有机相纳滤传递机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳滤(NF)是介于反渗透(RO)与超滤(UF)之间的一种膜技术,已在水处理、食品、制药、化学工业等诸多领域得到广泛的工业应用。纳滤膜分离技术应用于有机相中时,被称为耐溶剂纳滤(SRNF),它具有传统分离技术(如蒸馏和结晶)不可比拟的优点:无需任何添加剂,分离过程无相变,在较温和的温度条件下操作物质不易失活和降解,在较低压力下就可回收有机溶剂,减轻了环境污染,并且可以显著降低能耗。尽管SRNF技术的优点很多,但是大规模的SRNF过程很少。与传统的水相NF过程相比,SRNF过程由于溶质—溶剂—膜间复杂的相互作用使其传递过程更难以预测,而且,溶剂和溶质通过有机相SRNF膜的传递是受粘性流机理还是扩散机理控制至今尚无定论。现有的传递模型的缺陷,以及缺乏普适性的传递膜型等问题都严重阻碍了SRNF技术的工业应用,因此,探讨有机相中的NF传递机理已经成为当前国内外学者的研究热点。
     首先,本文选用SRNF疏水膜(STARMEMTM122膜),在SterlitechHP4750死端流膜分离装置中测定了8种有机溶剂的通量。鉴于溶剂通过SRNF膜的传递与溶剂的性质(如分子量、粘度、摩尔体积和介电常数等)和膜-溶剂间的相互作用(如膜-溶剂溶解度参数差、膜-溶剂表面张力差等)有关,本文采用相关分析方法,对文献中常用的各种溶剂参数和溶剂—膜间相互作用参数与23种溶剂通量数据的相关性进行了研究,发现溶剂的粘度、介电常数、膜—溶剂溶解度参数差和膜—溶剂表面张力差与通量具有较高的相关系数。因此,对于所研究的SRNF膜体系,可以确定这四个参数是影响膜通量的主要因素。
     然后,在不完全溶解-扩散模型基础上,考虑这些参数对溶剂通量的影响,建立了一个新的半经验溶剂传递模型。为了验证新模型描述溶剂传递行为的普遍适用性,在多种纯溶剂体系和二元混合溶剂体系中,利用本文测定的通量数据以及文献数据,将新建模型和5种文献模型对溶剂渗透系数的预测性进行对比,发现对于不同膜体系中的全体溶剂,本模型都表现出很高的相关性,并且溶剂渗透系数的实验值与模型计算值的标准误差较小,说明本模型能很好地预测纯溶剂和二元混合溶剂通过疏水SRNF膜的传递过程。这些结果证明,新模型适用于不同疏水膜体系,而且粘性流-扩散机理可以很好地描述溶剂在疏水性耐溶剂纳滤膜中的传递过程。
     在NF膜分离过程中,溶质分子的尺寸和形状显著影响着溶质的传递和截留特性。当利用纳滤截留模型去预测膜对溶质分子的截留率时,无论是通过致密膜的溶解—扩散模型还是通过多孔膜的孔流模型,都需要确定一些与溶质的分子尺寸相关的模型参数。现有的分子尺寸参数对于表征溶质在某个NF膜体系中的截留行为是有用的,但并不适于描述大范围膜体系中的溶质传递过程。本文考虑溶剂对溶质分子性质的影响,根据溶质分子的全优化构型计算得到了一个新的分子几何尺寸参数(“计算平均尺寸”),同时利用实验截留数据和文献数据,在不同的有机相和水相NF膜体系中,对新参数描述溶质截留行为的适用性进行了评价。
     最后,本文选择了一系列分子量在116~228Da的中性乙酸酯类化合物(包括直链的、带支链的、带环己烷的和芳香乙酸酯)作为溶质,测定了它们在甲醇中通过三种SRNF膜(STARMEMTM122膜、STARMEMTM240膜和MPF-44膜)的截留数据;发现对于具有相近分子量而分子结构不同的溶质分子,直链的传递优于环状的,而带支链的具有最慢的传递速度。为了关联截留率与溶质的分子尺寸和形状之间的关系,将“计算平均尺寸”与8个常用的分子尺寸参数(包括分子量、Stokes直径、当量摩尔直径、经验有效直径、回转半径、“计算分子直径”、“分子长度”以及“分子宽度”)进行了对比分析,发现仅有“计算平均尺寸”与溶质在全部有机相和水相膜体系中的截留率显著相关。并且,通过对有机相和水相中的不同膜体系进行的相关和回归分析,证明了本文提出的“计算平均尺寸”是一个恰当的分子尺寸描述符,可以作为一个普遍适用的模型参数用在溶解—扩散模型中,并且能够很好地描述溶质在有机相和水相体系中的截留行为。
Nanofiltration (NF) is a relatively new membrane technique located between ultrafiltration (UF) and reverse osmosis (RO), and its application has been gaining popularity in water treatment, food, pharmaceutical and chemical industries. Solvent resistant nanofiltration (SRNF) may be considered as an extension to the NF process applied in organic solvent system. The advantages of SRNF are numerous, for example, the process is free of phase transition and the use of additives. Thermal degradation and deactivation can be minimized during the separation process due to the mild operation temperature. Organic solvents can be recycled at low pressure so as to decrease their emission to the environment, and reduce the energy consumption as compared with alternative unit operations like distillation and crystallization. Despite these advantages, the running large-scale SRNF processes are quite limited. Compared to the traditional NF process, the SRNF is less predictable due to the complicated solvent-solute-membrane interactions and the limited knowledge on the membrane transport mechanism, that is, whether transport (both solvent and solute) through SRNF membrane in organic solvent is dominated by viscous flow or diffusion. Present transport models have various limitations and a generalized model is not available, which hindered the practical applications of organic solvent nanofiltration. Therefore, investigation into the transport mechanisms of nanofiltration in organic solvent system is a frontier research area in the world.
     Firstly, the permeation of eight organic solvents through hydrophobic SRNF membrane (STARMEMTM122 membrane) has been measured in a Sterlitech HP4750 dead-end filtration cell. Considering the dependence of solvent flux on both solvent properties (such as molecular weight, viscosity, mole volume, and dielectric constant) and membrane-solvent interaction (such as membrane-solvent solubility parameter difference and membrane-solvent surface tension difference), correlation analysis is performed between the flux of 23 solvents and various solvent property parameters and membrane-solvent interaction parameters. Higher correlation coefficient is found between solvent flux and four parameters (solvent viscosity, dielectric constant, membrane-solvent solubility parameter difference and membrane-solvent surface tension difference). For the SRNF membrane systems studied, therefore, the four parameters may be confirmed as the main factors influencing the membrane flux.
     Then, taking the effect of the four parameters on solvent flux into account, a new semi-empirical solvent transport model based on the solution-diffusion with imperfection model has been developed, and its universal applicability is demonstrated by describing solvent transport behaviour in a wide range of pure solvent and binary solvent mixtures. The predictive ability of the new model was compared to five existing models by using the experimental results of solvent flux combined with some reference data. For the whole solvents studied, the new model shows a high correlation and minor standard errors between experimental and predicted solvent permeation, implying that the model may well describe the transport behaviour of pure solvent and binary solvent mixtures through hydrophobic SRNF membranes. The results demonstrate the suitability of the new model for the different hydrophobic membrane systems, and show that the viscous-diffusive transport mechanism may well describe the solvent permeation through hydrophobic solvent resistant nanofiltration membrane.
     In the NF membrane filtration process, the size and shape of a solute molecule significantly affects its transport and retention characteristics. When estimating the retention of a solute with a predictive model (either solution-diffusion model or pore flow model), some parameters associated with the effective solute size must be known. Present size descriptors could be used to describe solute retention for some membranes, however, they would often not apply equally to a wide range of membranes. In this study, according to the molecular geometry optimization, the influence of solvent on the molecular geometry was considered explicitly for the determination of a new molecular geometric size parameter ("calculated mean size"). The suitability of "calculated mean size" for describing solute retention behaviour is evaluated based on large amount of reference data and statistically compared with those previously reported geometric size descriptors.
     Finally, retention data for a series of small and neutral solutes in methanol are measured through three different SRNF membranes. The neutral solutes include linear alkyl-acetates, branched alkyl-acetates, cyclohexyl-acetates and aromatic acetates with molecular weight ranging from 116 to 228 g mol-1. For those solutes with approximately the same MW but different molecular shape, all three membranes show preferential transport of straight-chained solutes over cyclic solutes, while the branched solutes revealed the lowest permeability. In order to correlate the retention with the molecule size and shape of the solutes, eight traditional molecular size descriptors (MW, the Stokes diameter, the equivalent molar diameter, the empirical effective diameter, radius of gyration, "calculated molecular diameter", "molecular width", and "molecular length"), were compared to "calculated mean size". A strong correlation between molecular size and solute retention across a range of membranes in aqueous and non-aqueous systems was only found with "calculated mean size". In addition, correlation and regression analyses for various NF membranes in aqueous and non-aqueous systems were performed. The results justified "calculated mean size" as the most characteristic size parameter that can suitably discriminate the solutes molecules, and as a universal model parameter of the solution-diffusion model for well describing solute retention behaviour in aqueous and non-aqueous systems.
引文
[1]Eriksson P. Nanofiltration extends the range of membrane filtration[J]. Environ. Prog.,1988, 7(1):58-62
    [2]Pepper D. RO-fractionation membranes[J]. Desalination,1988,70(1-3):89-93
    [3]Koros W J, Ma Y H, Shimidzu T. Terminology for membranes and membrane processes (IUPAC Recommendation 1996)[J]. J. Membr. Sci.,1996,120(2):149-159
    [4]Mulder M. Basic Principles of Membrane Technology[M]. Kluwer Academic Publishers: Dordrecht,2004
    [5]王湛,周翀.膜分离技术基础[M].北京:化学工业出版社,2006
    [6]Vandezande P, Gevers L E M, Vankelecom I F J. Solvent resistant nanofiltration:separating on a molecular level[J], Chem. Soc. Rev.,2008,37:365-405
    [7]Haddada R, Ferjani E, Roudesli M S, et al. Properties of cellulose acetate nanofiltration membranes. Application to brackish water desalination[J], Desalination,2004,167:403-409
    [8]Ferjani E, Ellouze E, Amar R B. Treatment of seafood processing wastewaters by ultrafiltration-nanofiltration cellulose acetate membranes[J], Desalination,2005,177(1-3): 43-49
    [9]Verissimo S, Peinemann K -V, Bordado J. Influence of the diamine structure on the nanofiltration performance, surface morphology and surface charge of the composite polyamide membranes[J], J. Membr. Sci.,2006,279(1-2):266-275
    [10]Saha N K, Joshi S V. Performance evaluation of thin film composite polyamide nanofiltration membrane with variation in monomer type[J], J. Membr. Sci.,2009,342(1-2): 60-69
    [11]Lee H S, Im S J, Kim J H, et al. Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles[J], Desalination,2008,219(1-3):48-56
    [12]Yoon K, Hsiao B S, Chu B. High flux nanofiltration membranes based on interfacially polymerized polyamide barrier layer on polyacrylonitrile nanofibrous scaffolds[J], J. Membr. Sci.,2009,326(2):484-492
    [13]Boussu K, Vandecasteele C, Van der Bruggen B. Study of the characteristics and the performance of self-made nanoporous polyethersulfone membranes[J], Polymer,2006, 47(10):3464-3476
    [14]Boussu K, Van der Bruggen B, Volodin A, et al. Characterization of commercial nanofiltration membranes and comparison with self-made polyethersulfone membranes[J], Desalination,2006,191(1-3):245-253
    [15]Lang K, Sourirajan S, Matsuura T, et al. A study on the preparation of polyvinyl alcohol thin-film composite membranes and reverse osmosis testing[J], Desalination,1996,104(3): 185-19
    [16]Jegal J, Lee K. Nanofiltration membranes based on poly(vinyl alcohol) and ionic polymers[J], J. Appl. Polym. Sci.,1999,72(13):1755-1762
    [17]Gohil J M, Ray P. Polyvinyl alcohol as the barrier layer in thin film composite nanofiltration membranes:Preparation, characterization, and performance evaluation[J], J. Colloid Interface Sci.,2009,338(1):121-127
    [18]Mi B, Coronell O, Marinas B J, et al. Physico-chemical characterization of NF/RO membrane active layers by Rutherford backscattering spectrometry[J], J. Membr. Sci.,2006, 282(1-2):71-81
    [19]He T, Frank M, Mulder M H V, et al. Preparation and characterization of nanofiltration membranes by coating polyethersulfone hollow fibers with sulfonated poly(ether ether ketone) (SPEEK) [J], J. Membr. Sci.,2008,307(1):62-72
    [20]Patterson D A, Havill A, Costello S, et al. Membrane characterisation by SEM, TEM and ESEM:The implications of dry and wetted microstructure on mass transfer through integrally skinned polyimide nanofiltration membranes[J], Sep. Purif. Technol.,2009,66(1): 90-97
    [21]Soroko I, Livingston A. Impact of TiO2 nanoparticles on morphology and performance of crosslinked polyimide organic solvent nanofiltration (OSN) membranes[J], J. Membr. Sci., 2009,343(1-2):189-198
    [22]See-Toh Y H, Silva M, Livingston A. Controlling molecular weight cut-off curves for highly solvent stable organic solvent nanofiltration (OSN) membranes[J], J. Membr. Sci.,2008, 324(1-2):220-232
    [23]Gevers L E M, Vankelecom I F J, Jacobs P A. Solvent-resistant nanofiltration with filled polydimethylsiloxane (PDMS) membranes[J], J. Membr. Sci.,2006,278(1-2):199-204
    [24]Aerts S, Vanhulsel A, Buekenhoudt A, et al. Plasma-treated PDMS-membranes in solvent resistant nanofiltration: Characterization and study of transport mechanism[J], J. Membr. Sci.,2006,275(1-2):212-219
    [25]Elyashevich G K, Olifirenko A S, Pimenov A V. Micro- and nanofiltration membranes on the base of porous polyethylene films[J], Desalination,2005,184(1-3):273-279
    [26]Han R, Zhang S, Zhao W, et al. Treating sulfur black dye wastewater with quaternized poly (phthalazinone ether sulfone ketone) nanofiltration membranes[J], Sep. Purif. Technol.,2009, 67(1):26-30
    [27]Dai Y, Jian X, Liu X, et al. Synthesis and characterization of sulfonated poly (phthalazinone ether sulfone ketone) for ultrafiltration and nanofiltration membranes[J], J. Appl. Polym. Sci., 2001,79(9):1685-1692
    [28]Wang J, Yue Z, Ince J S, et al. Preparation of nanofiltration membranes from polyacrylonitrile ultrafiltration membranes[J], J. Membr. Sci.,2006,286(1-2):333-341
    [29]Zhao Zh, Li J, Zhang D, et al. Nanofiltration membrane prepared from polyacrylonitrile ultrafiltration membrane by low-temperature plasma:Ⅰ. Graft of acrylic acid in gas[J], J. Membr. Sci.,2004,232(1-2):1-8
    [30]Kim I, Yoon H, Lee K. Formation of integrally skinned asymmetric polyetherimide nanofiltration membranes by phase inversion process[J], J. Appl. Polym. Sci.,2002,84(6): 1300-1307
    [31]Kim I, Lee K, Tak T M. Preparation and characterization of integrally skinned uncharged polyetherimide asymmetric nanofiltration membrane[J], J. Membr. Sci.,2001,183(2): 235-247
    [32]Musale D A, Kumar A. Solvent and pH resistance of surface crosslinked chitosan/poly(acrylonitrile) composite nanofiltration membranes, J. Appl. Polym. Sci.,2000, 77(8),1782-1793
    [33]D. A. Musale and A. Kumar, Effects of surface crosslinking on sieving characteristics of chitosan/poly(acrylonitrile) composite nanofiltration membranes[J], Sep. Purif. Technol., 2000,21(1-2):27-37
    [34]Florian E, Modesti M, Ulbricht M. Preparation and characterization of novel solvent-resistant nanofiltration composite membranes based on crosslinked polyurethanes[J], Ind. Eng. Chem. Res.,2007,46(14):4891-4899
    [35]Jegal J, Oh N, Park D, et al. Characteristics of the nanofiltration composite membranes based on PVA and sodium alginate[J], J. Appl. Polym. Sci.,2001,79(13):2471-2479
    [36]Zhang Y, Xiao C, Liu E, et al. Investigations on the structures and performances of a polypiperazine amide/polysulfone composite membrane[J], Desalination,2006,191(1-3): 291-295
    [37]Yang F, Zhang S, Yang D, et al. Preparation and characterization of polypiperazine amide/PPESK hollow fiber composite nanofiltration membrane[J], J. Membr. Sci.,2007, 301(1-2):85-92
    [38]Tsuru T, Sudoh T, Yoshioka T, et al. Nanofiltration in non-aqueous solutions by porous silica-zirconia membranes[J], J. Membr. Sci.,2001,185(2):253-261
    [39]Cot L, Ayral A, Durand J, et al. Inorganic membranes and solid state sciences[J], Solid State Sciences,2000,2(3):313-334
    [40]Tsuru T, Sudou T, Kawahara S, et al. Permeation of Liquids through Inorganic Nanofiltration Membranes[J], J. Colloid Interface Sci.,2000,228(2):292-296
    [41]Gestel T V, Kruidhof H, Blank D H A, et al. ZrO2 and TiO2 membranes for nanofiltration and pervaporation:Part 1. Preparation and characterization of a corrosion-resistant ZrO2 nanofiltration membrane with a MWCO<300[J], J. Membr. Sci.,2006,284(1-2):128-136
    [42]Benfer S, Popp U, Richter H, et al. Development and characterization of ceramic nanofiltration membranes[J], Sep. Purif. Technol.,2001,22-23:231-237
    [43]Gestel T V, Vandecasteele C, Buekenhoudt A, et al. Alumina and titania multilayer membranes for nanofiltration: preparation, characterization and chemical stability[J], J. Membr. Sci.,2002,207(1):73-89
    [44]http://www.kochmembrane.com/[OL]
    [45]Van der Bruggen B, Geens J, Vandecasteele C. Influence of organic solvents on the performance of polymeric nanofiltration membranes[J], Sep. Sci. Technol.,2002,37(4): 783-797
    [46]http://www.membrane-extraction-technology.com/[OL]
    [47]Chin A A, Knickerbocker B M, Trewella J C, et al. Recovery of Aromatic Hydrocarbons Using Lubricating Oil Conditioned Membranes[P]. U.S. Patent, US6187987.2001-2-13
    [48]http://www.solsep.com/[OL]
    [49]Van der Bruggen B, Jansen J C. Figoli A, et al. Characteristics and Performance of a "Universal" Membrane Suitable for Gas Separation, Pervaporation, and Nanofiltration Applications[J], J. Phys. Chem. B,2006,110(28):13799-1380
    [50]Bhanushali D, Kloos S, Bhattacharyya D, Solute transport in solvent-resistant nanofiltration membranes for non-aqueous systems:experimental results and the role of solute-solvent coupling[J], J. Membr. Sci.,2002,208(1-2):343-359
    [51]http://www.hitk.de/[OL]
    [52]Dudziak G, Hoyer T, Wetter A N, et al. Ceramic nanofiltration membrane for use in organic solvents and method for the production thereof[P]. U.S. Patent, US0237361,2006-10-26
    [53]Zhao Y, Yuan Q. A comparison of nanofiltration with aqueous and organic solvents[J], J. Membr. Sci.,2006,279(1-2):453-458
    [54]Geens J, Peeters K, Van der Bruggen B, et al. Polymeric nanofiltration of binary water-alcohol mixtures: Influence of feed composition and membrane properties on permeability and rejection[J], J. Membr. Sci.,2005,255(1-2):255-264
    [55]梁希,李建明,陈志,等.新型纳滤膜材料研究进展[J].过滤与分离,2006,16(3):18-21
    [56]Mansourpanah Y, Madaeni S S, Rahimpour A, et al. Formation of appropriate sites on nanofiltration membrane surface for binding TiO2 photo-catalyst:Performance, characterization and fouling-resistant capability [J], J. Membr. Sci.,2009,330(1-2):297-306
    [57]李亚军,隋贤栋,黄肖容.无机纳滤膜的研究进展[J].材料导报,2003,17(S1):30-32
    [58]Li X, Feyter S D, Vankelecom I F J. Poly(sulfone)/sulfonated poly(ether ether ketone) blend membranes:morphology study and application in the filtration of alcohol based feeds[J], J. Membr. Sci.,2008,324 (1-2):67-75
    [59]Bowen W R, Mohammad A, Hilal N. Characterisation of nanofiltration membranes for prediefive purposes use of salts, uncharged solutes and atomic force microscopy[J], J. Membr. Sci.,1997,126 (1):91-105
    [60]Hilal N, Al-Zoubi H, Darwish N A, et al. A comprehensive review of nanofiltration membranes:treatment, pretreatment, modelling, and atomic force microscopy[J], Desalination,2004,170(3):281-308
    [61]Bellona C, Drewes J E, Xu P, et al. Factors affecting the rejection of organic solutes during NF/RO treatment-a literature review[J], Water Res.,2004,38(12):2795-2809
    [62]Van der Bruggen B, Vandecasteele C, Van Gestel T, et al. Pressure driven membrane processes in process and waste water treatment and in drinking water production[J], Environ. Progr.,2003,22 (1):46-56
    [63]Boussu K, Zhang Y, Cocquyt J, et al. Characterization of polymeric nanofiltration membranes for systematic analysis of membrane performance[J], J. Membr. Sci.,2006, 278(1-2):418-427
    [64]Boussu K, Belpaire A, Volodin A, et al. Influence of membrane and colloid characteristics on fouling of nanofiltration membranes[J], J. Membr. Sci.,2007,289(1-2):220-230
    [65]Boussu K, Kindts C, Vandecasteele C, et al. Surfactant fouling of nanofiltration membranes: measurements and mechanisms[J], Chem. Phys. Chem.,2007,8(12):1836-1845
    [66]Braeken L, Boussu K, Van der Bruggen B, et al. Modeling of adsorption of organic compounds on polymeric nanofiltration membranes in solutions containing two compounds[J], Chem. Phys. Chem.,2005,6(8):1606-1612
    [67]Violleau D, Essis-Tome H, Habarou H, et al. Fouling studies of a polyamide nanofiltration membrane by selected natural organic matter:an analytical approach[J], Desalination,2005, 173(3):223-238
    [68]Van der Bruggen B, Braeken L, Vandecasteele C. Flux decline in nanofiltration due to adsorption of organic compounds[J], Sep. Purif. Technol.,2002,29 (1):23-31
    [69]Contreras A E, Kim A, Li Q. Combined fouling of nanofiltration membranes:Mechanisms and effect of organic matter[J], J. Membr. Sci.,2009,327(1-2):87-95
    [70]Kimura K, Amy G, Drewes J, et al. Adsorption of hydrophobic compounds onto NF/RO membranes:an artefact leading to overestimation of rejection[J], J. Membr. Sci.,2003, 221(1-2):89-101
    [71]Manttari M, Puro L, Nuortila-Jokinen J, et al. Fouling effects of polysaccharides and humic acid in nanofiltration[J], J. Membr. Sci.,2000,165(1):1-17
    [72]Tarabara V V, Koyuncu I, Wiesner M R. Effects of hydrodynamics and solution ionic strength on permeate flux in cross-flowfiltration:direct experimental observation of filter cake cross-sections[J], J. Membr. Sci.,2004,241(1):65-78
    [73]Ivnitsky H, Katz I, Minz D, et al. Bacterial community composition and structure of biofilms developing on nanofiltration membranes applied to wastewater treatment[J], Water Res., 2007,41(17):3924-3935
    [74]Kim A S, Chen H Q, Yuan R. EPS biofouling in membrane filtration: an analytic modeling study[J], J. Colloids Interface Sci.,2006,303(1):243-249
    [75]Warczok J, Ferrando M, Lopez F, et al. Concentration of apple and pear juices by nanofiltration at low pressures[J], J. Food Eng.,2004,63(1):63-70
    [76]Lee S, Kim J, Lee C. Effect of operating conditions on CaSO4 scale formation mechanism in nanofiltration for water softening[J], Water Res.,2000,34(15):3854-3866
    [77]Nghiem L D, Vogel D, Khan S. Characterising humic acid fouling of nanofiltration membranes using bisphenol A as a molecular indicator[J], Water Res.,2008,42(15): 4049-4058
    [78]Seidel A, Elimelech M. Coupling between chemical and physical interactions in natural organic matter (NOM) fouling of nanofiltration membranes:implications for fouling control[J], J. Membr. Sci.,2002,203(1-2):245-255
    [79]Su B, Wang Z, Wang J, et al. Concentration of clindamycin phosphate aqueous ethanol solution by nanofiltration[J], J. Membr. Sci.,2005,251(1-2):189-200
    [80]Zhang Z, Bright V M., Greenberg A R. Use of capacitive microsensors and ultrasonic time-domain reflectometry for in-situ quantification of concentration polarization and membrane fouling in pressure-driven membrane filtration[J], Sens. Actuators, B,2006, 117(2):323-331
    [81]Huertas E, Herzberg M, Oron G, et al. Influence of biofouling on boron removal by nanofiltration and reverse osmosis membranes[J], J. Membr. Sci.,2008,318(1-2):264-270
    [82]Lee S, Lee C H. Microfiltration and ultrafiltration as a pretreatment for nanofiltration of surface water[J], Sep. Sci. Technol.,2006,41(1):1-23
    [83]Kim H A, Choi J H, Takizawa S. Comparison of initial filtration resistance by pretreatment processes in the nanofiltration for drinking water treatment[J], Sep. Purif. Technol.,2007, 56(3):354-362
    [84]Shon H K, Vigneswaran S, Ben Aim R, et al. Influence of flocculation and adsorption as pretreatment on the fouling of ultrafiltration and nanofiltration membranes:application with biologically treated sewage effluent[J], Environ. Sci. Technol.,2005,39(10):3864-3871
    [85]Song W, Ravindran V, Koel B E, et al. Nanofiltration of natural organic matter with H2O2/UV pretreatment:fouling mitigation and membrane surface characterization[J], J. Membr. Sci.,2004,241(1):143-160
    [86]Al-Amoudi A, Lovitt R W. Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency[J], J.Membr. Sci.,2007,303(1-2):6-28
    [87]Ang W S, Lee S Y, Elimelech M. Chemical and physical aspects of cleaning of organic-fouled reverse osmosis membranes[J], J. Membr. Sci.,2006,272(1-2):198-210
    [88]Liikanen R, Yli-Kuivila J, Laukkanen R. Efficiency of various chemical cleanings for nanofiltration membrane fouled by conventionally-treated surface water[J], J. Membr. Sci., 2002,195(2):265-276
    [89]Cornelissen E R, Vrouwenvelder J S, Heijman S G J, et al. Air/water cleaning for biofouling control in spiral wound membrane elements[J], Desalination,2007,204(1-3):145-147
    [90]Verberk J Q J C, Van Dijk J C. Air sparging in capillary nanofiltration[J], J. Membr. Sci., 2006,284(1-2):339-351
    [91]Futselaar H, Schonewille H, Van der Meer W. Direct capillary nanofiltration—a new high-grade purification concept[J], Desalination,2002,145(1-3):75-80
    [92]Chen J P, Kim S L, Ting Y P. Optimization of membrane physical and chemical cleaning by a statistically designed approach[J], J. Membr. Sci.,2003,219(1-2):27-45
    [93]Akbari A, Desclaux S, Rouch J C, et al. New UV-photografted anofiltration membranes for the treatment of colored textile dye effluents[J], J. Membr. Sci.,2006,286(1-2):342-350
    [94]Qiu C Q, Zhang Q T N L, Ping Z H. Nanofiltration membrane preparation by photomodification of cardo polyetherketone ultrafiltration membrane[J], Sep. Purif. Technol., 2006,51(3):325-331
    [95]Morao A, Escobar I C, deAmorim M T P, et al. Postsynthesis modification of a cellulose acetate ultrafiltration membrane for applications in water and wastewater treatment[J], Environ. Progr.,2005,24(4):367-382
    [96]Chennamsetty R, Escobar I, Xu X L. Characterization of commercial water treatment membranes modified via ion beam irradiation[J], Desalination,2006,188(1-3):203-212
    [97]Lee S Y, Kim H J, Patel R, et al. Silver nanoparticles immobilized on thin film composite polyamide membrane:characterization, nanofiltration, antifouling properties[J], Polym. Adv. Technol.,2007,18(7):562-568
    [98]Bian R, Yamamoto K, Watanabe Y. The effect of shear rate on controlling the concentration polarization and membrane fouling[J], Desalination,2000,131(1-3):225-236
    [99]Shaalan H F. Development of fouling control strategies pertinent to nanofiltration membranes[J], Desalination,2003,153(1-3):125-131
    [100]Koyuncu I, Topacik D. Effects of operating conditions on the salt rejection of nanofiltration membranes in reactive dye/salt mixtures[J], Sep. Purif. Technol.,2003,33(3):283-294
    [101]Costa A R, Norberta de Pinho M. Performance and cost estimation of nanofiltration for surface water treatment in drinking water production[J], Desalination,2006,196(1-3):55-65
    [102]Wijmans J G, Baker R W. The solution-diffusion model:a review[J], J. Membr. Sci.,1995, 107(1-2):1-21
    [103]Vankelecom I F J, Smet K D, Gevers L E M, et al. Physico-chemical interpretation of the SRNF transport mechanism for solvents through dense silicone membranes[J], J. Membr. Sci.,2004,231(1-2):99-108
    [104]Tarleton E S, Robinson J P, Millington C R, et al. Non-aqueous nanofiltration:solute rejection in low-polarity binary systems[J], J. Membr. Sci.,2005,252(1-2):123-131
    [105]Patterson D A, Lau L Y, Roengpithya C, et al. Membrane selectivity in the organic solvent nanofiltration of trialkylamine bases [J], Desalination,2008,218(1-3):248-256
    [106]Han S J, Luthra S S, Peeva L, et al. Insights into the transport of toluene and phenol through organic solvent nanofiltration membranes[J], Sep. Sci. Technol.,2003,38(9):1899-1923
    [107]Silva P, Han S, Livingston A G. Solvent transport in organic solvent nanofiltration membranes[J], J. Membr. Sci.,2005,262(1-2):49-59
    [108]Geens J, Hillen A, Bettens B, et al. Solute transport in non-aqueous nanofiltration:effect of membrane material[J], J. Chem. Technol. Biotechnol.,2005,80(12):1371-1377
    [109]Hassan A R, Ali N, Abdull N, et al. A theoretical approach on membrane characterization: the deduction of fine structural details of asymmetric nanofiltration membranes[J], Desalination,2007,206(1-3):107-126
    [110]Van der bruggen B, Schaep J, Wilms D, et al. A comparison of models to describe the maximal retention of organic molecules in nanofiltration[J], Sep. Sci. Technol.,2000,35(2): 169-182
    [111]Yang X J, Livingston A G, Freitas dos Santos L. Experimental observations of nanofiltration with organic solvents[J], J. Membr. Sci.,2001,190(1):45-55
    [112]Machado D R, Hasson D, Semiat R. Effect of solvent properties on permeate flow through nanofiltration membranes. Part I. Investigation of parameters affecting solvent flux[J]. J. Membr. Sci.,1999,163(1):93-102
    [113]Stafie N, Stamatialis D F, Wessling M. Insight into the transport of hexane-solute systems through tailor-made composite membranes[J], J. Membr. Sci.,2004,228(1):103-116
    [114]Whu J A, Baltzis B C, Sirkar K K. Nanofiltration studies of larger organic microsolutes in methanol solutions[J], J. Membr. Sci.,2000,170(2):159-172
    [115]Tsuru T, Miyawaki M, Kondo H, et al. Inorganic porous membranes for nanofiltration of nonaqueous solutions[J], Sep. Purif. Technol.,2003,32(1-3):105-109
    [116]Tsui E M, Cheryan M. Characteristics of nanofiltration membranes in aqueous ethanol[J], J. Membr. Sci.,2004,237(1-2):61-69
    [117]Van der Bruggen B, Geens J, Vandecasteele C. Fluxes and rejections for nanofiltration with solvent stable polymeric membranes in water, ethanol and n-hexane[J], Chem. Eng. Sci., 2002,57(13):2511-2518
    [118]Zhao Y, Yuan Q. Effect of membrane pretreatment on performance of solvent resistant nanofiltration membranes in methanol solutions[J], J. Membr. Sci.,2006,280(1-2):195-201
    [119]Tarleton E S, Robinson J P, Smith S J, et al. New experimental measurements of solvent induced swelling in nanofiltration membranes[J], J. Membr. Sci.,2005,261(1-2):129-135
    [120]Robinson J P, Tarleton E S, Millington C R, et al. Solvent flux through dense polymeric nanofiltration membranes[J], J. Membr. Sci.,2004,230(1-2):29-37
    [121]Tarleton E S, Robinson J P, Salman M. Solvent-induced swelling of membranes-measurements and influence in nanofiltration[J], J. Membr. Sci.,2006,280(1-2): 442-451
    [122]Freger V. Swelling and morphology of the skin layer of polyamide composite membranes:an atomic force microscopy study[J], Environ. Sci. Technol.,2004,38(11):3168-3175
    [123]Geens J, Van der Bruggen B, Vandecasteele C. Characterisation of the solvent stability of polymeric nanofiltration membranes by measurement of contact angles and swelling[J], Chem. Eng. Sci.,2004,59(5):1161-1164
    [124]Yoo J S, Kim S J, Choi J S. Swelling equilibria of mixed solvent/poly(dimethylsiloxane) systems[J], J. Chem. Eng. Data,1999,44(1):16-22
    [125]Volkov A V, Parashchuk V V, Stamatialis D F, et al. High permeable PTMSP/PAN composite membranes for solvent nanofiltration[J], J. Membr. Sci.,2009,333(1-2):88-93
    [126]Oikawa E, Katoh K, Aoki T. Characteristics of reverse osmosis membranes prepared from Schiff bases of polyallylamine in aprotic solvents and separation of inorganic and organic solutes through the membranes[J], Sep. Sci. Technol.,1991,26(4):569-584
    [127]Shukla R, Cheryan M. Performance of ultrafiltration membranes in ethanol-water solutions: effect of membrane conditioning[J], J. Membr. Sci.,2002,198(1):75-85
    [128]Ebert K. Nanofiltration for non-aqueous applications. Presented at NMG Symposium[C]. The Netherlands,2002
    [129]Santos J L C, Hidalgo A M, Oliveira R, et al. Analysis of solvent flux through nanofiltration membranes by mechanistic, chemometric and hybrid modeling[J], J. Membr. Sci.,2007, 300(1-2):191-204
    [130]Jonsson G, Boesen C E, Water and solute transport through cellulose acetate reverse osmosis membranes[J], Desalination,1975,17(2):145-165
    [131]Bhanushali D, Kloos S, Kurth C, et al. Performance of solvent-resistant membranes for non-aqueous systems:solvent permeation results and modeling[J], J. Membr. Sci.,2001, 189(1):1-21
    [132]Ebert K, Koll J, Dijkstra M F J, et al. Fundamental studies on the performance of a hydrophobic solvent stable membrane in non-aqueous solutions[J], J. Membr. Sci.,2006, 285(1-2):75-80
    [133]Gevers L E M, Meyen G, Smet K D, et al. Physico-chemical interpretation of the SRNF transport mechanism for solutes through dense silicone membranes[J], J. Membr. Sci.,2006, 274(1-2):173-182
    [134]Tarleton E S, Robinson J P, Millington C R, et al. The influence of polarity on flux and rejection behaviour in solvent resistant nanofiltration—experimental observations[J], J. Membr. Sci.2006,278(1-2):318-327
    [135]Kim I, Jegal J, Lee K. Effect of aqueous and organic solutions on the performance of polyamide thin-film-composite nanofiltration membranes[J], J. Polym. Sci., Part B:Polym. Phys.,2002,40(19):2151-2163
    [136]Machado D R, Hasson D, Semiat R. Effects of solvent properties on permeate flow through nanofiltration membranes. Part Ⅱ:transport model[J], J. Membr. Sci.,2000,166(1):63-69
    [137]Geens J, Van der Bruggen B, Vandecasteele C. Transport model for solvent permeation through nanofiltration membranes[J], J. Membr. Sci.,2006,48(3):255-263
    [138]Darvishmanesh S, Buekenhoudt A, Degreve J, et al. General model for prediction of solvent permeation through organic and inorganic solvent resistant nanofiltration membranes[J], J. Membr. Sci.,2009,334(1-2):43-49
    [139]White L S. Transport properties of a polyimide solvent resistant nanofiltration membrane[J], J. Membr. Sci.,2002,205(1-2):191-202
    [140]Koops G H, Yamada S, Nakao S -I. Separation of linear hydrocarbons and carboxylic acids from ethanol and hexane solutions by reverse osmosis[J], J. Membr. Sci.,2001,189(2): 241-254
    [141]Mulder M. Basic principles of membrane technology[M], Kluwer Academic Publishers: Dordrecht,1996
    [142]Dijkstra M F J, Bach S, Ebert K. A transport model for organophilic nanofiltration[J], J. Membr. Sci.,2006,286(1-2):60-68
    [143]Frenzel I, Stamatialis D F, Wessling M. Water recycling from mixed chromic acid waste effluents by membrane technology[J], Sep. Purif. Technol.,2006,49(1):76-83
    [144]Manttari M, Viitikko K, Nystrom M. Nanofiltration of biologically treated effluents from the pulp and paper industry[J], J. Membr. Sci.,2006,272(1-2):152-160
    [145]Mo J H, Lee Y H, Kim J, et al. Treatment of dye aqueous solutions using nanofiltration polyamide composite membranes for the dye wastewater reuse[J], Dyes Pigm.,2007,76(2): 429-434
    [146]Bellona C, Drewes J E. Viability of a low-pressure nanofilter in treating recycled water for water reuse applications: a pilot-scale study[J], Water Res.,2007,41(17):3948-3958
    [147]Ventresque C, Bablon G. The integrated nanofiltration system of the Mery-sur-Oise surface treatment plant (37 mgd)[J], Desalination,1997,113(2-3):263-266
    [148]Ventresque C, Turner G, Bablon G. Nanofiltration:from prototype to full scale[J]. J. AWWA,1997,89(10):65-76
    [149]Frank M J W, Westerink J B, Schokker A. Recycling of industrial waste water by using a two-step nanofiltration process for the removal of colour[J]. Desalination,2002,145(1-3): 69-74
    [150]Cassano A, Molinari R, Romano M, et al. Treatment of aqueous effluents of the leather industry by membrane processes-a review[J], J. Membr. Sci.,2001,181(1):11-126
    [151]Goulas A K, Kapasakalidis P G, Sinclair H R, et al. Grandison A.S. Purification of oligosaccharides by nanofiltration[J], J. Membr. Sci.,2002,209(1):321-335
    [152]Afonso M D, Borquez R. Nanofiltration of wastewaters from the fish meal industry[J], Desalination,2003,151(2):131-138
    [153]Koyuncu I, Arikan O A, Wiesner M R, et al. Removal of hormones and antibiotics by nanofiltration membranes[J], J. Membr. Sci.,2008,309(1-2):94-101
    [154]Gotoh T, Iguchi H, Kikuchi K. Separation of glutathione and its related amino acids by nanofiltration[J], Biochem. Eng. J.,2004,19(2):165-170
    [155]Bader M S H. Sulfate removal technologies for oil fields seawater injection operations [J], J. Pet. Sci. Eng.,2007,55(1-2):93-110
    [156]Chiu M C, Coutinho C de M, Goncalves L A G. Carotenoids concentration of palm oil using membrane technology [J], Desalination,2009,245(1-3):783-786
    [157]Kong Y, Shi D, Yu H, et al. Separation performance of polyimide nanofiltration membranes for solvent recovery from dewaxed lube oil filtrates[J], Desalination,2006,191(1-3):254-261
    [158]Zwijnenberg H J. Acetone-stable nanofiltration membranes in deacidifying vegetable oil[J], J. Am. Oil. Chem. Soc.,1999,76(1):83-87
    [159]Koris A, Vatai G. Dry degumming of vegetable oils by membrane filtration[J], Desalination, 2002,148(1-3):149-153
    [160]Tres M V, Mohr S, Corazza M L, et al. Separation of n-butane from soybean oil mixtures using membrane processes[J], J. Membr. Sci.,2009,333(1-2):141-146
    [161]Kale V, Katikaneni S P R, Cheryan M.. Deacidifying rice bran oil by solvent extraction and membrane technology[J], J. Am. Oil. Chem. Soc.,1999,76(6):723-727
    [162]Kim I, Lee K. Preparation of Interfacially Synthesized and Silicone-Coated Composite Polyamide Nanofiltration Membranes with High Performance[J], Ind. Eng. Chem. Res., 2002,41 (22):5523-5528
    [163]Bhosle B M, Subramanian R. New approaches in deacidification of edible oils-a review[J], J. Food Eng.,2005,69(4):481-494
    [164]Reddy K K, Kawakatsu T, Snape J B, et al. Membrane Concentration and Separation of L-Aspartic Acid and L-Phenylalanine Derivatives in Organic Solvents[J], Sep.Sci. Technol., 1996,31(8):1161-1178
    [165]Tsui E M, Cheryan M. Membrane processing of xanthophylls in ethanol extracts of corn, J. Food Eng.,[J],2007,83(4):590-595
    [166]Nwuha V. Novel studies on membrane extraction of bioactive components of Green tea in organic solvents:part I[J], J. Food Eng.,2000,44(4):233-238.
    [167]Chavan S, Maes W, Gevers L E M, et al. Porphyrin-Functionalized Dendrimers:Synthesis and Application as Recyclable Photocatalysts in a Nanofiltration Membrane Reactor[J], Chem. Eur. J.,2005,11(22):6754-6762
    [168]Datta A, Ebert K, Plenio H. Nanofiltration for Homogeneous Catalysis Separation: Soluble Polymer-Supported Palladium Catalysts for Heck, Sonogashira, and Suzuki Coupling of Aryl Halides[J], Organometallics,2003,22(23):4685-4691
    [169]Scarpello J T, Nair D, Freitas dos Santos L M, et al. The separation of homogeneous organometallic catalysts using solvent resistant nanofiltration[J], J. Membr. Sci.,2002, 203(1-2):71-85
    [170]Luthra S S., Yang X, Freitas dos Santos L M, et al. Homogeneous phase transfer catalyst recovery and re-use using solvent resistant membranes[J], J. Membr. Sci.,2002,201(1-2): 65-75
    [171]Roengpithya C, Patterson D A, Taylor P C, et al. Development of stable organic solvent nanofiltration membranes for membrane enhanced dynamic kinetic resolution[J], Desalination,2006,199(1-3):195-197
    [172]Valadez-Blanco R, Ferreira F C, Jorge R F, et al. A membrane bioreactor for biotransformations of hydrophobic molecules using organic solvent nanofiltration (OSN) membranes[J], J. Membr. Sci.,2008,317(1-2):50-64
    [173]史德青,于宏伟,杨金荣,等.润滑油酮苯脱蜡溶剂回收用聚酰亚胺纳滤膜分离性能的研究[J].膜科学与技术,2005,25(3):50-53
    [174]White L S. Development of large-scale applications in organic solvent nanofiltration and pervaporation for chemical and refining processes[J], J. Membr. Sci.,2006,286(1-2):26-35
    [175]Gould R M, White L S, Wildemuth C R. Membrane separation in solvent lube dewaxing[J], Environ. Prog.,2001,20(1):12-16
    [176]White L S, Nitsch A R. Solvent recovery from lube oil filtrates with a polyimide membrane[J], J. Membr. Sci.,2000,179(1-2):267-274
    [177]Ohya H, Okazaki I, Aihara M, et al. Study on molecular weight cut-off performance of asymmetric aromatic polyimide membrane[J], J. Membr. Sci.,1997,123(1):143-147
    [178]Soffer A, Gilron J, Cohen H. Separation of linear from branched hydrocarbons using a carbon membrane[P]. U.S. Patent, US5914434.1999-1-22
    [179]Guido S, Winston H W. Noone Robert Edmund, et al. Fluorinated polyolefin membranes for aromatics/saturates separation[P]. European Patent, EP0583957.1994-3-31
    [180]Lin J C, Livingston A G. Nanofiltration membrane cascade for continuous solvent exchange[J], Chem. Eng. Sci.,2007,62(10):2728-2736
    [181]Cao X, Wu X, Wu T, et al. Concentration of 6-aminopenicillanic acid from penicillin bioconversion solution and its mother liquor by nanofiltration membrane[J], Biotechnol. Bioprocess Eng.,2001,6(3):200-204
    [182]Shi D, Kong Y, Yu J, et al. Separation performance of polyimide nanofiltration membranes for concentrating spiramycin extract[J], Desalination,2006,191(1-3):309-317
    [183]Whu J A, Baltzis B C, Sirkar K K. Modeling of nanofiltration-assisted organic synthesis[J], J. Membr. Sci.,1999,163(2):319-331
    [184]Sheth J P, Qin Y, Sirkar K K, et al. Nanofiltration-based diafiltration process for solvent exchange in pharmaceutical manufacturing[J], J. Membr. Sci.,2003,211(2):251-261
    [185]Kosaraju P B, Sirkar K K. Novel solvent-resistant hydrophilic hollow fiber membranes for efficient membrane solvent back extraction[J], J. Membr. Sci.,2007,288(1-2):41-50
    [186]Ferreira F C, Macedo H, Cocchini U, et al. Development of a liquid-phase process for recycling resolving agents within diastereomeric resolutions[J], Org. Process Res. Dev., 2006,10(4):784-793
    [187]Ghazali N F, Ferreira F C, White A J P, et al. Enantiomer separation by enantioselective inclusion complexation-organic solvent nanofiltration[J], Tetrahedron:Asymmetry,2006, 17(12):1846-1852
    [188]Kwok D Y, Neumann A W. Contact angle measurement and contact angle interpretation[J], Adv. Colloid Int. Sci.,1999,81(3):167-249
    [189]Roudman A R, DiGiano F A. Surface energy of experimental and commercial nanofiltration membranes:effects of wetting and natural organic matter fouling[J], J. Membr. Sci.,2000, 175(1):61-73.
    [190]朱定一,张远超,戴品强,等.润湿性表征体系及液固界面张力计算的新方法(Ⅱ)[J].科学技术与工程,2007,13(7):3063-3069
    [191]章文波,陈红艳.实用数据统计分析及SPSS 12.0应用[M].北京:人民邮电出版社,2006
    [192]李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版社,2005
    [193]Perry R H. Perry's chemical engineers' handbook[M]. McGraw-Hill:New York,1999
    [194]Dean J A. Lange's handbook of chemistry[M]. McGraw-Hill:New York,1998
    [195]邝生鲁.化学工程师技术全书[M].北京:化学工业出版社,2002
    [196]D W Van Krevelen.聚合物的性质:物性的估算及其与化学结构的关系[M].北京:科学出版社,1981
    [197]Van der Bruggen B, Manttari M, Nystrom M. Drawbacks of applying nanofiltration and how to avoid them:a review[J], Sep. Purif. Technol.,2008,63(2):251-263
    [198]Mason E A, Lonsdale H K. Statistical-mechanical theory of membrane transport[J], J. Membr. Sci.,1990,51(1-2):1-81
    [199]程能林.溶剂手册[M].北京:化学工业出版社,1994
    [200]Poling B, Prausnitz J, Connell J O'. The properties of gases and liquids[M]. McGraw-Hill: New York,1998
    [201]Geens J, Boussu K, Vandecasteele C, et al. Modelling of solute transport in non-aqueous nanofiltration[J], J. Membr. Sci.,2006,281(1-2):139-148
    [202]Van der Bruggen B, Vandecasteele C. Modelling of the retention of uncharged molecules with nanofiltration[J], Water Res.,2002,36(5):1360-1368
    [203]Kiso Y, Sugiura Y, Kitao T, et al. Effects of hydrophobicity and molecular size on rejection of aromatic pesticides with nanofiltration membranes[J], J. Membr. Sci.,2001,192(1-2):1-10
    [204]Bowen W R, Welfoot J S. Modelling the performance of membrane nanofiltration—critical assessment and model development[J], Chem. Eng. Sci.,2002,57(7):1121-1137
    [205]周家驹,王亭.药物设计中的分子模型化方法[M].北京:科学出版社,2001
    [206]邓良容.量子化学研究方法及其在结构化学中的应用[J].中山大学研究生学刊(自然科 学版),2000,21(4):61-67
    [207]张美玲.氨基酸的构型和性质及CF3H灭火反应动力学的从头计算研究[D].合肥:中国科学技术大学,2007
    [208]王莹.溶剂效应的量子化学研究[D].成都:四川大学,2006
    [209]湛昌国.溶液中分子的从头算电子结构理论的最新进展[J].华中师范大学学报(自然科学版),2003,37(3):363-368
    [210]Wong M W, Wiberg K B, Friseh M J. Solvent effects.3. Tautomeric equilibria of formamide and 2-pyridone in the gas phase and solution:an ab initio SCRF study[J], J. Am. Chem. Soe., 1992,114(5):1645-1652
    [211]Barone V, Cossi M. Quantum clculation of molecular energies and energy gradients in solution by a conductor solvent model[J], J. Phys. Chem. A,1998,102(11):1995-2001
    [212]Cossi M, Sealmani G, Rega N, et al. New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution[J], J. Chem. Phys.,2002,117(1):43-54
    [213]Barone V, Tomasi J, Cossi M. A new definition of cavities for the computation of solvation free energies by the polarizable continuum model[J], J. Chem. Phys.,1997,107(8): 3210-3221
    [214]Andzelm J, KOlmel C, A Klamt. Incorporation of solvent effects into density functional calculations of molecular energies and geometries[J], J. Chem. Phys.,1995,103(21): 9312-9320
    [215]Cossi M, Rega N, Scalmani G, et al. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model[J], J. Comput. Chem.,2003,24(6): 669-681
    [216]Tomasi J, Mennucci B, Cances E. The IEF version of the PCM solvation method:an overview of a new method addressed to study molecular solutes at the QM ab initio level[J], J. Mol. Struct.,1999,464(1-3):211-226
    [217]Klamt A, Jonas V. Treatment of the outlying charge in continuum salvation models[J], J.Chem.Phys.,1996,105(2222):9972-9981
    [218]Van der Bruggen B, Schaep J, Wilms D, et al. Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration[J], J. Membr. Sci.,1999, 156(1):29-41
    [219]Kiso Y, Kon T, Kitao T, et al. Rejection properties of alkyl phthalates with nanofiltration membranes[J], J. Membr. Sci.,2001,182(1-2):205-214
    [220]Elshakre M, Atallah A S, Santos S, et al. A structural study of carbosilane dendrimers versus polyamidoamine[J], Comput. Theor. Polym. Sci.,2000,10(1-2):21-28
    [221]Arteca G A. Analysis of shape transitions using molecular size descriptors associated with inner and outer regions of a polymer chain[J], J. Mol. Struct.,2003,630(1-3):113-123
    [222]Stuper A J, Brugger W E, Jurs P C. Computer Assisted Studies of Chemical Structure and Biological Function[M]. John Wiley and Sons:New York,1979
    [223]Van der Bruggen B, Schaep J, Maes W, et al. Nanofiltration as a treatment method for the removal of pesticides from ground waters[J], Desalination,1998,117(1-3):139-147
    [224]Kiso Y, Nishimura Y, Kitao T, et al. Rejection properties of non-phenylic pesticides with nanofiltration membranes[J], J. Membr. Sci.,2000,171(2):229-237
    [225]Agenson K O, Oh J I, Urase T. Retention of a wide variety of organic pollutants by different nanofiltration/reverse osmosis membrane: controlling parameters of process[J], J. Membr. Sci.,2003,225(1-2):91-103
    [226]Chen S S, Taylor J S, Mulford L A, et al. Influence of molecular weight, molecular size, flux, and recovery for aromatic pesticide removal by nanofiltration membranes[J], Desalination, 2004,160(2):103-111
    [227]Rohrbaugh R H, Jurs P C. Descriptions of molecular shape applied in studies of structure/activity and structure/property relationships [J], Anal. Chim. Acta,1987,199: 99-109
    [228]Van der Bruggen B, Braeken L, Vandecasteele C. Evaluation of parameters describing flux decline in nanofiltration of aqueous solutions containing organic compounds[J], Desalination, 2002,147(1-3):281-288

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700