强流氘氚中子发生器直流束线与氚靶系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氘氚中子发生器是一种加速器型氘氚聚变中子源,所产生的14MeV准单能中子束可在以聚变堆和快中子反应堆为代表的先进核能系统研究、以中子照相和中子治癌为代表的核技术应用研究及国防竣工基础研究等领域发挥重要作用。本文在广泛调研和深入分析国内外强流氘氚中子发生器及氚靶系统发展现状的基础上,针对中国科学院核能安全技术研究所直流/脉冲两用型强流氘氚中子发生器HINEG(Highly Intensified Neutron Generator)项目中直流束传输系统和氚靶系统设计中的关键技术问题展开研究,完成了HINEG直流束传输系统的总体方案设计,并利用TRANSPORT程序进行了系统束流光学计算与分析,完成了直流束传输系统中关键传输元件螺线管透镜、加速管和三单元磁四极透镜的初步设计和计算分析。计算结果表明,本文所完成的直流束传输系统的设计方案,可满足HINEG中子发生器直流中子强度3×1013n/s的设计要求。
     同时,本文开展了强流中子发生器氚靶系统的设计研究工作,完成了固定氚靶和旋转氚靶系统的方案设计,利用ANSYS程序开展了氚靶系统的机械应力计算和传热分析,并且利用MCNP程序对所设计固定氚靶和旋转氚靶的出射中子能谱和通量进行了计算分析,通过对计算结果的综合分析研究表明:
     (1)在旋转靶系统中,采用靶片高速旋转同时靶片底衬直接喷射冷却水的技术方案,可以较好的解决氚靶靶片在强流离子束轰击下的传热问题,使靶片在承载热功率密度达到~12kW/cm2时,靶点处温度保持在200℃左右,预计中子强度可达~6×l012n/s量级:
     (2)靶片转轴采用磁流体密封的动密封技术方案,可确保氚靶靶片在以~1000rpm的转速高速旋转时,靶室内的真空度保持在10-3Pa水平,满足系统对于强流离子束传输的真空度要求;
     (3)MCNP计算结果显示,在旋转靶的真空靶室外部空间沿氘离子入射方向1cm处,能量大于10MeV以上的中子占总数的91%以上,表明旋转靶方案中靶室结构和冷却水层厚度的设计比较合理,设计方案基本满足中子学的要求。
     本文所完成的强流氘氚中子发生器直流束传输系统和氚靶系统的方案设计及相关计算分析,将为HINEG强流中子发生器下一步的工程实施和氚靶系统的加工制造,提供准确可靠的物理设计基础。同时,也可为同类型强流氘氚中子发生器的设计与研制工作提供有益的借鉴和参考。
The D-T neutron generator is an aecelerator-based D-T fusion neutron source which can produce14MeV quasi-monoenergetic neutrons. It played an important role in the study of advanced nuclear energy technology such as the fusion reactor and fast reactor. Meanwhile it can be widely used in the fundamental research of national defense and the nuclear technology applications such as neutron radiography and neutron cancer therapy. On the background mentioned aboved, the HINEG (Highly Intensified Neutron Generator) was planned to build by Institute of Nuclear Energy Safety Technology of China Academy of Sciences. Based on the wide investigation and analysis of existing intense D-T neutron generators, key technologies for steady beam transport system and rotating target design of the HINEG were studied in this paper. Then the layout design of steady beam transport system of the HINEG was completed and the beam envelop was calculated by employing TRANSPORT simulation software. Then design analysis of the critical components for the beam transport system including the solenoid lens, the acceleration tube and the triple magnetic quadrupole-lens was completed. The results of beam optics calculation confirmed that design index which the steady neutron source strength of HINEG reaching3x1013n/s was realized by the beam transport system.
     The design of tritium target of the HINEG was studied subsequently. Then the structure design of fixed and rotating tritium target system for the HINEG was conducted. And calculation and analysis of the mechanical stress, heat transfer and neutronics for the tritium target were finished. Based on the work above, three conclusions were found as follow:
     (1) The technical scheme of high-speed rotating target with direct injection of cooling water can solve the problem of heat transfer for the tritium target under the intense ion beam bombardment. The simulation showed the highest heat power density on the beam spot of the target disk would be about12kW/cm2when its highest temperature was about200℃. Then the neutron intensity under this condition was expected to reach6×10l2n/s as a result.
     (2) Benefiting from the application of magnetic fluid seal technology, vacuum degree of rotating target chamber would maintain at10-3Pa level when the disk was rotating at about1000revolutions per minute.
     (3) The results of MCNP simulation displayed that along the deuterium ions incident direction,91%of total neutrons had the energy above10MeV at the position where1cm distant from target chamber. It confirmed that the design thickness of target structure material and cooling water layer was feasible and the structure design of tritium target system conformed to the neutronics requirements.
     The design and analysis which had been completed by the study mentioned above will provide a right and reasonable physical foundation for the engineering implement of HINEG and the building of tritium target system. Meanwhile it will provide a significant reference for the design and development of other accelerator-based type intense neutron generators.
引文
[1]赵志祥,丁大钊.2001.21世纪的中子科学及其应用的发展趋势[J].中国基础科学,2001年第7期:9-17.
    [2]丁大钊,叶春堂,赵之佯,等.2005.中子物理学-原理、方法与应用(上,下册)[M].北京:原子能出版社.
    [3]邱励俭.2001.核聚变研究50年[J].核科学与工程,21(1):29-38.
    [4]欧阳予.2008.世界核电国家的发展战略历程与我国核电发展[J].中国核电,1(2):118-125.
    [5]蒋林立.2009.积极发展我国第四代核能技术[J].中国核工业,2009年第9期:38-42.
    [6]Y. Wu, FDS Team.2009.CAD-based interface programs for fusion neutron transport simulation[J]. Fusion Engineering and Design,84(7-11):1987-1992.
    [7]Q. Zeng, L. Lu, A. Ding, et al.2006. Update of ITER 3D Basic Neutronics Model with MCAM[J].Fusion Engineering and Design,81(23-24):2773-2778.
    [8]郑善良,曾勤,吴宜灿.2006.ITER中国液态锂铅实验包层模块中子学分析[J].核科学与工程,26(3):268-270.
    [9]曾勤,邹俊,许德政,等.2011.315中子/42光子耦合细群核数据库HENDL3.0/FG研发[J].核科学与工程,31(4):360-364.
    [10]Dezheng Xu, Zhaozhong He, Jun Zou, et al.2010. Production and testing of HENDL-2.1/CG coarse-group cross-section library based on ENDF/B-Ⅶ.0[J]. Fusion Engineering and Design,85 (10-12):2105-2110.
    [11]许德政,蒋洁琼,邹俊,等.2009.多用途核数据库HENDL2.0/MG/MC的重核临界基准校验[J].核科学与工程,29(1):71-76.
    [12]Q. Huang, C. Li, Q. Wu, et al.2011. Progress in development of CLAM steel and fabrication of small TBM in China[J]. Journal of Nuclear Materials,417(1-3):85-88.
    [13]黄群英,李春京,李艳芬,等.2007.中国低活化马氏体钢CLAM研究进展[J].核科学与工程,27(1):41-45.
    [14]黄波,黄群英,李存京,等.2010.软化热处理与预变性(?)(?)CLAM钢塑性的影响分析[J].核科学与工程,30(2):59-64.
    [15]徐銤.2011.中国实验快堆的安全特性[J].核能科血液与工程,31(2):116-126.
    [16]詹文龙,徐瑚珊.2012.未来先进核裂变能-ADS嬗变系统[J].中国科学院院刊,27(3):375-381.
    [17]江绵恒,徐洪杰,戴志敏.2012.未来先进核裂变能-TMSR核能系统[J].中国科学院院刊,27(3):366-374.
    [18]丁厚本,王乃彦.1984.中子源物理[M].北京:科学出版社.
    [19]袁汉镕,愈安孙,王连鄙.1978.中子源及其应用[M].北京:科学出版社.
    [20]J. Csikai.1989. Utilization of intense neutron generators in science and technology[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, A280:233-250.
    [21]岳伟民.2008.D-T中子发生器中子产额、能谱、角分布及中子伽玛混合场的模拟研究[M].硕士,兰州:兰州大学.
    [22]A. Klixa, A. Domula, U. Fischer, et al.2011. Test facility for a neutron flux spectrometer system based on the foil activation technique for neutronics experiments with the ITER TBM[J]. Fusion Engineering and Design,86(2011):2322-2325.
    [23]L.W. Packer, M. Gilbert, S. Hughes.2012. UK fusion technology experimental activities at the ASP 14MeV neutron irradiation facility [J]. Fusion Engineering and Design, 87(2012):662-666.
    [24]D. W. HEIKKINEN and C. M. LOGAN.1985. Recent progress at RTNS-Ⅱ[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, Volumes 10-11, Part2:835-837.
    [25]Vit. D. Koval'chuk, A. V. Krasil'nikov, et al.1993. The SNEG-13 neutron source: charcteristics of the neutron and y-ray fields[J]. Journal of Experimental and Theoretical Physics,77(2):169-175.
    [26]S. Yoshida, et al.2003. Measurement of radiation skyshine with DT neutron source[J]. Fusion Engineering and Design,69 (2003) 637-641.
    [27]Kenji Sumita, et al.1990. Status of OKTAVIAN I and proposal for OKTAVIAN Ⅱ[J], Nuclear Science and engineering,106 (1990):249-265.
    [28]郑华智,李宗强,王桂玲,等.2004.K-600中子发生器辐射防护的改进[J].中国辐射卫生,13(2):116.
    [29]中子发生器研制组,吕建钦,谢大林,全盛文,等.2003.600 kV毫微秒脉冲中子发生器研制[J].原子能科学技术,37(4):376-380.
    [30]苏桐龄,孙别和,杨保太,等.1991.300 keV,30 mA氘粒子加速器[J].原子能科学技术,25(1):7-12.
    [31]M. Martone, et al.1994. The 14 MeV Frascati neutron generator[J]. Journal of Nuclear Materials,212-215(1994):1661-1664.
    [32]Clement Faussera, Yi-Kang Lee, Rosaria Villari, Qin Zeng, et al.2011. Numerical benchmarks TRIPOLI-MCNP with use of MCAM on FNG ITER bulk shield and FNG HCLL TBM mock-up experiments[J]. Fusion Engineering and Design,86 (2011):2135- 2138.
    [33]A. Klixa, P. Batistoni, R. Bottger, et al.2010. Measurement and analysis of neutron flux spectra in a neutronics mock-up of the HCLL test blanket module[J]. Fusion Engineering and Design,85 (2010):1803-1806.
    [34]Seiki Ohnishi, Keitaro Kondo, Tetsushi Azuma, et al.2012. New integral experiments for large angle scattering cross section data benchmarking with DT neutron beam at JAEA/FNS[J]. Fusion Engineering and Design,87 (2012):695-699.
    [35]Keitaro Kondo, Takahiro Yagi, Kentaro Ochiai, et al.2011. Investigation on the TPR prediction accuracy in blanket neutronics experiments with reflector at JAEA/FNS[J]. Fusion Engineering and Design,86 (2011):2184-2187.
    [36]V. D. Kovalchuk, V. V. Mostovoy, V. I. Tereshkin, D. V. Markovskij.1998. Activation study at SNEG-13 facility of the candidate ferritic steel 10X9VFA[J]. Fusion Engineering and Design,42 (1998):343-348.
    [37]D. V. Markovskij, R. A. Forrest, V. D. Kovalchuk, et al.2001. Experimental activation study of some Russian vanadium alloys with 14-MeV neutrons at SNEG-13 facility[J]. Fusion Engineering and Design 58-59 (2001):591-594.
    [38]王俊,田文喜,田永红,等.2013.铅铋冷却快堆子通道热工水力初步数值分析[J].原子能科学技术,47(1):38-42.
    [39]Cheol Ho Pyeon, Yuki Takemoto, Takahiro Yagi, et al.2012. Accuracy of reaction rates in the accelerator-driven system with 14 MeV neutrons at the Kyoto University Critical Assembly[J]. Annals of Nuclear Energy,40(l):229-236.
    [40]A. D. Carlson, S. A. Badikov, Chen Zhenpeng, et al.2008. Covariances Obtained from an Evaluation of the Neutron Cross Section Standards[J]. Nuclear Data Sheets,109(12): 2834-2839.
    [41]A. D. Carlson, V. G. Pronyaev, D.L. Smith, et al.2009. International Evaluation of Neutron Cross Section Standards[J]. Nuclear Data Sheets,110(12):3215-3324.
    [42]聂阳波.2007.聚变中子学积分实验-聚乙烯样品泄漏中子谱的蒙卡模拟与实验测量[M].硕士,兰州:兰州大学.
    [43]沈冠仁.1995.关于聚变中子学积分实验研究[J].核物理动态,12(1):29-33.
    [44]Shrichand Jakhar, Mitul Abhangi, C.V.S. Rao, et al.2012. Measurement of tritium production rate distribution in natural LiAlO2/HDPE assembly irradiated by D-T neutrons[J]. Fusion Engineering and Design,87(2012):184-187.
    [45]A. Klix, K. Ochiai, Yu. Verzilov, et al.2005. Tritium breeding experiments with blanket mock-ups containing 6Li-enriched lithium titanate and beryllium irradiated with DT neutrons[J]. Fusion Engineering and Design,75-79(2005):881-884.
    [46]Yury Verzilov, Satoshi Sato, Kentaro Ochiai, et al.2007.The integral experiment on beryllium with D-T neutrons for verification of tritium breeding[J]. Fusion Engineering and Design,82(1):1-9.
    [47]Amit Raj Sharma, Debasis Chandra, Shashank Chaturvedi, et al.2001. Re-investigations of integral neutron multiplication experiments with 14 MeV neutrons in lead[J]. Fusion Engineering and Design,55(4):501-512.
    [48]Kaihong Fang, Changlin Lan, Yupeng He, et al.2012. Measurement of fission cross section for 232Th(n,x)89Rb reaction induced by neutrons around 14MeV[J]. Applied Radiation and Isotopes,70(10):2295-2297.
    [49]T. Granier, L. Pangault, T. Ethvignot, et al.2003. Measuring neutron-induced fission cross-section of shortlived actinides using a lead neutron-slowing-down spectrometer[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,506(1-2):149-159.
    [50]S. Oberstedt, A. Oberstedt, E. Birgersson, et al.2012. First results on the neutron-induced fission cross-section of 231Pa for incident neutron energies En>17MeV[J]. Annals of Nuclear Energy,43(2012):26-30.
    [51]U. Fischer, P. Batistoni, Y. Ikeda, et al.2000. Neutronics and nuclear data:achievements in computational simulations and experiments in support of fusion reactor design [J]. Fusion Engineering and Design,51-52(2000):663-680.
    [52]邹俊.2007.聚变堆材料辐照损伤数值模拟初步研究[M].硕士,合肥:合肥工业大学.
    [53]M. W. GUINAN, R. A. VAN KONYNENBURG.1984. FUSION NEUTRON EFFECTS ON MAGNETORESISTIVITY OF COPPER STABILIZER MATER1ALS[J]. Journal of Nuclear Materials,122 & 123 (1984):1365-1370.
    [54]N. Yoshida, H. L. Heinisch, T. Muroga,et al.1991. Microstructure-tensile property correlation of 316 SS in low-dose neutron irradiations[J]. Journal of Nuclear Materials, 179-181 (1991):1078-1082.
    [55]H. L. HEINISCH, S. D. ATKIN, C. MARTINEZ.1986. SPECTRAL EFFECTS IN LOW-DOSE FISSION AND FUSION NEUTRON IRRADIATED METALS AND ALLOYS[J]. Journal of Nuclear Materials,141-143 (1986):807-815.
    [56]苏桐龄.1989.强流中子发生器及其应用[J].核技术,12(8-9):553-556.
    [57]张义民.2006.1MeV强流中子发生器供电系统研究[D].博士,兰州:兰州大学.
    [58]刘圣康.1986.中子物理[M].北京:原子能出版社.
    [59]蒋诗平,陈亮,陈阳,等.2005.快中子照相的实验研究[J].核技术,28(2):151-154
    [60]张文艺,焦玲,星正治.2006.0.8MeV单能中子照射洋葱萌发种子后在根尖细胞中诱发微核的相对生物效能[J].辐射防护,26(3):162-165.
    [61]牛占岐,柳纪虎,李汝平,等.2000.春小麦的14MeV中子辐照育种研究[J],原子能科学技术,34(Suppl.):68-70.
    [62]牛占岐,王学智,朴禹伯,等.1999.快中子辐照育种—兰辐黑麦芒(92)1号[J].原子能科学技术,33(1):66-70.
    [63]张宇.2011.D-D/D-T中子发生器技术研究[D].博士,兰州:兰州大学-
    [64]魏宝杰,岳成波,李文生,等.1994.自成靶陶瓷中了管的主要技术特点[J].东北师范大学学报自然科学版,1994年第1期:83-86.
    [65]米伦.2006.程控中子管老炼台的研制[J].核电子学与探测技术,26(5):619-622.
    [66]魏宝杰,岳成波,李文生,等.1993.自成靶陶瓷中子管及其应用[J].核技术,16(12):726-729.
    [67]乔亚华.2008.中子管的研究进展及应用[J].核电子学与探测技术,28(6):1134-1139.
    [68]International Atomic Energy Agency.1996. Manual for troubleshooting and upgrading of neutron generators[M]. IAEA-TECDOC-913, VIENNA.
    [69]G. Voronin, V. Kovalchuk, M. Svinin, A. Solnyshkov.1994. Development of Intense Neutron Generator SNEG-13, Proceedings of EPAC 94, Vol.3,2678, London, June 27-July 1,1994.
    [70]D.W. HEIKKINEN.1989. THE ROTATING TARGET NEUTRON SOURCE Ⅱ FACILITY: OPERATIONAL SUMMARY[J]. Nuclear Instruments and Methods in Physics Research B, 40/41 (1989):1162-1164.
    [71]R. Booth, J. C.Davis, C. L. Hanson, et al.1977. ROTATING TARGET NEUTRON GENERATOR [J]. Nuclear Instruments and Methods,145:25-39.
    [72]C.M. LOGAN, D.W. HEIKKINEN.1982. RTNS-II-A FUSION MATERIALS RESEARCH TOOL[J]. Nuclear Instruments and Methods,200 (1982):105-111.
    [73]D. W. Heikkinen, C. M. Logan.1983. TRITIUM-TARGET PERFORMANCE AT RTNS-Ⅱ[J]. Nuclear Science, IEEE Transactions on,30(2):1193-1196.
    [74]R. BOOTH, H. H. BARSCHALL.1972. tritium target for intense neutron source[J]. NUCLEAR INSTRUMENTS AND METHODS,99:1-4.
    [75]Rex Booth.1967. ROTATING NEUTRON TARGET SYSTEM[J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE,6(1967):938-942.
    [76]J. Pivarc, R. Lorencz, V. Matousek.1986. Vacuum system of the multipurpose 14 MeV neutron source in Bratislava:design and status[J]. Vacuum,36(7-9):527-529.
    177]朱传新,郑普,郭海萍,等.2010.176Hf(n,2n)175Hf反应截面测量[J].原子能科学技术,44(Suppl.):7-11.
    [78]章法强,杨建伦,李正宏,等.2007.14MeV中子照相中散射中子对成像影响的MonteCarlo模拟[J].物理学报,56(6):3577-3583.
    [79]祖秀兰,周长庚,娄本超,等.2009.中子发生器束流传输光学系统研究及模拟计算[J].强激光与粒子束,21(3):451-454.
    [80]卢小龙,姚泽恩,杨尧,等.2012.400kV强流中子发生器的物理设计[J].原子能科学技术,46(12):1473-1479.
    [81]聂阳波,鲍杰,阮锡超,等.2012.氘氚源中子穿过聚乙烯样品泄漏中子谱的测量与模拟[J].原子核物理评论,29(3):310-315.
    [82]聂阳波,鲍杰,阮锡超,等.2012.准直D-T中子束穿过大块板状聚乙烯样品积分实验[J].原子能科学技术,46(12):1486-1491.
    [83]阮锡超,辛标,鲍杰,等.2006.9Be厚样品90°中子泄漏谱测量[M].中国原子能科学研究院年报,中国原子能出版社,北京:120.
    [84]聂阳波,阮锡超,鲍杰,等.2008.14MeV中子穿透238U板状样品评价中子核数据的基准检验[M].中国原子能科学研究院年报,中国原子能出版社,北京:120.
    [85]邹志宜,赵小风,黄建鸣.1983.一个提高中子发生器靶寿命的简易方法[J].核技术.1983年第3期:44-46.
    [86]J. Reijonen, F. Gicquel, S.K. Hahto et al.2005. D-D neutron generator development at LBNL[J]. Applied Radiation and Isotopes,63(5-6):757-763.
    [87]J. Reijonen, K.-N. Leung, R.B. Firestone, et al.2004. First PGAA and NAA experimental results from a compact high intensity D-D neutron generator[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,522(3):598-602.
    [88]梁峰,吴军随,麻惠生.1999.耐高温长寿命测井中子管[J].测井技术,23(1):62-64.
    [89]郤方华,王建民,王志全,等.2011.175℃自成靶中子管的结构设计和指标测试[J].测井技术,35(6):585-588.
    [90]郤方华,王建民,王志全,等.2012.测井用小直径自生靶中子管[J].石油仪器,26(3):20-24.
    [91]Gang Li, Zhong-Shuai Zhang, Qian Chi, et al.2012.50 mm Diameter digital DC/pulse neutron generator for subcritical reactor test[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,290(1):64-68.
    [92]肖坤祥,冉汉正,曾清,等.2012.高产额中子发生器研制[J].原子能科学技术,46(增刊):713-717.
    [93]董艾平,李文杰,王强,等.1995.中子产额大于1.5×1010n/s的密封中子管[J].核技术,18(6):338-342.
    [94]罗顺忠,杨本福,龙兴贵.2002.中子发生器用氚靶的研究进展[J].原子能科学技术,36(4/5):290-296
    [95]Kenji SUMITA.1989. TRITIUM SOLID TARGETS FOR INTENSE D-T NEUTRON PRODUCTION AND THE RELATED PROBLEMS[J]. Nuclear Instruments and Methods in Physics Research,A282:345-353.
    [96]刘林茂,刘雨人,景士伟.2005.中子发生器及其应用[M].北京:原子能出版社:58-65.
    [97]黄刚,曹小华,龙兴贵,等.2005.钛-氚反应特性研究Ⅰ.热力学特性[J].核化学与放射化学,27(3):169-177.
    [98]沈冠仁.2007.中子飞行时间方法及其应用[M].北京:原了能出版社,83.
    [99]李三庆.2001.测井用中子管寿命分析[J].西安工业学院学报,21(4):355-357.
    [100]姚泽恩,陈尚文,董明义,等.2003.离子溅射对氚钛靶寿命的影响[J].原子能科学技术,37(1):25-27.
    [101]B.J.Hughey,黄华国译.1996.产生快中子的长寿命氚化钛靶[J].国外科技资料,1996年第2期:18-27.
    [102]D.MBibby, G.Oldbam, A.R.Ware,黄华国译.1995.中子发生器靶工作特性[J].国外科技资料,1995年第1期:62-66.
    [103]姚泽恩,陈尚文,苏桐龄,等.2004.高速旋转氚钛靶系统设计和靶温度的数值模拟[J].核技术,27(10):797-791.
    [104]伍永顺,翟光年,丁锡祥,等.1996.旋转靶强流中子源及其应用[J].现代物理知识,8(5):25-27.
    [105]陈守信,倪正平,陈淼,等.1980.中子发生器低速旋转靶[J].核技术,5(1980):62.
    [106]Masahiro SEKI, Masuro OGAWA, Hiroshi KAWAMURA, et al.1979. Water-cooled target of 14 MeV neutron source design and experiment[J]. Journal of Nuclear Science and Technology,16 (11):838-846.
    [107]J. KAS, D. NOVAK.1972. A CALCULATION METHOD FOR DESIGNING ACCELERATOR TARGET COOLING SYSTEMS[J]. NUCLEAR INSTRUMENTS AND METHODS,99 (1972):359-363.
    [108]姚泽恩.2002.强流束传输理论及强流中子发生器设计[D].博士,兰州:兰州大学.
    [109]Jack E. Boers.1993. A digital computer program for the simulation of positive or negative particle beams on a PC[C]. Proceedings of Particle Accelerator Conference, May17-20, 1993, vol.1:327-329.
    [110]I.M.Kapchinsky and V.V. Vladimirsky.1959. Proc. Int. Conf. On High-Energy Accelerators and Instrumentation, CERN1959:274-288.
    [111]陈金根,赵丽华,倪涌舟,等.2002.腰-腰传输中强流束包络线方程的近似计算[J].原子能科学技术,36(2):154-156.
    [112]孙别和,夏佳文.1990.强流离子束包络方程与束包络计算[J].兰州大学报(自然科学版),26(4):55-62.
    [113]姚泽恩,朴禹伯,苏桐龄.1996.强流离子束传输系统束包络的计算机数值模拟[J].原子能科学技术,30(6):556
    [114]郁庆长.1981.强流离子束方程的幂级数解[J].自然杂志,3(12):950.
    [115]Christopher K.Allen, Martin Reiser.1997.Optimal transport of particle beams[J]. Nuclear Instruments and Methods, A384(1997):32-33.
    [116]郁庆长.1987.强流带电粒子束的传输矩阵理论[J].核技术,10(4):38-42.
    [117]曹清喜,关遐令.1986.偏转磁铁的六维传输矩阵[J].原子能科学技术,20(1):44-50.
    [118]K. L. BROWN, F. ROTHACKER.1983. TRANSPORT A COMPUTER PROGRAM FOR DESIGNING CHARGED PARTICLE BEAM TRANSPORT SYSTEMS[C]. SLAC-91, Revision 3.
    [119]茅乃丰,肖美琴,李增海.1986.用于束流输运计算的TRANSPORT-EM程序[J].原子能科学技术,1986年第6期:757-759.
    [120]吕建钦.1994.图形显示直线加速器与静电加速器粒子动力学计算程序LEADS[J].核技术,17(9):564-568.
    [121]Lu Jianqin.1995. LEADS:A graphical display computer program for linear and electrostatic accelerator beam dynamic simulation[J]. Nuclear Instruments and Methods, A(355):25.
    [122]吕建钦.2004.带电粒子束光学[M].北京,高等教育出版社:52-63.
    [123]郁庆长.1980.强流离子光学原理[M].北京,原子能出版社:172-173.
    [124]赵国骏,凌宝京,薛坤兴.1994.电子离子光学[M].北京,国防工业出版社:65-67.
    [125]桂伟燮,洪忠悌,陈佳洱.1984.粒子加速器原理[M].北京,原子能出版社.
    [126]朴禹伯,牛占歧,马永利,等.1986.强中子发生器高梯度加速管粘结[J].兰州大学学报(自然科学版),22(1):119-121.
    [127]石成儒,张之津.1981.300千伏中子发生器的加速管[J].兰州大学学报(自然科学版)1981:46-53
    [128]陈佳洱,刘迺泉.1993.加速器物理基础[M].北京,原子能出版社:99-108
    [129]黄青华.2006.300kV加速管的研制[M].硕士,北京:中国原子能科学研究院.
    [130]夏慧琴,刘纯亮.1991.束流传输原理[M].西安,西安交通大学出版社:79-95.
    [131]姚泽恩,岳伟明,罗鹏.2008.厚靶T(d,n)4He反应加速器中子源的中子产额、能谱和角分布[J].原子能科学技术,42(5):400-403.
    [132]赵祖德,姚良均,郭鸿运,等.1993.铜及铜合金材料手册[M].北京:科学出版社.
    [133]闻邦椿,等.2010.机械设计手册(第1卷)[M].北京:机械工业出版社.
    [134]徐成海,巴德纯,于浦,等.2006.真空工程技术[M].北京,化工工业出版社:245-259.
    [135]单辉祖.2004.材料力学第2版[M].北京:高等教育出版社.
    [136]张也影.1999.流体力学第2版[M].北京:高等教育出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700