天然气管道清管过程水合物生成预测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对天然气管道进行清管,可提高管道输送效率,降低管道腐蚀速率,确保管道安全运行。然而清管操作又伴有很高的风险,清管过程易发生清管器卡堵、丢球、甚至爆管等事故。特别是近年来随着我国天然气管道里程的飞速增长,天然气管道清管过程中的事故越来越多。其中,天然气管道清管过程发生的水合物堵塞清管器事故已经多次出现,严重影响管道的正常运行,解决该工程实际问题迫在眉睫。
     利用带射流孔的清管器对天然气管道进行清管,天然气经过射流孔产生的冲击力可使清管器前面堆积的各种污物发生扰动,防止积聚堵塞管道。但是,当天然气经过清管器射流孔后发生节流,气体温度降低,如果清管过程的参数控制不当,使得清管器头部区域达到水合物生成条件,如果管道中含有液态水,则会发生水合物堵塞清管器事故。
     针对工程实际中已经发生的清管过程水合物卡堵事故案例分析,运用天然气管道运行及清管器运动仿真模拟理论,天然气水合物初始生成条件预测理论,以及气液两相管流的相关理论,分析清管器在天然气管道中的运动过程,利用流体力学、热力学等相关知识建立天然气管道清管过程的数学模型。根据相平衡理论,建立天然气水合物初始生成条件模型。当利用清管运动模型模拟计算得到天然气管道清管过程中全线压力和温度参数后,将这些参数代入水合物初始生成条件模型,判断其是否符合水合物生成条件。
     因为清管过程管道运行条件的差异,分别建立了清管过程稳态、瞬态模拟模型。利用热力学理论对模型中各项系数进行等价变换处理,提高模型的计算准确性。在对清管器的运动模型进行分析的过程中,建立带射流孔清管器前后的压降规律模型,并经过实例分析得到:清管器射流孔直径、管道内径、清管操作压力等参数对清管器运动的影响规律。以及清管器发球启动过程、清管器在管道中发生卡堵事故后,管道运行参数的变化规律。
     首次基于气液两相流理论,建立了天然气管道中液态水的积液量估算模型及应用技术方法。根据天然气管道的相关运行参数及高程数据即可计算得到积液量。根据积液量判断是否足够生成水合物并堵塞管道,并可估算需要添加多少抑制剂方能防止天然气管道清管过程生成水合物。
     本文首次建立了一套天然气管道清管过程水合物生成预测的技术方法,在天然气管道清管之前利用该技术方法对清管过程进行模拟分析,确保实际操作参数不在水合物生成条件区域。并根据模拟结果编写天然气管道清管方案,确保天然气管道清管过程安全、有效。实例计算表明所建立的清管过程水合物生成条件模拟结果符合工程实际。
After the pigging operation of Natural gas pipeline has been executed, the transfer efficiency of the pipeline will be improved, and the corrosion rate of pipeline will be reduced, the operation safety of pipeline will be ensured too. However, pigging operations associated with high risk. There are several serious accidents take place frequently, such as pig blocked, the pig's signal lost, or even pipes are bursted. Especially with the rapid growth of China's natural gas pipeline mileage in recent years, the accidents in the process of gas pipeline pigging operation are increasing. Among them, the accident has occured several times, which hydrate formation and blocking pipeline in the process of natural gas pipeline pigging operation. The normal operation safety of the pipeline have been seriously affected, to solve the actual problem is pressing.
     In order to prevent the pipeline is blocked by the dirts, when the gas pipeline pigging operation has been implemented with by-pass holes pigs, the dirts which accumulated in front of the pig will be dispersed, under the jet action of gas through the by-pass holes. However, because the effection of throttling effect, the gas temperature is decreased after it passed through the holes on the pig. If the parameters of the pigging operation are not properly controlled, there are hydrate formation conditions in the area of pig's head. And if contains some liquid water in the pipeline too, the accident of hydrate plugging pigging device will be occurred.
     The accident cases of hydrate formation and blocking the pig in the actual project operation have been analyzed. The simulation theory of natural gas pipeline operation, pig movement, and the prediction theory of gas hydrate initial formation conditions, as well as the theory of gas-liquid two-phase pipe flow have been used to analyze the movement of pig in gas pipeline. And combining fluid mechanics, thermodynamics, and other related knowledge, the mathematical model of the natural gas pipeline pigging operation has been established. According to equilibrium theory, the gas hydrate initial formation conditions model has been established. When the gas pipeline pigging operation has been done, the pressure and temperature parameters have been calculated by using the pigging model. These parameters have been compared with the hydrate initial formation conditions, in order to determine whether have some hydrate generated in the process of pigging operation.
     Considering the differences of the pipeline pigging operating conditions, the steady-state and transient pigging simulation model have been established respectively. And in order to improve the calculation accuracy of the model, the coefficients of equations in the simulation model are transformed equivalently by using the Thermodynamic theory. The pressure drop model has been established, when the gas pass through the by-pass holes on the pig. According to the results of actual example analyzed and calculated, the impacting law of the parameters such as the diameter of by-pass holes, pipe diameter, and the pressure of pigging operation on the pig's movement has been gotten. Except that, in the process of the pig is launching and the pig is blocking in the pipeline, the pipeline operation parameters's variation has been analyzed respectively.
     Based on the theory of gas-liquid two-phase pipe flow, the estimation model and application method of determine the water volume which accumulated in the low lying pipeline have been established for the first time. The water volume can be calculated by the natural gas pipeline operating parameters and elevation data. According to the accumulated water volume to determine whether sufficient to generate hydrate and the pipeline is blocked. In addition, the amount of inhibitors which has been added to prevent hydrate formation in the process of pipeline pigging operation has been determined by the accumulated water volume.
     The technic method which has been used to simulate and predict hydrate formation in the process of pipeline pigging operation has been established for the first time. Before the gas pipeline pigging operation has been done, the technic method has been used to simulate and analyze the pipeline pigging operation, and ensure that the actual operating parameters are not in the hydrate formation conditions region. Then the pipeline pigging implement scheme has been determined according to the simulation results, in order to ensure the safety and efficiency of natural gas pipeline pigging operation. According to the calculated results of actural example, the technic method which has been used to simulate and predict hydrate formation in the process of pipeline pigging operation accords with the engineering requirement.
引文
[1]D.W.Bean and H.N.Eagleton, Batching two-phase flow with spheroids [J]. Pipe Line Industry, March, 1960.
    [2]A.E.McDonald and O.Baker,1964. A method of calculating multiphase flow in pipe lines using rubber spheres to control liquid holdup [J]. Oil & Gas Journal, June 15,22,29 and July 6.
    [3]徐孝轩宫敬邓道明,多相流管道清管模型研究概况[J],中国海上油气(工程),第1卷第4期,2003年8月。
    [4]A.Hara, H.Hayashi. O.Suzuki and N.Sheji, Calculations find sphere pressure loss in lines [J]. Oil & Gas Journal, May.1978.
    [5]Barua S. An experimental verification and modification of pigging model for horizontal flow [D]. Master Thesis. University of Tulsa.1982.
    [6]K.Kohda, Y.Suzukawa and H.Furukawa, New method for analyzing transient flow after pigging scores well [J]. Oil & Gas Journal, May 9,1988.86 (29) 40-47.
    [7]Kazuioshi Minami and Ovadia Shoham, Pigging dynamics in two-phase flow pipelines:experiment and modeling [C].SPE production & Facilities, November 1995,10(4),225-231.
    [8]Lima, P.C.R.. Petrobras S.A.; Yeung, H, Modelling of Transient Two-Phase Flow Operations and Offshore Pigging [C], SPE49208,1998.
    [9]P.C.R. Lima, Petrobras S.A., and H. Yeung, Modeling of Pigging Operations[C], SPE 56586. SPE Annual Technical Conference and Exhibition held in Houston, Texas,3-6 October 1999.
    [10]Hoi C. Yeung, P.C.R Lima,2002, Modeling of pig assisted production methods [J]. Journal of Energy Resources Technology, March 2002, Vol-124,8-13.
    [11]Azevedo. L.F.A. Braga, A.M.B., Nieckele, A.O., Naccache, M.F and Gomes, M.G.F., Simple hydrodynamic models for the prediction of pig motion in pipelines [C], Proceedings of the 7th International Pipeline Pigging Conference & Exhibition. Houston, Texas, USA. February 1995.
    [12]Luis Azevedo. Artur M Braga, etc., Simulating pipeline pigging operations [G], Pipeline pigging and integrity technology, Edited by John Tiratsoo and BJ Lowe,3rd Edition Scientific Surveys Ltd., PO Box 21. Baconsfield HP9 INS. Uk, September 2003.79-107.
    [13]A. O. Nieckele, A. M. B. Braga, L. F. A. Azevedo. Transient Pig Motion Through Gas and Liquid Pipelines [J]. Journal of Energy Resources Technology DECEMBER 2001. Vol.123.260-269.
    [14]S.M. Hosseinalipour, A. Salimi and A. Zarif Khalili, Transient Flow and Pigging Operation in Gas-Liquid Two Phase Pipelines [C],16th Australasian Fluid Mechanics Conference Crown Plaza, Gold Coast. Australia 2-7 December 2007,976-979.
    [15]S.M. Hosseinalipour, A. Zarif Khalili. and A. Salimi, Numerical Simulation of pig motion through gas pipeline [C],16th Australasian Fluid Mechanics Conference Crown Plaza, Gold Coast, Australia 2-7 December 2007,971-975.
    [16]F. Esmaeilzadeh. D. Mowla, M. Asemani, Mathematical modeling and simulation of pigging operation in gas and liquid pipelines [J], Journal of Petroleum Science and Engineering 69 (2009) 100-106.
    [17]Nguyen, T.T., Kim, S.B., Yoo. Ryong, Rho, Y.W., Modeling and Simulation for PIG with Bypass Flow Control in Natural Gas Pipeline [J]. KSME International Journal, VoL 15 No.9, pp.1302-1310.2001.
    [18]Nguyen. T.T.. Kim, D.K., Kim, S.B., Rho, Y.W..2001b. Dynamic modeling and its analysis for pig flow through curved section in natural gas pipeline, computational intelligence in robotics and automation. IEEE International Symposiumon, pp.492-497.
    [19]Xiao-Xuan Xu, Jing Gong, Pigging simulation for horizontal gas-condensate pipelines with low-liquid loading [J], Journal of Petroleum Science and Engineering 48 (2005) 272-280。
    [20]Tolmasquim, S.T., Nieckele, A.O., Design and control of pig operations through pipelines [J], Journal of Petroleum Science and Engineering 62 (2008),102-110.
    [21]K.K. Botros, H. Golshan, Dynamics of Pig Motion in Gas Pipelines [C], AGA - Operations Conference & Biennial Exhibition David L. Lawrence Convention Center, Pittsburgh, Pennsylvania. May 19-21, 2009,Session 11:Corrosion Control.
    [22]F. Esmaeilzadeh, D. Mowla, and M. Asemani, Shiraz U. Modeling of Pig Operations in Natural Gas and Liquid Pipeline, SPE 102049,2006 SPE Annual Technical Conference and Exhibition, San Antonio, Texas,24-27 September 2006.
    [23]Azevedo, L. F. A, Gomes, M.G.F.M, Braga. A.M.B.. Nieckele, A.O. and Naccache M F.:Simple Hydrodynamic Models For The Prediction Of Pig Motion In Pipelines [C], Offshore Technology Conference, Houston, Texas, pp.729-739, May,1996.
    [24]K.K. Botros, H. Golshan, Field Validation of a Dynamic Model for an MFL IL1 Tool in Gas Pipelines [C], Proceedings of the 8th International Pipeline Conference IPC2010,September 27-October 1,2010, Calgary. Alberta, Canada。
    [25]李玉星等,多相混输管路清管技术研究[J],石油学报,第23卷,第5期,2002年9月,101-104。
    [26]李玉星等,气液混输管路清管时间和清管球运行速度预测[J],天然气工业,2003,23(4),99-102。
    [27]李汉勇宫敬于达,水试压后输气管道的清管过程瞬态分析及程序设计[J],北京石油化工学院学报,第13卷,第3期,2005年9月。
    [28]李汉勇宫敬于达,水试压后输气管道的清管过程稳态分析及程序设计[J],北京石油化工学院学报,第13卷,第4期,2005年12月。
    [29]徐孝轩宫敬,富气输送管道清管模拟研究[J],油气储运,2008,27(2)18-22。
    [30]E. Dendy Sloan, Carolyn A. Koh. Clathrate Hydrates of Natural Gases [M], Third Edition. CRC Press Taylor & Francis Group Boca Raton London New York,2008. p259.
    [31]Peter Englezos, Clathrate Hydrates [J]. Industrial & Engineering Chemistry Research,1993.32, 1251-1274.
    [32]Rui Sun, Zhenhao Duan, Prediction of CH4 and COt hydrate phase equilibrium and cage occupancy from ab initio intermolecular potentials [C]. Geochimica et Cosmochimica Acta, Vol.69, No.18. pp. 4411-424.2005.
    [33]Guang-Jin Chen, Tian-Min Guo, A new approach to gas hydrate modeling [J], Chemical Engineering Journal 71 (1998)145-151.
    [34]Heng-Joo Ng, Donald B. Robinson, The Measurement and Prediction of Hydrate Formation in Liquid Hydrocarbon-Water Systems [J], industrial & engineering chemistry fundamentals,1976,15 (4), pp 293-298.
    [35]喻西崇赵金洲等:天然气水合物生成条件预测模型的比较[J],油气储运,2002,21(1):20-24。
    [36]杜亚和,郭天民,天然气水合物生成条件的预测1—不含抑制剂的体系[J],石油学报,1988年9月,第4卷,第3期p82-92。
    [37]Guang-Jin Chen, Tian-Min Guo, Thermodynamic modeling of hydrate formation based on new-concepts [J]. Fluid Phase Equilibria 122 (1996) 43-65.
    [38]A. L. Ballard and E. D. Sloan. Jr.. The Next Generation of Hydrate Prediction:An Overview [J]. Journal of Supramolecular Chemistry 2 (2002) 385-392.
    [39]Barkan, E.S. and Sheinin, D.A., A general technique for the calculation of formation conditions of natural gas hydrates. Fluid Phase Equilibria 1993,86:111-136.
    [40]Vijay T. John, and Gerald D. Holder, Langmuir Constants for Spherical and Linear Molecules In Clathrate Hydrates:Validity of the Cell Theory [J], The Journal of Physical Chemistry, Vol.89, No.15, 1985,3279-3285.
    [41]黄强,孙长宇等,含CH4+CO2+H2S酸性天然气水合物形成条件实验与计算[J],化工学报,第56卷第7期2005年7月,1159-1163。
    [42]Taitel, Dukler A E. A model for prediction flow regime transition in horizontal and near horizontal gas-liquid flow [J].AlChE,1976,22(1):47-55.
    [43]Y. Taitel, N. Lee, A.E. Dukler, Transient gas-liquid flow in horizontal pipes:modeling the flow pattern transitions, AlChE Journal 24 (5) (1978) 920-934.
    [44]J.-M. MASELLA, Q. H. TRAN, D. FERRE and C. PAUCHON, transient simulation Of two-phase flows in pipes, revuedel institut francais du petrol vol.53,N°6, novembre-decembre 1998,801-811.
    [45]李长俊,天然气管道输送[M],第2版,北京,石油工业出版社,2008年9月。
    [46]郭天民等编著,多元气-液平衡和精馏[M],北京,石油工业出版社,2002,11。
    [47]陈长值,工程流体力学[M],武汉,华中科技大学出版社,2008年4月。
    [48]莫乃榕,工程流体力学[M],第2版,武汉,华中科技大学出版社,2009年7月,77-80。
    [49]姚光镇,输气管道设计与管理[M],东营:石油大学出版社,1991。
    [50]Y. A. Cengel and M. A. Boles, Thermodynamics:An Engineering Approach [M],5thed, McGraw-Hill. 2006。
    [51](美)M.C.波特尔C.W.萨默顿著,郭航等译,全美经典学习指导系列:工程热力学[M],科学出版社,2002。
    [52]童钧耕,工程热力学[M],第四版,高等教育出版社,2007。
    [53]Valente Hernandez Perez. Gas-liquid two-phase flow in inclined pipes [D], Thesis submitted to The University of Nottingham for the degree of Doctor of Philosophy, September 2007, p12-22.
    [54]华自强张忠进,工程热力学[M],第三版,高等教育出版社,1999年9月。
    [55]Seleznev Vadim, Numerical simulation of a gas pipeline network using computational fluid dynamics simulators [J], Journal of Zhejiang University SCIENCE A,2007 8(5):755-765.
    [56]王秀林,黄强等,天然气水合物生成条件的测定和计算[J],化工学报,第57卷,第10期,2006年10月,2416-2419。
    [57]张世喜 陈光进 马庆兰 郭天民,凝析气水合物生成条件的测定及计算[J],石油学报,第23卷,第2期,2002年3月,92-96。
    [58]GB 2624-2006-T用安装在圆形截面管道中的差压装置测量满管流体流量[S].2006-12-13发布,2007-07-01实施。
    [59]E. Shashi Menon, Gas pipeline hydraulics, Published in 2005 by CRC Press Taylor & Francis Group。 Boca Raton London New York Singapore. P323。
    [60]SY-T6383-1999长输天然气管道清管作业规程[S].1999-12-1发布。
    [61]John Tiratsoo. Pipeline Pigging & Integrity Technology[M]. THIRD EDITION.2003 Clarion Technical Publishers, ISBN 0901360 32 5(UK),09717945 2 9(USA), p74.
    [62]E.W.麦卡利斯特(美,著),刘玲莉等(译),管道经验法则手册[M],北京,石油工业出版社,2004年11月。P346-347.
    [63]孙长宇,黄强,陈光进,气体水合物形成的热力学与动力学研究进展,化工学报,第57卷第5期2006年5月。
    [64]廖健 梅东海 等:天然气水合物相平衡研究的进展[J],天然气工业,1998,18(3):75-82。
    [65]陈光进马庆兰郭天民,气体水合物生成机理和热力学模型的建立[J],化工学报,第51卷,第5期,2000年10月,626-631。
    [66]李玉星邹德永冯叔初,高压下预测天然气水合物形成方法研究[J],天然气工业,2002;22(2):91-94。
    [67]陈光进等编著, 化工热力学[M],石油工业出版社,北京,2006年。
    [68]William R. Parrish and John M. Prausnitz, Dissociation Pressures of Gas Hydrates Formed by Gas Mixtures; Ind. Eng. Chem. Process Des. Develop, Vol.11, No.1,1972.
    [69]杨继盛,刘建仪.采气实用计算[M].北京:石油工业出版社,1994.
    [70]Du Y H, Guo T M. Prediction of Hydrate Formation for Systems Containing Methanol. Chem.Eng.Sci.,1990:45(4):893-900。
    [71]A. Osiadacz, F. E. Uilhoorn, and M. Chaczykowski, Computation of Hydrate phase equilibria and its application to the Yamal-Europe Gas pipeline, Petroleum science and technology,27:208-225,2009, Taylor& Francis Group, LLC.1SSN:1091-6466, DOI:10.1080/10916460701700336.
    [72]Clayton T. Crowe, MULTIPHASE FLOW HANDBOOK [M]. CRC Press,2006 by Taylor & Francis Group, LLC. New York.
    [73]郭烈锦,两相与多相流动力学[M],西安,西安交通大学出版社,2002.12。
    [74]孔珑主编,两相流体力学[M],北京,高等教育出版社,2004.1。
    [75]Mohammad Abbaspour. etc. Transient modeling of non-isothermal, dispersed two-phase flow in natural gas pipelines [J], Applied Mathematical Modelling,34 (2010).495-507.
    [76]Christopher E. Brennen, Fundamentals of Multiphase Flows [M], Cambridge University Press,2005, Pasadena. California,285-
    [77]陈家琅,石油气液两相管流[M],北京,石油工业出版社,1989。
    [78]B. Asante, Two-phase flow:accounting for the presence of liquids in gas pipeline simulation [C]. in: 34th Annual Meeting Pipeline Simulation Interest Group (PSIG). Portland. Oregon,23-25 October, 2002.
    [79]Nikolay I. Kolev, Multiphase Flow Dynamics 2-Thermal and Mechanical Interactions [M].3rd Edition, Springer-Verlag. Berlin Heidelberg,2007.
    [80]Nikolay I. Kolev, Multiphase Flow Dynamics 1-Fundamental [M],2rd Edition, Springer-Verlag, Berlin Heidelberg.2004.
    [81]THERMOPEDIATM A-to-Z Guide to Thermodynamics.Heat & Mass Transfer, and Fluids Engineering [DB/OL] Fundamentals-Heat and Mass Transfer-Multiphase Phenomena-Flow phenomena-Two-phase-Stratified Gas-Liquid Flow, http://www.thermopedia.com/content/266/?tid=104&sn=]297, Line. Alain. Fabre. J.
    [82]S. Wongwises, W. Khankaewr'W, Vetchsupakhun, Prediction of Liquid Holdup in Horizontal Stratified Two-Phase Flow [J], ThammasaInt t. J. Sc.Tech..Vol.3,No.2.July 1998.48-59.
    [83]杨筱蘅,张国忠,输油管道设计与管理[M],东营,石油大学出版社,1995.8.p28,p53。
    [84]Bruce E. Poling等著,赵红玲等译,气液物性估算手册[M],原著第5版, 北京,化学工业出版社,2005年8月,p157。
    [85]P. R. Souza Mendes, A. M. B. Brage. L. F. A. Azevedo, K. S. Correa, Resistive Force of Wax Deposits During Pigging Operations[J], Journal of Energy Resources Technology, Septerber 1999, VOL.121, 167-171.
    [86]M. Saeidbakhsh, M. Rafeeyanand S. Ziaei-Rad, Dynamic Analysis of Small Pigs in Space Pipelines[J], Oil & Gas Science and Technology-Rev. IFP, Vol.64 (2009), No.2, pp.155-164.
    [87]Richard Kershaw, Pigtek Ltd., Innovative Pigging Solutions For Pipelines[J], Pipeline & Gas Journal/pipelineandgasjournalonline.com.
    [88]L. A. Dykhno, J.D. Hudson, etc., Modeling of Pigging with Production Fluids in a Single Flowline [C], Offshore Technology Conference held in Houston, Texas U.S.A.,6-9 May 2002.
    [89]Jing Zhou, Yingchuan Li, Jianyi Liu, Simulation and Optimization of Continuous Pig Lift Systems[J], Journal of Canadian Petroleum Technology, December 2008, Volume 47, No.12. pp.55-60.
    [90]Dong Kyu Kim, Sung Ho Cho, etc., Verification of the Theoretical Model for Analyzing Dynamic Behavior of the PIG from Actual Pigging[J], KSME International Journal, Vol.17 No.9, pp.1349-1357,2003.
    [91]Woo-Gun Sim, Jong-Ho Park. Transient Analysis for Compressible Fluid Flow in Transmission Line by the Method of Characteristics[J], KSME International Journal, Vol.11, No.2, pp.173-185,1997.
    [92]Tan Tien Nguyen, Hui Ryong Yoo, Yong Woo Rho, and Sang Bong Kim, Speed control of pig using bypass flow in natural gas pipeline[C], ISIE 2001, Pusan, KOREA, pp.863-868.
    [93]A. Herra'n-Gonza'lez, J.M. De La Cruz, etc.. Modeling and simulation of a gas distribution pipeline network [J], Applied Mathematical Modelling 33 (2009), pp.1584-1600.
    [94]A.A. Sadegh and M.A. Adewumi, Temperature Distribution in Natural Gas/Condensate Pipelines Using a Hydrodynamic Model [C], SPE 97978, Eastern Regional Meeting held in Morgantown. W.V..14-16 September 2005.
    [95]H. Prashanth Reddy, Shankar Narasimhan. and S. Murty Bhallamudi. Simulation and State Estimation of Transient Flow in Gas Pipeline Networks Using a Transfer Function Model [J], Ind. Eng. Chem. Res. 2006.45,3853-3863.
    [96]P. ENGLEZOS, N. KALOGERAKIS. and P. R. BISHNOI, Formation and Decomposition of Gas Hydrates of Natural Gas Components [J], Journal of Inclusion Phenomena and Molecular Recognition in Chemistry 8:89-101,1990.
    [97]Jorge F. Gabitto and Costas Tsouris, Physical Properties of Gas Hydrates:A Review [J], Journal of Thermodynamics Volume 2010, Article ID 271291,12 pages.
    [98]J. M. Fitremann and J. M. Rosant, A model for stratified gas-liquid turbulent flow in ducts of arbitrary cross-section [J]. Revue De Phys. Appl.16 (1981) 93-103.
    [99]Nicholas Petalas, Khalid Aziz. A Mechanistic Model for Multiphase Flow in Pipes [C], Stanford University, paper No.98-39, the 49th annual technical meeting of the petroleum society of the canadian institute of mining, metallurgy and petroleum held in calgary, alberta, canada on june 8-10.1998.
    [100]YEMADA TAITEL and A. E. DUKLER, A Model for Predicting Flow Regime Transmition in Horizon and Near Horizontal Gas-Liquid Flow [J], AlChE Journal (Vol.22, No.1). January,1976.
    [101]H. Dale Beggs, James P. Brill, a study of two-phase flow in inclined pipes [J], Journal of Petroleum Technology. May, 1973,607-617.
    [102]Guan Heng Yeoh, Jiyuan Tu, Computational Techniques for Multi-Phase Flows [M], Butterworth-Heinemann.2009,358-362.
    [103]Tarek Ahmed, Equations of state and PVT analysis:applications for improved reservoir modeling [M]. Gulf Publishing Company, HOUSTON,2007.506-530.
    [104]沈维道蒋智敏童钧耕合编,工程热力学[M],第三版,高等教育出版社,北京,2000年9月,175-203。
    [105]童景山,化工热力学[M],清华大学出版社, 北京,1993年10月,91-110。
    [106]T. J. CHUNG, Computational Fluid Dynamics [M], Cambridge University Press,2002,45-63.
    [107]TITUS PETRILA, DAMIAN TRIF, Basics of Fluid Mechanics and Introduction to Computational Fluid Dynamics [M], Springer,2005,26-80.
    [108]吴子牛编著,计算流体力学基本原理[M],科学出版社,北京,2001,128-170.
    [109]Luke Matthews, Mark Kennard, and Aidan O'Donoghue, velocity control of pigs in gas pipelines [G], Pipeline pigging and integrity technology. Edited by John Tiratsoo and BJ Lowe,3rd Edition Scientific Surveys Ltd., PO Box 21, Baconsfield HP9 INS, Uk, September 2003,35-47.
    [110]孙长征,宇波等:油气两相混输管道流型的判别方法[J],油气储运,2009,28(10)119-22。
    [111]姜俊泽张伟明王志明,气液两相管流流型识别理论研究进展[J],后勤工程学院学报,第26卷第4期,2010年7月,40-46。
    [112]徐广丽等,油水两相管流理论的研究进展[J],油气储运,2010,29(2):81-85。
    [113]张丽娜王小尚等:新型油水两相水平管流流型分类方法[J],油气储运,2006,25(10)49-51。
    [114]Development of Next Generation Multiphase Pipe Flow Prediction Tools [R], Submitted by:Tulsa University Fluid Flow Projects 800 South Tucker Drive Tulsa, Oklahoma 74104, Office of Fossil Energy, November 1,2008.
    [115]B. A. Shannak · R. A. Damseh ·A. Azzi, Experimental and theoretical investigation on the discharge characteristic of stratified two-phase flow [G]. Heat Mass Transfer, Springer,2010.
    [116]F. Frishman. M. Hussainov A. Kartushinsky and A. Mulgi, Numerical simulation of a two-phase turbulent pipe-jet flow loaded with polydispersed solid admixture [J], Int. J. Multiphase flow Vol.23, No.4, pp.765-796.1997.
    [117]O. Cazarez-Candia and G. Espinosa-Paredes, Numerical study of stratified gas-liquid flow [J]. Petroleum Science and Technology,26:64-76.2008,64-76.
    [118]Hong-Quan Zhang, Qian Wang, etc., Unified Model for Gas-Liquid Pipe Flow via Slug Dynamics—Part 1:Model Development [J], Journal of Energy Resources Technology, Vol.125, DECEMBER 2003.266-273.
    [119]Hong-Quan Zhang, Qian Wang, etc.. Unified Model for Gas-Liquid Pipe Flow via Slug Dynamics—Part 2:Model Validation [J], Journal of Energy Resources Technology, Vol.125. DECEMBER 2003.274-283.
    [120]Ya Song Wei and Richard J. Sadus, Equations of State for the Calculation of Fluid-Phase Equilibria [J] AIChE Journal. January 2000 Vol.46. No.1,169-196.
    [121]童景山李敬编著,流体热物理性质的计算[M],清华大学出版社,北京,1982年。
    [122]袁长迎马春庭等,掌握和精通Mathcad 2000[M],机械工业出版社,北京,2001年。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700