion-exchange perfusion columns [J]. Journal of Chromatography,1998,808:167-176
    [111]Paliwai S. K., Nadler T. K., Wang D. I. C., et al. Automated process monitoring of monoclonal antibody production [J]. Analytical Chemistry,1993,65:3363-3367
    [112]Eremenko A. V., Bauer C. G., Makower A., et al. The development of a non-competitive immunoenzymometric assay of cocaine [J]. Analytica Chimica Acta,1998,358:5-13
    [113]Castro-Rubio F., Marina M. L., Garcia M. C. Perfusion reversed-phase high-performance liquid chromatography/mass spectrometry analysis of intact soybean proteins for the characterization of soybean cultivars [J]. Journal of Chromatography A,2007,1170:34-43
    [114]Castro-Rubio A., Castro-Rubio F., Garcia M. C., et al. Determination of soybean proteins in soybean-wheat and soybean-rice commercial products by perfusion reversed-phase high-performance liquid chromatography [J]. Food Chemistry,2007,100:948-955
    [115]Rodriguez-Nogales J. M., Cifuentes A., Garcia M. C., et al. Estimation of the percentage of transgenic Bt maize in maize flour mixtures using perfusion and monolithic reversed-phase high-performance liquid chromatography and chemometric tools [J]. Food Chemistry,2008,111:483-489
    [116]Rodriguez-Nogales J. M., Garcia M. C., Marina M. L. Development of a perfusion reversed-phase high performance liquid chromatography method for the characterisation of maize products using multivariate analysis [J]. Journal of Chromatography A,2006,1104:91-99
    [117]Qu J., Wan X., Zhai Y., et al. A novel stationary phase derivatized from hydrophilic gigaporous polystyrene-based microspheres for high-speed protein chromatography [J]. Journal of Chromatography A,2009,1216:6511-6516
    [118]Horvath C. G., Preiss B. A., Lipsky S. R. Fast liquid chromatography. Investigation of operating
    parameters and the separation of nucleotides on pellicular ion exchangers [J]. Analytical Chemistry, 1967,39:1422-1428
    [119]Wilson N. S., Nelson M. D., Dolan J. W., et al. Column selectivity in reversed-phase liquid chromatography:Ⅱ. Effect of a change in conditions [J]. Journal of Chromatography A,2002,961: 195-215
    [120]Zhu P. L., Snyder L. R., Dolan J. W., et al. Combined use of temperature and solvent strength in reversed-phase gradient elution Ⅰ. Predicting separation as a function of temperature and gradient conditions [J]. Journal of Chromatography A,1996,756:21-39
    [121]Dolan J. W., Snyder L. R., Djordjevic N. M., et al. Reversed-phase liquid chromatographic separation of complex samples by optimizing temperature and gradient time:I. Peak capacity limitations [J]. Journal of Chromatography A,1999,857:1-20
    [122]Antia F. D., Horvath C. High-performance liquid chromatography at elevated temperatures: examination of conditions for the rapid separation of large molecules [J] Journal of Chromatography, 1988,435:1-15
    [123]Thompson J. D., Carr P. W. High-speed liquid chromatography by simultaneous optimization of temperature and eluent composition [J]. Analytical Chemistry,2002,74:4150-4159
    [124]Yan B., Zhao J., Brown J. S., et al. High-temperature ultrafast liquid chromatography [J]. Analytical Chemistry,2000,72:1253-1262
    [125]Nugent K. D., Burton W. G., Slattery T. K., et al. Separation of proteins by reversed-phase high-performance liquid chromatography:Ⅱ. Optimizing sample pretreatment and mobile phase conditions [J]. Journal of Chromatography,1988,443:381-397
    [126]Yang X., Ma L., Carr P. W. High temperature fast chromatography of proteins using a silica-based stationary phase with greatly enhanced low pH stability [J]. Journal of Chromatography A,2005,1079: 213-220
    [127]Geng X., Zhang Y. A caky chromatographic column and the method for producing it and its application [P]. European patent:02732319.5,2002-05-16
    [128]Geng X., Zhang Y. Caky chromatographic column and the method for producing it and its application [P]. United States patent:US 7,208,085 B2,2007-04-24
    [129]李翔,张养军,耿信笃.半制备型色谱柱与色谱饼性能的比较[J].色谱,2002,20:133-136
    [130]李瑛,白泉,陈刚等.疏水型色谱饼对人血清蛋白质组学样品的快速分离与制备[J].色谱,2008, 26:331-334
    [131]闵一,陈刚,耿信笃.动力学因素对液相色谱分离整体蛋白的影响[J].色谱,2009,27:717-723
    [132]陈刚.制备液相色谱中整体蛋白高效快速分离新策略[D].西安:西北大学,2009
    [133]Geisler M., Horinek D., Hugel T. Single molecule adhesion mechanics on rough surfaces [J]. Macromolecules,2009,42:9338-9343
    [134]Geisler M., Pirzer T., Ackerschott C., et al. Hydrophobic and Hofmeister effects on the adhesion of spidersilk proteins onto solid substrates:An AFM-based single-molecule study [J]. Langmuir,2008, 24:1350-1355
    [135]Sandra K., Moshir M., D'hondt F., et al. Highly efficient peptide separations in proteomics:Part 1. Unidimensional high performance liquid chromatography [J]. Journal of Chromatography B,2008, 866:48-63
    [136]Giddings J. C. Maximum number of components resolvable by gel filtration and other elution chromatographic methods [J]. Analytical Chemistry,1967,39:1027-1028
    [137]Giddings J. C. Two-dimensional separations:concept and promise [J]. Analytical Chemistry,1984,56: 1258A-1270A
    [138]Kalili K. M., Villiers A. D. Off-line comprehensive 2-dimensional hydrophilic interaction × reversed phase liquid chromatography analysis of procyanidins [J]. Journal of Chromatography A,2009,1216: 6274-6284
    [139]Jandera P., Fischer J., Lahovska H., et al. Two-dimensional liquid chromatography normal-phase and reversed-phase separation of (co)oligomers [J]. Journal of Chromatography A,2006,1119:3-10
    [140]Souza L. M. D., Cipriani T. R., Sant'Ana C. F., et al. Heart-cutting two-dimensional (size exclusion× reversed phase) liquid chromatography-mass spectrometry analysis of flavonol glycosides from leaves of Maytenus ilicifolia [J]. Journal of Chromatography A,2009,1216:99-105
    [141]Maynard D. M., Masuda J., Yang X., et al. Characterizing complex peptide mixtures using a multi-dimensional liquid chromatography-mass spectrometry system:Saccharomyces cerevisiae as a model system [J]. Journal of Chromatography B,2004,810:69-76
    [142]Gray M. J., Dennis G. R., Slonecker P. J., et al. Comprehensive two-dimensional separations of complex mixtures using reversed-phase/reversed-phase liquid chromatography [J]. Journal of Chromatography A,2004,1041:101-110
    [143]Bushey M. M., Jorgenson J. W. Automated instrumentation for comprehensive two-dimensional
    high-performance liquid chromatography of proteins [J]. Analytical Chemistry,1990,62:161-167
    [144]Opiteck G. J., Lewis K. C., Jorgenson J. W., et al. Comprehensive on-line LC/LC/MS of proteins [J]. Analytical Chemistry,1997,69:1518-1524
    [145]Opiteck G. J., Jorgenson J. W., Anderegg R.J. Two-dimensional SEC/RPLC coupled to mass spectrometry for the analysis of peptides [J]. Analytical Chemistry,1997,69:2283-2291
    [146]Pepaj M., Wilson S. R., Novotna K., et al. Two-dimensional capillary liquid chromatography:pH gradient ion exchange and reversed phase chromatography for rapid separation of proteins [J]. Journal of Chromatography A,2006,1120:132-141
    [147]Pepaj M., Holm A., Fleckenstein B., et al. Fractionation and separation of human salivary proteins by pH-gradient ion exchange and reversed phase chromatography coupled to mass spectrometry [J]. Journal of Separation Science,2006,29:519-528
    [148]Wolters D. A., Washburn M. P., Yates J. R. An automated multidimensional protein identification technology for shotgun proteomics [J]. Analytical Chemistry,2001,73:5683-5690
    [149]Dormeyer W., Mohammed S., Breukelen B. V., et al. Targeted analysis of protein termini [J]. Journal of Proteome Research,2007,6:4634-4645
    [150]Ke C., Geng X. A new chromatographic method for fast separation of active proteins [J]. Chinese Science Bulletin,2008,53:1113-1116
    [151]Geng X., Ke C., Chen G., et al. On-line separation of native proteins by two-dimensional liquid chromatography using a single column [J]. Journal of Chromatography A,2009,1216:3553-3562
    [152]Asenjo J. A., Andrews B. A. Is there a rational method to purify proteins? From expert systems to proteomics [J]. Journal of Molecular Recognition,2004,17:236-247
    [153]刘鹏.液固界面蛋白质迁移规律研究[D].西安:西北大学,2009
    [1]Unger K. K., Jilge O., Kinkel J. N., et al. Evaluation of advanced silica packings for the separation of biopolymers by high-performance liquid chromatography II. Performance of non-porous monodisperse 1.5-μm silica beads in the separation of proteins by reversed-phase gradient elution high-performance liquid chromatography [J]. Journal of Chromatography A,1986,359:61-72
    [2]Chen H., Horvath C. High-speed high-performance liquid chromatography of peptides and proteins [J]. Journal of Chromatography A,1995,705:3-20
    [3]Issaeva T., Kourganov A., Unger K. Super-high-speed liquid chromatography of proteins and peptides on non-porous Micra NPS-RP packings [J]. Journal of Chromatography A,1999,846:13-23
    [4]Lee D. P. Chromatographic evaluation of large-pore and non-porous polymeric reversed phases [J]. Journal of Chromatography,1988,443:143-153
    [5]Regnier F.E. Perfusion chromatography [J]. Nature,1991,350:634-635
    [6]Fulton S. P., Afeyan N. B., Gordon N. F., et al. Very high speed separation of proteins with a 20-μm reversed-phase sorbent [J]. Journal of Chromatography,1991,547:452-456
    [7]F. Svec. Porous polymer monoliths:Amazingly wide variety of techniques enabling their preparation [J]. Journal of Chromatography A,2010,1217:902-924
    [8]Xie S., Allington R. W., Svec F., et al. Rapid reversed-phase separation of proteins and peptides using optimized'moulded' monolithic poly(styrene-co-divinylbenzene) columns [J]. Journal of Chromatography A,1999,865:169-174
    [9]Lee D., Svec F., Frechet J. M. J. Photopolymerized monolithic capillary columns for rapid micro high-performance liquid chromatographic separation of proteins [J]. Journal of Chromatography A, 2004,1051:53-60
    [10]Link A. J., Eng J., Schieltz D. M., et al. Direct analysis of protein complexes using mass spectrometry [J]. Nature Biotechnology,1999,17:676-682
    [11]Sun Y., Sun J., Liu J., et al. Rapid and sensitive hydrophilic interaction chromatography/tandem mass spectrometry method for the determination of glycyl-sarcosine in cell homogenates [J]. Journal of Chromatography B,2009,877:649-652
    [12]Bedani F., kok W. T., Janssen H. G., et al. A theoretical basis for parameter selection and instrument design in comprehensive size-exclusion chromatography × liquid chromatography [J]. Journal of
    Chromatography A,2006,1133:126-134
    [13]Dowell J. A., Frost D. C., Zhang J., et al. Comparison of two-dimensional fractionation techniques for shotgun proteomics [J]. Analytical Chemistry,2008,80,6715-6723
    [14]Francois I., Sandra K., Sandra P. Comprehensive liquid chromatography:Fundamental aspects and practical considerations-A review [J]. Analytica Chimica Acta,2009,641:14-31
    [15]Dong M.W., Tran A.D. Factors influencing the performance of peptide mapping by reversed-phase high-performance liquid chromatography [J]. Journal of Chromatography,1990,499:125-139
    [16]Moriyama H., Anegayama M., Kato Y. Rapid separation of peptides and proteins on 2-μm porous microspherical reversed-phase silica material [J]. Journal of Chromatography A,1996,729:81-85
    [17]Yang F. J. Microbore column chromatography [M]. New York:Marcel Dekker,1989
    [18]Wong V., Shalliker R. A., Guiochon G. Evaluation of the uniformity of analytical-size chromatography columns prepared by the downward packing of particulate slurries [J]. Analytical Chemistry,2004,76: 2601-2608
    [19]Kirkland J. J., DeStefano J. J. The art and science of forming packed analytical high-performance liquid chromatography columns [J]. Journal of Chromatography A,2006,1126:50-57
    [20]Tyrrell E, Hilder E. F., Shalliker R. A., et al. Packing procedures for high efficiency, short ion-exchange columns for rapid separation of inorganic anions [J]. Journal of Chromatography A, 2008,1208:95-100
    [21]Pelletier S., Lucy C. A. Achieving rapid low-pressure ion chromatography separations on short silica-based monolithic columns [J]. Journal of Chromatography A,2006,1118:12-18
    [22]Tennikov M. B., Gazdina N. V., Tennikova T. B., et al. Effect of porous structure of macroporous polymer supports on resolution in high-performance membrane chromatography of proteins [J]. Journal of Chromatography A,1998,798:55-64
    [23]Brne P., Podgornik A., Bencina K., et al. Fast and efficient separation of immunoglobulin M from immunoglobulin G using short monolithic columns [J]. Journal of Chromatography A,2007,1144: 120-125
    [24]Geisler M., Horinek D., Hugel T. Single molecule adhesion mechanics on rough surfaces [J]. Macromolecules,2009,42:9338-9343
    [25]Geng X. D., Regnier F. E. Retention model for proteins in reversed-phase liquid chromatography [J]. Journal of Chromatography,1984,296:15-30
    [26]Jakschitz T. A. E., Huck C. W., Lubbad S., et al. Monolithic poly[(trimethylsilyl-4-methylstyrene)-co-bis(4-vinylbenzyl) dimethylsilane] stationary phases for the fast separation of proteins and oligonucleotides [J]. Journal of Chromatography A,2007,1147:53-58
    [27]Jandera P., Urban J., Moravcov D. Polymetacrylate and hybrid interparticle monolithic columns for fast separations of proteins by capillary liquid chromatography [J]. Journal of Chromatography A, 2006,1109:60-73
    [28]Gu C.,Lin L., Chen X., et al. Effects of inner diameter of monolithic column on separation of proteins in capillary-liquid chromatography [J]. Journal of Chromatography A,2007,1170:15-22
    [29]Levkin P. A., Eeltink S., Stratton T. R., et al. Monolithic porous polymer stationary phases in polyimide chips for the fast high-performance liquid chromatography separation of proteins and peptides [J]. Journal of Chromatography A,2008,1200:55-61
    [30]Geiser L., Eeltink S., Svec F., et al. Stability and repeatability of capillary columns based on porous monoliths of poly(butyl methacrylate-co-ethylene dimethacrylate) [J]. Journal of Chromatography A, 2007,1140:140-146
    [1]Gatlin C. L., Pieper R. H., Huang S.-T., et al. Proteomic profiling of cell envelope associated proteins from staphylococcus aureus [J]. Proteomics,2006,6:1530-1549
    [2]Hattan S. J., Marchese J., Khainovski N., et al. Comparative study of (Three) LC-MALDI workflows for the analysis of complex proteomic samples [J]. Journal of Proteome Research,2005,4:1931-1941
    [3]Rozhon W., Petutschnig E., Wrzaczek M., et al. Quantification of free and total salicylic acid in plants by solid-phase extraction and isocratic high-performance anion-exchange chromatography [J]. Analytical and Bioanalytical Chemistry,2005,382:1620-1627
    [4]Swanson K. V., Griffiss J. M. Separation and identification of neisserial lipooligosaccharide oligosaccharides using high-performance anion-exchange chromatography with pulsed amperometric detection [J]. Carbohydrate Research,2006,341:388-396
    [5]Minamisawa T., Suzuki K., Kajimoto N. et al. Microscale preparation of even-and odd-numbered N-acetylheparosan oligosaccharides [J]. Carbohydrate Research,2006,341:230-237
    [6]Mayr B., Kohlbacher O., Reinert K., et al. Absolute myoglobin quantitation in serum by combining Two-Dimensional Liquid Chromatography-Electrospray Ionization Mass Spectrometry and novel data analysis algorithms [J]. Journal of Proteome Research,2006,5:414-421
    [7]Ng P. K., He J., Snyder M. A. Separation of protein mixtures using pH-gradient cation-exchange chromatography [J]. Journal of Chromatography A,2009,1216:1372-1376
    [8]Pepaj M., Wilson S. R., Novotna K. Two-dimensional capillary liquid chromatography:pH gradient ion exchange and reversed phase chromatography for rapid separation of proteins [J]. Journal of Chromatography A,2006,1120:132-141
    [9]Cohn W. E. Separation of mononucleotides by anion-exchange chromatography [J]. Journal of the American Chemical Society,1949,71:2275
    [10]Sober H. A., Peterson E. A. Chromatography of proteins on cellulose ion-exchangers [J]. Journal of the American Chemical Society,1954,76:1711
    [11]Chang S. H., Noel R., Regnier F. E. High speed ion exchange chromatography of proteins [J]. Analytical Chemistry,1976,48:1839-1845
    [12]Unger K. K., Jilge O., Kinkel J. N., et al. Evaluation of advanced silica packings for the separation of biopolymers by high-performance liquid chromatography Ⅱ. Performance of non-porous monodisperse 1.5-μm silica beads in the separation of proteins by reversed-phase gradient elution high-performance liquid chromatography [J]. Journal of Chromatography A,1986,359:61-72
    [13]Hjerten S, Liao J. L., Zhang R. High-performance liquid chromatography on continuous polymer beds [J]. Journal of chromatography,1989,473:273-275
    [14]Tennikova T. B., Svec F., Belenkii B. G. High-performance membrane chromatography:A novel method of protein separation [J]. Journal of Liquid Chromatography & Related Technologies,1990,13: 63-70
    [15]Svec F., Frechet J. M. J. Continuous rods of macroporous polymer as high-performance liquid chromatography separation media [J]. Analytical Chemistry,1992,64:820-822
    [16]Nordborg A., Hilder E. F. Recent advances in polymer monoliths for ion-exchange chromatography [J]. Analytical and Bioanalytical Chemistry,2009,394:71-84
    [17]Haddad P. R., Nesterenko P. N., Buchberger W. Recent developments and emerging directions in ion chromatography [J]. Journal of Chromatography A,2008,1184:456-473
    [18]Peters E. C., Petro M., Svec F., et al. Molded rigid polymer monoliths as separation media for capillary electrochromatography.2. Effect of chromatographic conditions on the separation [J]. Analytical Chemistry,1998,70:2296-2302
    [19]Palm A., Novotny M. V. Macroporous polyacrylamide/poly(ethylene glycol) matrixes as stationary phases in capillary electrochromatography [J]. Analytical Chemistry,1997,69:4499-4507
    [20]Ericson C., Liao J. L., Nakazato K., et al. Preparation of continuous beds for electrochromatography and reversed-phase liquid chromatography of low-molecular-mass compounds [J]. Journal of Chromatography A,1997,767,33-41
    [21]Garcia M. C., Marina M. L., Torre M. Perfusion chromatography:an emergent technique for the analysis of food proteins [J]. Journal of Chromatography A,2000,880:169-187
    [22]Alpert J. A. Cation-exchange high-performance liquid chromatography of proteins on poly(aspartic acid)-silica [J].1983,266:23-37
    [23]常庆,常建华.分离蛋白质的硅胶基质弱阳离子交换剂的合成与性能[J].化学试剂,200527:179-180
    [24]Ikegami T., Tomomatsu K., Takubo H., et al. Separation efficiencies in hydrophilic interaction chromatography [J]. Journal of Chromatography A,2008,1184:474-503
    [25]Geng X., Ke C, Chen G., et al. On-line separation of native proteins by two-dimensional liquid chromatography using a single column [J]. Journal of Chromatography A,2009,1216:3553-3562
    [26]Issaeva T., Kourganov A., Unger K. Super-high-speed liquid chromatography of proteins and peptides on non-porous Micra NPS-RP packings [J]. Journal of Chromatography A,1999,846:13-23
    [27]Lee D., Svec F., Frechet J. M. J. Photopolymerized monolithic capillary columns for rapid micro high-performance liquid chromatographic separation of proteins [J]. Journal of Chromatography A, 2004,1051:53-60
    [28]Eksteen R., Gisch D. J., Ludwig R. C., et al. America Chemical Society National Meeting, St. Louis, MO, April 8,1984
    [29]Tennikov M. B., Gazdina N. V., Tennikova T. B., et al. Effect of porous structure of macroporous polymer supports on resolution in high-performance membrane chromatography of proteins [J]. Journal of Chromatography A,1998,798:55-64
    [30]Strancar A., Koselj P. Application of compact porous disks for fast separations of biopolymers and in-process control in biotechnology [J]. Analytical Chemistry,1996,68:3483-3488
    [31]Svec F., Frechet J. M. J. Molded rigid monolithic porous polymers:An inexpensive, efficient, and versatile alternative to beads for the design of materials for numerous applications [J]. Industrial & Engineering Chemistry Research,1999,38,34-48
    [32]Dinh N. P., Cam Q. M., Nguyen A. M. Functionalization of epoxy-based monoliths for ion exchange chromatography of proteins [J]. Journal of separation science,2009,32:2556-2564
    [33]Gong B., Zhu J., Li L., et al. Synthesis of non-porous poly(glycidylmethacrylate-co-ethylenedimethacrylate) beads and their application in separation of biopolymers [J]. Talanta,2006,68:666-672
    [1]Hjerten S. Some general aspects of hydrophobic interaction chromatography [J]. Journal of Chromatography,1973,87:325-331
    [2]Jakobsson N., Degerman M., Nilsson B. Optimisation and robustness analysis of a hydrophobic interaction chromatography step [J]. Journal of Chromatography A,2005,1099:157-166
    [3]Cramer S. M., Jayaraman G. Preparative chromatography in biotechnology [J]. Current Opinion in Biotechnology,1993,4:217-225
    [4]Li J., Venkataramana M, Wang A., et al. A mild hydrophobic interaction chromatography involving polyethylene glycol immobilized to agarose media refolding recombinant Staphylococcus aureus elongation factor G [J]. Protein Expression and Purification,2005,40:327-335
    [5]Li J., Liu Y., Wang F., et al. Hydrophobic interaction chromatography correctly refolding proteins assisted by glycerol and urea gradients [J]. Journal of Chromatography A,2004,1061:193-199
    [6]Jungbauer A., Kaar W., Schlegl R. Folding and refolding of proteins in chromatographic beds [J]. Current Opinion in Biotechnology,2004,15:487-494
    [7]Fausnaugh J. L., Kennedy L. A., Regnier F. E. Comparison of hydrophobic-interaction and reversed-phase chromatography of proteins [J]. Journal of Chromatography,1984,317:141-155
    [8]Hjerten S., Rosengren J., Pahlman S. Hydrophobic interaction chromatography:The synthesis and the use of some alkyl and aryl derivatives of agarose [J]. Journal of Chromatography,1974,101:281-288
    [9]Jennissen H. P. Hydrophobic interaction chromatography:the critical hydrophobicity approach [J]. International Journal of Bio-Chromatography,2000,5:131-163
    [10]Rimerman R. A., Hatfield G.W. Phosphate-induced protein chromatography [J]. Science,1973,182: 1268-1270
    [11]Kato Y., Kitamura T., Hashimoto T. High-performance hydrophobic interaction chromatography of proteins [J]. Journal of Chromatography,1983,266:49-54
    [12]Kato Y, Kitamura T., Hashimoto T. New resin based hydrophilic support for high-performance hydrophobic interaction chromatography [J]. Journal of Chromatography,1986,360:260-265
    [13]Gooding D. L., Schmuck M. N., Gooding K. M. Analysis of proteins with new, mildly hydrophobic high-performance liquid chromatography packing materials [J]. Journal of Chromatography,1984, 296:107-114
    [14]Gustavsson P., Axelsson A., Larsson P. Superporous agarose beads as a hydrophobic interaction chromatography support [J]. Journal of Chromatography A,1999,830:275-284
    [15]Strancar A., Koselj P. Application of compact porous disks for fast separations of biopolymers and in-process control in biotechnology [J]. Analytical Chemistry,1996,68:3483-3488
    [16]Janzen R., Unger K. K., Giesche H., et al. Evaluation of advanced silica packings for the separation of biopolymers by high-performance liquid chromatography:Ⅳ. Mobile phase and surface-mediated effects on recovery of native proteins in gradient elution on non-porous, monodisperse 1.5-μm reversed-phase silicas [J]. Journal of Chromatography,1987,397:81-89
    [17]Kato Y., Kitamura T., Nakatani S., et al. High-performance hydrophobic interaction chromatography of proteins on a pellicular support based on hydrophilic resin [J]. Journal of Chromatography,1989, 483:401-405
    [18]Xie S., Svec F., Frechet J. M. J. Rigid porous polyacrylamide-based monolithic columns containing butyl methacrylate as a separation medium for rapid hydrophobic interaction chromatography of proteins [J]. Journal of Chromatography A,1997,775:65-72
    [19]Zeng C., Liao J., Nakazato K., et al. Hydrophobic-interaction chromatography of proteins on continuous beds derivatized with isopropyl groups [J]. Journal of Chromatography A,1996,753: 277-234
    [1]Chen H., Horvath C. High-speed high performance liquid chromatography of peptides and proteins [J]. Journal of Chromatography A,1995,705:3-20
    [2]MacNair J. E., Patel K. D., Jorgenson J. W. Ultrahigh-pressure reversed-phase capillary liquid chromatography:isocratic and gradient elution using columns packed with 1.0-μm particles [J]. Analytical Chemistry,1999,71:700-708
    [3]Issaeva T., Kourganov A., Unger K. Super-high-speed liquid chromatography of proteins and peptides on non-porous Micra NPS-RP packings [J]. Journal of Chromatography A,1999,846:13-23.
    [4]Old W. M, Meyer-Arendt. K., Aveline-Wolf L., et al. Comparison of label-free methods for quantifying human proteins by shotgun proteomics [J]. Molecular & Cellular Proteomics,2005,4: 1487-1502
    [5]Geng X. D., Wang L. L. Liquid chromatography of recombinant proteins and protein drugs [J]. Journal of Chromatography B,2008,866:133-153
    [6]Geng X. D., Wang C. Z. Protein folding liquid chromatography and its recent developments [J]. Journal of Chromatography B,2007,849:69-80
    [7]Ke C. Y., Geng X. D. A new chromatographic method for fast separation of active proteins [J]. Chinese Science Bulletin,2008,53:1113-1116
    [8]Geng X. D., Ke C. Y., Chen G., et al. On-line separation of native proteins by two-dimensional liquid chromatography using a single column [J]. Journal of Chromatography A,2009,1216:3553-3562
    [9]Geng X. D. A new strategy for separation of intact proteins in preparative scale by liquid chromatography [J]. In:Proceedings of the 33rd International Symposium on High Performance Liquid Phase Separations and Related Techniques. Kyoto:2008. L22
    [10]Moriyama H., Anegayama M., Komiya K., et al. Characterization of a new reversed-phase chromatographic column on a 2-μm porous microspherical silica gel [J]. Journal of Chromatography A,1995,691:81-89
    [11]Geng X. D., Regnier F. E. Stoichiometric displacement of solvent by non-polar solutes in reversed-phase liquid chromatography [J]. Journal of Chromatography,1985,332:147-168
    [12]闵一,陈刚,耿信笃.动力学因素对液相色谱分离整体蛋白的影响[J].色谱,2009,27:731-736
    [13]Geng X. D., Regnier F. E. Characters of the plateau of methanol increment in frontal analysis in reversed phase liquid chromatography [J]. Chinese Journal of Chemistry,2002,20:431-440
    [1]Davies N. H., Euerby M. R., McCalley D. V. A study of retention and overloading of basic compounds with mixed-mode reversed-phase/cation-exchange columns in high performance liquid chromatography [J]. Journal of Chromatography A,2007,1138:65-72
    [2]Lin J., Lin J., Lin X. et al. Preparation of a mixed-mode hydrophilic interaction/anion-exchange polymeric monolithic stationary phase for capillary liquid chromatography of polar analytes [J]. Journal of Chromatography A,2009,1216:801-806
    [3]Gilar M., Yu Y., Ahn J., et al. Mixed-mode chromatography for fractionation of peptides, phosphopeptides, and sialylated glycopeptides [J]. Journal of Chromatography A,2008,1191: 162-170
    [4]Shen Y., Shao X., O'Neill K., et al. Reversed-phase liquid chromatography of proteins and peptides using multimodal copolymer-encapsulated silica [J]. Journal of Chromatography A,2000,866:1-14
    [5]Brochier V. B., Schapmana A., Santambien P., et al. Fast purification process optimization using mixed-mode chromatography sorbents in pre-packed mini-columns [J]. Journal of Chromatography A, 2008,1177:226-233
    [6]Mclaughlin L. W. Mixed-mode chromatography of nucleic acids [J]. Chemical Reviews,1989,89: 309-319
    [7]Apfelthaler E., Bicker W., Lammerhofer M., et al. Retention pattern profiling of fungal metabolites on mixed-mode reversed-phase/weak anion exchange stationary phases in comparison to reversed-phase and weak anion exchange separation materials by liquid chromatography-electrospray ionisation-tandem mass spectrometry [J]. Journal of Chromatography A,2008,1191:171-181
    [8]Liu X., Pohl C. New hydrophilic interaction/reversed-phase mixed-mode stationary phase and its application for analysis of nonionic ethoxylated surfactants [J]. Journal of Chromatography A,2008, 1191:83-89
    [9]Strege M. A., Stevenson S., Lawrence S. M. Mixed-mode anion-cation exchange/hydrophilic interaction liquid chromatography-electrospray mass spectrometry as an alternative to reversed phase for small molecule drug discovery [J]. Analytical Chemistry,2000,72:4629-4633
    [10]Er-el Z., Zaidenzaig Y., Shaltiel S. Hydrocarboncoated sepharoses. Use in the purification of glycogen phosphorilase [J]. Biochemical and Biophysical Research Communications,1972,49:383-390
    [11]Axen R., Porath J., Emback S. Chemical coupling of peptides and proteins to polysaccharides by means of cyanogen halides [J]. Nature,1967,214:1302-1306
    [12]Hofstee B. H. J. Protein binding by agarose carrying hydrophobic groups in conjunction with changes [J]. Biochemical and Biophysical Research Communications,1973,50:751-757
    [13]Kennedy L. A., Kopaciewicz W., Regnier F. E. Multimodal liquid chromatography columns for the separation of proteins in either the anion-exchange or hydrophobic-interaction mode [J]. Journal of Chromatography,1986,359:73-84
    [14]Liu P., Yang H., Geng X. Mixed retention mechanism of proteins in weak anion-exchange chromatography [J]. Journal of Chromatography A,2009,1216:7497-7504
    [15]Geng X., Ke C., Chen G, et al. On-line separation of native proteins by two-dimensional liquid chromatography using a single column [J]. Journal of Chromatography A,2009,1216:3553-3562
    [16]Francois I., Sandra K., Sandra P. Comprehensive liquid chromatography:Fundamental aspects and practical considerations-A review [J]. Analytica Chimica Acta,2009,641:14-31
    [17]Alpert A. J., Regnier F. E. Preparation of a porous microparticulatee anion-exchange chromatography support for proteins [J]. Journal of Chromatography A,1979,185:375-392
    [18]Buchmeiser M. R. Polymeric monolithic materials:Syntheses, properties, functionalization and applications [J]. Polymer,2007,48,2187-2198
    [19]Chang S. H., Noel R., Regnier F. E. High speed ion exchange chromatography of proteins [J]. Analytical Chemistry,1976,48:1839-1845
    [20]Horvath J., Boschetti E., Guerrier L., et al. High-performance protein separations with novel strong ion exchangers [J]. Journal of Chromatography A,1994,679:11-22
    [21]Boschetti E. Advanced sorbents for preparative protein separation purposes [J]. Journal of Chromatography A,1994,658:207-236
    [22]Josic D., Reusch J., Loster K., et al. High-performance membrane chromatography of serum and plasma membrane proteins [J]. Journal of Chromatography,1992,590:59-76
    [23]Li Y., Gu B., Tolley H. D. Preparation of polymeric monoliths by copolymerization of acrylate monomers with amine functionalities for anion-exchange capillary liquid chromatography of proteins [J]. Journal of Chromatography A,2009,1216:5525-5532
    [24]Giddings J. C. Maximum number of components resolvable by gel filtration and other elution chromatographic methods [J]. Analytical Chemistry,1967,39:1027-1028
    [25]Dolan J. W., Snyder L. R., Djordjevic N. M., et al. Reversed-phase liquid chromatographic separation of complex samples by optimizing temperature and gradient time:I. Peak capacity limitations [J].
    Journal of Chromatography A,1999,857:1-20
    [26]Stoll D. R., Li X. P., Wang X. L., et al. Fast, comprehensive two-dimensional liquid chromatography [J]. Journal of Chromatography A,2007,1168:3-43
    [27]Rassi Z. E., Horvath C. Tandem columns and mixed-bed columns in high-performance liquid chromatography of proteins [J]. Journal of Chromatography,1986,359:255-264
    [28]Melander W. R., Rassi Z. E., Horvath C. Interplay of hydrophobic and electrostatic interactions in biopolymer chromatography:Effect of salts on the retention of proteins [J]. Journal of Chromatography,1989,469:3-27
    [29]Despa F., Berry R. S. The origin of long-range attraction between hydrophobes in water [J]. Biophysical Journal,2007,92:373-378
    [30]Geng X., Guo L., Chang J. Study of the retention mechanism of proteins in hydrophobic interaction chromatography [J]. Journal of Chromatography,1990,507:1-23
    [31]Geng X., Regnier F.E. Retention model for proteins in reversed-phase liquid chromatography [J]. Journal of Chromatography,1984,296:15-30
    [32]Geng X., Wang C. Protein folding liquid chromatography and its recent developments [J]. Journal of Chromatography B,2007,849:69-80
    [33]Harano Y., Yoshidome T., Kinoshita M. Molecular mechanism of pressure denaturation of proteins [J]. The Journal of Chemical Physics,2008,129:145103-145112
    [34]Courtois J., Bystrom E., Irgum K. Novel monolithic materials using poly(ethylene glycol) as porogen for protein separation [J]. Polymer 2006,47:2603-2611
    [35]Strancar A., Koselj P. Application of compact porous disks for fast separations of biopolymers and in-process control in biotechnology [J]. Analytical Chemistry,1996,68:3483-3488
    [36]Xie S., Svec F., Frechet J. M. J. Rigid porous polyacrylamide-based monolithic columns containing butyl methacrylate as a separation medium for the rapid hydrophobic interaction chromatography of proteins [J]. Journal of Chromatography A,1997,775:65-72
    [37]Zeng C., Liao J., Nakazato K., et al. Hydrophobic-interaction chromatography of proteins on continuous beds derivatized with isopropyl groups [J]. Journal of Chromatography A,1996,753: 227-234
    [38]闵一,陈刚,耿信笃.动力学因素对液相色谱分离整体蛋白的影响[J].色谱,2009,27:717-723

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700