新型低活化马氏体钢的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚变堆用结构材料是聚变能能否实现商业化应用的关键之一,国际上给予了高度重视,许多国家都在研发其特有材料。其中低活化铁素体/马氏体钢(Reduced Activation Ferritic/Martensitic steels,简称RAFM)被普遍认为是未来聚变示范堆和聚变动力堆的首选结构材料,其中以F82H, Eurofer97等最具代表性。我国于2001年开始了相应的研究,研制出了拥有自主知识产权的核聚变用钢—CLAM钢。
     本课题的主要内容是研究热处理对用真空感应熔炼+电渣重熔工艺熔炼的两种新型RAFM钢力学性能的影响,分析组织与性能的变化。
     首先,本课题研究了热处理工艺对两种新型RAFM钢的影响,包括淬火温度、回火温度、回火时间、回火后冷却介质和二次淬火与回火等因素对材料微观组织、力学性能的影响,从而探索最佳的热处理工艺,充分提高材料的强度和塑性,达到强度和塑性的最佳配合。研究表明,最佳热处理工艺为采用980℃保温0.5h水淬,然后采用760℃保温2h空冷回火,且9Cr0.11V钢性能优于9Cr0.08V钢。最佳的综合力学性能为抗拉强度699MPa,延伸率31%,断面收缩率69%。
     其次,评价了新型RAFM钢中非金属夹杂的种类和含量,用光学显微镜、环境扫描电镜、透射电镜等方法分析了组织和性能的影响因素,得出采用电渣重熔工艺熔炼的新型RAFM钢中各类非金属夹杂含量很少,且分布较均匀。经过热处理后的新型RAFM钢组织为回火马氏体,位错和碳氮化物是增强其力学性能的主要因素,其中碳化物主要为M23C6型,经过EDX分析得出具体的组成为(Cr_(0.75)Mn_(0.02)W_(0.23))23C6,同时还有少量六方晶系的Cr_7C_3、Mn_7C_3和正方晶系的Fe_3C、Mn_3C、Cr_3C_2型碳化物的存在。
The structural materials of Fusion reactor is one of the keys for whether a fusion can be applied in the commercialization. The international community attached great importance and a good many countries are in the development of their unique materials. Low-activation ferritic / martensitic steel (Reduced Activation Ferritic / Martensitic steels referred to RAFM) was widely considered as the best choice of the structural materials for fusion demonstration reactor and fusion power reactor in the future, the most representative ones of which are F82H and Eurofer97 steels. Our country began the corresponding study in 2001 and our results are significant. We have developed CLAM steel that is used for the fusion with independent intellectual property rights.
     The main contents of this article are research the influence of heat treatment process to the tensile properties of two kinds of new RAFM steels which are melted by vacuum induction melting(VIM)+electroslag remelting (ESR), analysis the change of microstructures and properties.
     Firstly, this subject has studied out the effects of the heat treatment process on the new RAFM steels, such as quenching temperature, tempering temperature, tempering time, tempering cooling medium after tempering and a series of quenching and tempering on the tensile properties and microstructures of the steels. So to seek for the best heat treatment process, and fully enhance the strength and plastic, attain the optimized suitability of the strength and plastic. It was shown that the best heat treatment process was quenching in the water after 0.5 hour at 980℃, then tempering in the air after 2 hours at 760℃, and the properties of 9Cr-0.11V steel was better than 9Cr0.08V steel. The optimal comprehensive mechanical property indexes as the tensile strength 699MPa, elongate ratio31% and cut constriction ratio 69%.
     Secondly, evaluated the type and content of non-metallic inclusions of the new RAFM steel, analyzed the influence factors to structures and properties by optical microscopy, environmental scanning electron microscope, transmission electron microscopy. Obtained by electroslag remelting smelting, the new RAFM steel contains few non-metallic inclusions, and the distribution is uniform. After heat treatment, the microstructure of new RAFM steel is martensite, dislocations and carbon and nitrogen compounds are the main factors to enhance the mechanical properties, which mainly M23C6 type carbide, been to EDX analysis of that specific composition is (Cr_(0.75)Mn_(0.02)W_(0.23))23C6, along with a small amount of hexagonal system of Cr_7C_3, Mn_7C_3 and tetragonal crystal system Fe3C, Mn3C, Cr3C2 carbides exist.
引文
[1]核工业西南物理研究院翻译组译,加里.麦克拉肯,彼得.斯托特[英]著.宇宙能源-聚变[M] .北京;北京原子能出版社,2008
    [2]方延平,戴革林,王保成,等.核聚变—消除人类能源危机的济世良方[J].物理与工程,2005,15(2):34
    [3]冯开明.可控核聚变与ITER计划[J].现代电力,2006,23 (5):82
    [4]宋勇.聚变堆液态金属锂铅包层模块氚分析研究[硕士论文],合肥:合肥工业大学硕士学位论文.2006
    [5] Shinzo.Saito.Role of nuclear energy to a future society of shortage of energy resources and global warming[J].J. Nucl. Mater.,2010:1~9
    [6] ABINGDON,GARCHING.ITER’s$12BillionGamble[J].Science,2006,314(13):2 40~241
    [7] Roth J1 R1著,李兴中译,聚变能引论[M].北京,清华大学出版社,1993
    [8] http://www.iter.org/mach/Pages/Tokamak.aspx
    [9] G.J. Butterworth, O.N. Jarvis. [J].J. Nucl. Mater.,1984,122-123:982.
    [10] Jones R H. Heinisch H L, McCarthy K A. Low Activation Materials[J].J. Nucl. Mater., 1999,271-272:518~525
    [11] Ehrlich K, Bloom E E, Kondo T. Intenational Strategy for Fusion Materials Development[J]. J. Nucl. Mater.,2000 ,283-287:79~88
    [12] Karl Ehrlich. Materials Research towards a Fusion Reactor[J]. Fusion Eng﹠Des. ,2001 ,56-57:71~82
    [13] Muroga T , Gasparotto M, Zinkle S J. Overview of Materials Research for FusionReactors[J]. Fusion Eng﹠Des. ,2002,61-62:13~25
    [14] Klueh R L , Gelles D S , et al. Ferritic/Martensitic Steels Overview of Recent Results [ J ]. J. Nucl. Mater.,2002,307 :455~465
    [15]张崇宏,杨义涛,宋银.一种低活化铁素体/马氏体钢的高能重离子辐照效应研究[J].原子核物理评论,2009,126:49
    [16] Muroga T, Gasparotto M, Zinkle S.Overview of Materials Research for Fusion Reactors[J]. Fusion Eng & Des.,2002,61:13~25.
    [17] Hasegawa T, Tomita Y, et al. Influence of Tantalum and Nitrogen Contents, Nowmalizing Condition and TMCP Process on the Mechanical Properties of Low activation 9Cr2W0.2VTa Steels for Fusion Application [J].J. Nucl. Mater, 2002, 258-263:1153~1157
    [18]黄群英,郁金南,万发荣,等.聚变堆低活性马氏体钢的发展[J].核科学与工程,2004,24 (3):56
    [19] Jitsukawa S,Tamura M,et al.Development of an extensive database of mechanical and physical properties for reduced~activation martensitic steel F82H[J]. J.Nucl. Mater.,2002,307-311:179~186
    [20] Belyaeva L A,Zisman A A,et al.Thermal fatigue crack nucleation in ferritic~martensitic steels before and after neutron irradiation[J].J.Nucl.Mater., 2001,283-287:461~464
    [21] T.Hirose,K.Shiba,T.Sawai,et al.E?ects of heat treatment process for blanket fabrication on mechanical properties of F82H[J].J. Nucl. Mater.,2004,329-333:324~327
    [22] J.F.Stubbins, D.S.Gelles.Fatigue performance and cyclic softening of F82H,a ferritic/martensitic steel[J].J. of Nucl. Mater.,1996,233-237:33l~335
    [23] Yusuke Kudo,Kouichi Kikuchi,Masakatsu Saito.Thermal fatigue crack propagation behavior of F82H ferritic steel[J].J.Nucl.Mater,2002,307-311:471~474
    [24] H.Tanigawaa,T.Hirosea,K.Shibaa.Technical issues of reduced activation ferritic/martensitic steels for fabrication of ITER test blanket modules[J].Fusion Eng & Des.,2008, 83:1471~1476
    [25] Tanigawa H,Jitsukawa S,et al.Effects of Helium implantation on hardness of pure iron and a reduced activation ferritic~martensitic steel[J].J.Nucl.Mater.,2000,283-287:470~473
    [26] J.Rensman, J.vanHoepen, J.B.M.Bakker.Tensile properties and transition behavior of RAFM steel plate and welds irradiated up to 10dpa at300℃[J].J.Nucl. Mater., 2002,307-311:245~249
    [27] X.Jia,Y.Dai.Microstructure in martensitic steels T91 and F82H after irradiation in SINQ Target-3[J].J.Nucl.Mater., 2003,318:207~214
    [28] E. Wakai,M.Ando,T.Sawai,et al.E?ect of heat treatments on tensile properties of F82H steel irradiated by neutrons[J].J.Nucl.Mater.,2007,367-370:74~80
    [29] Furuya Kazuyuki, Wakai Eiichi, Miyamoto Kenji,et al.,E?ects of irradiation on mechanical properties of HIP-bonded reduced-activation ferritic/martensitic steel F82H first wall[J].J.Nucl.Mater., 2007,367-370:494~499
    [30] N.Okubo,E.Wakai,T.Tomita,et al.Mechanical properties and microstructures in F82H steel irradiated under alternating temperature[J].J.Nucl.Mater., 2007, 367-370:112~116
    [31] R.L.Klueha,K.Shiba,M.A.Sokolova.Embrittlement of Irradiated F82H in the Absence of Irradiation Hardening[J].J.Nucl.Mater.,2009,386-388:191~194
    [32] Kohno Y, Kohyama A. Mechanical Property Changes of Low Activation Ferritic/ Martensitic Steels after Neutron Irradiation [J ].J.Nucl.Mater.,1999, 271:145~150.
    [33] A. Kohyama , Y. Kohno , M. Kuroda.etc.Production of low activation steel; JLF-1, large heats -Current status and future plan [J].J.Nucl.Mater., 1998, 258-263:1319~1323
    [34] T. Hasegawa, Y. Tomita , A. Kohyama.Influence of tantalum and nitrogen contents, normalizing condition and TMCP process on the mechanical properties of low-activation 9Cr-2W-0.2V-Ta steels for fusion application [J].J.Nucl.Mater.,1998,258-263:1153~1157
    [35] Hasegawa T, Tomita Y, et al. Influence of Tantalum and Nitrogen Contents, Nowmalizing Condition and TMCP Process on the Mechanical Properties of Low-activation 9Cr-2W-0.2V-Ta Steels for Fusion Application [J]. J.Nucl.Mater., 2002,258-263:1153~1157
    [36] Hirose T, Sakasegawa H, et al. Effect of Specimen Size on Fatigue Properties of Reduced Activation Ferritic/martensitic Steel [J].J.Nucl.Mater., 2000,283-287: 1018~1022
    [37] QiXu,Masatoshi Kondo,TakuyaNagasaka.etc.Effect of chemical potential of carbon on phase transformation and corrosion of JLF-1 steel in a static lithium[J].J.Nucl.Mater., 2009,394:20
    [38] Kohyama A,Kohno Y,et al.Production of Low Activation Steel:JLF-1,Large Heats Current Status and Future Plan[J].J.Nucl.Mater.,1998:283~287
    [39] M. Ando ,M.Li, H. Tanigawa , M.L. Grossbeck.etc.Creep behavior of reduced activation ferritic/martensitic steels irradiated at 573 and 773 K up to 5 dpa[J].J.Nucl.Mater.,2007,367-370 :122~126
    [40] M.A.Sokolov,A.Kimura,H.Tanigawa etc.Fracture toughness characterization of JLF-1 steel after irradiation in HFIR to 5dpa[J].J.Nucl.Mater.,2007,367-370:644~647
    [41] Schaaf B vander, Gelles D S,et al. Progress and CriticalIssues of Reduced Activation Ferritic/martensitic Steel Development[J].J.Nucl.Mater.,2000,283:52~59.
    [42] C.Fazio,A.Alamo,A.Almazouzi.et al. European cross-cutting research on structural materials for GenerationIV and transmutation systems [J].J.Nucl.Mater., 2009,392: 316~323
    [43] R.Lindau,M.Schirra. First results on the characterization of the reduced activation ferritic martensitic steel Eurofer[J]. Fusion Eng﹠Des.,2001,58-59:781~785
    [44] K.Mergia,N.Boukos. Structural,thermal,electrical and magnetic properties of Eurofer 97 steel [J].J.Nucl.Mater.,2008,373:1~8
    [45] P.Mueller,P.Sp?tig.3D finite element and experimental study of the size requirements for measuring toughness on tempered martensitic steels [J].J.Nucl.Mater.,2009,389:377~384
    [46] Z.Lu,R.G.Faulkner,N.Riddle,et.al.Effect of heattreatment on microstructure and hardness of Eurofer97,EuroferODS and T92 steels.[J].J.Nucl.Mater.,2009,386-388:445~448
    [47] Ma?gorzataLewandowska,AgnieszkaT.Krawczynska,MariuszKulczyk.Structure and properties of nano~sized Eurofer 97 steel obtained by hydrostatic extrusion [J].J.Nucl.Mater.,2009,386-388:499~502
    [48] C.Liu,H.Klein,P.Jung.Embrittlement of RAFM EUROFER97 by implanted hydrogen. [J].J.Nucl.Mater., 2004,335:77~82
    [49] Marie-Franc,oiseMaday,LucianoPilloni. Hydrogen effects on the tensile and fatigue properties of Eurofer’97[J]. Fusion Eng﹠Des.,2005, 75-79:957~961
    [50] Karel Splichal,Jan Berka,Jaroslav Burda.Fracture toughness of the hydrogen charged EUROFER 97 RAFM steel at room temperature and 120℃[J].J.Nucl.Mater.,2009, 392:125~132
    [51] Pierre Marmy,Tomas Kruml.Low cycle fatigue of Eurofer-97[J].J.Nucl. Mater., 2008,377:52~58
    [52] J.Aktaa,C.Petersen.Challenges in the constitutive modeling of the thermo-mechanical deformation and damage behavior of EUROFER97[J].Engineering Fracture Mechanics,2009,76:1474~1484
    [53] EnricoLucon, MarcDecreton, Eric van Walle.Mechanical characterization of EUROFER 97 irradiated(0.32dpa,300℃)[J]. Fusion Eng﹠ Des., 2003,377(1): 101~108
    [54] M.Matijasevic,E.Lucon,A.Almazouzi,Behavior of ferritic/martensitic steels after n-irradiation at 200 and 300℃[J].J.Nucl.Mater.,2008,386-388:195~198
    [55] R. Coppola, R. Lindau, R. P,May et.al.Investigation of microstructural evolution under neutron irradiation in.Eurofer97 steel by means of small-angle neutron scattering [J].J.Nucl.Mater. ,2009,386-388:195~198
    [56] Klueh R L, Alexander D J, et al. Development of Low-chromium, Chromium~tungsten Steels for Fusion[J].J.Nucl.Mater.,1995,227:11~23.
    [57] Lee E H,Hunn J D,et al.Triple ion bean studies of radiation damage in 9Cr-2WVTa ferritic/martensitic steel for a high power spallation neutron source [J].J.Nucl. Mater.,1999,271-272:285~390
    [58] Byun JT S,Farrell K,et al.Temperature effects on the mechanical properties of candidate SNS Target container materials after proton and neutron irradiation [J].J. Nucl.Mater.,2002,303:34~43
    [59] R.L. Klueh, M.A. Sokolov, N. Hashimoto .Mechanical properties of unirradiated and irradiated reduced~activation martensitic steels with and without nickel compared to properties of commercial steels [J].J.Nucl.Mater., 2008,374 :220~228
    [60] Y. Dai , D. Gavillet, R. Restani . Stressed capsules of austenitic and martensitic steels irradiated in SINQ Target-4 in contact with liquid lead–bismuth eutectic [J].J.Nucl.Mater. , 2008, 377:225~231
    [61] K. Farrell, T.S. Byun. Tensile properties of ferritic/martensitic steels irradiated in HFIR and comparison with spallation irradiation data[J]. J.Nucl.Mater., 2003,318 : 274~282
    [62] http://www.fds.org.cn/
    [63]李艳芬,黄群英,吴宜灿.CLAM钢冲击和拉伸性能测试与研究[J].原子核物理评论,2006, 123(2):152
    [64]赵飞,万奎贝,乔建生等.低活化马氏体钢的微观结构与力学性能[J].核科学与工程, 2007, 27(1):59~63
    [65]冷邦义,鲜晓斌,罗德礼等.Be/CLAM钢热等静压连接界面特性及力学性能[J].稀有金属材料与工程, 2008,37(12) :2157~2160
    [66]韩增产,李京龙,张赋升等.真空扩散连接CLAM钢接头的微观组织与性能[J].核动力工程,2009,30(3) :62~65
    [67]乔建生,黄依娜,肖鑫等.450℃高能电子辐照对CLAM钢微观结构的影响[J].北京科技大学学报,2009, 31(7):842~847
    [68] FeiZhao,JianshengQiao,YinaHuanga. Effect of irradiation temperature on void swelling of China Low Activation Martensitic steel (CLAM)[J]. MATERIALS CHARACTERIZATION,2008,59:344~347
    [69] Lei Peng, Qunying Huang, Chunjing Li. Preliminary analysis of irradiation effects on CLAM after low dose neutron irradiation [J].J. Nucl .Mater.,2009,386-388: 312~314
    [70] Y.Xin, J.Qiu, X.Ju. Microstructures evolution of the China Low Activation Martensitic (CLAM) steel irradiated by H and He ion beams [J].Nuclear Instruments and Methods in Physics ResearchB,2009,267(18):3166~3169
    [71] YanfenLi,QunyingHuang,YicanWu.etl. Effects of addition of yttrium on properties and microstructure for China Low Activation Martensitic (CLAM) steel [J]. Fusion Eng﹠Des.,2007,82:2683~2688
    [72]赵飞,乔建生,黄依娜.硅对低活化马氏体钢电子辐照行为的影响[J].原子能科学技术2008, 42 (1):15~21
    [73]高胜,章毛连,朱志强等.中国低活化马氏体钢CLAM在液态锂铅中腐蚀的初步实验研究[J].核科学与工程, 2007,27:51~54
    [74]黄群英.聚变堆结构材料—中国低活化马氏体钢设计与性能研究[硕士论文].合肥:中国科学院等离子体物理研究所,2006
    [75] Y.F.Li,T.Nagasaka,T.Muroga. Effect of thermal ageing on tensile and creep properties of JLF-1 and CLAM steels[J].J.Nucl.Mater.,2009,386-388:496
    [76]黄群英,李春京,李艳芳等.中国低活化马氏体钢CLAM研究发展[J].核科学与工程, 2007,27(1):41~85.
    [77]李正邦.电渣冶金与电渣熔铸在中国的发展[J].铸造,2004,53(11):855
    [78]李正邦.钢铁冶金前沿技术[M].北京;冶金工业出版社,1997:188
    [79]吴水正.电渣熔铸的发展[M].中国铸造装备与技术,1994,4:48~49
    [80]曾乐,李正邦,朱觉麟,等.电渣冶炼合金钢工艺[P].中国专利:000148.1964-09-18
    [81]李正邦.电渣冶金与电渣熔铸在中国的发展[J].铸造,2004,53(11):857
    [82]师江伟,杨涤心,倪峰.电渣重熔的发展及其趋势[J].特钢技术,2004,3:59
    [83]孟繁德.电渣重熔的设备选型和工艺选择[J].上海钢研,2002,2:21~27
    [84] Wolfgang Holzgruber.创新的电渣重熔工艺[J].钢铁译文集,2001,2:15~17
    [85]陈希春,冯森等.电渣冶金的最新进展[J].钢铁研究学报,2003,15(2):61~67
    [86] L.Z.Chang,B.Z.Li.Numerical simulation of temperature fields in electroslag remelting slab ingots[J] .Acta Metall.Sin.(Engl.lett),2008,21(4):253~259
    [87]李正邦,张家雯.电渣重熔钢中非金属夹杂物含量及成分的控制[J].钢铁研究学报,1997,9 (2):7~12
    [88]刘喜海,陈元元,李宝宽.大型电渣炉钢锭凝固过程的动态快速响应模型[J].东北大学学报,2005,26(2):141~144
    [89]刘喜海,陈元元,李宝宽.电渣重熔钢锭凝固过程数学模拟软件[J].钢铁研究学报,2005,17(6):30~33
    [90]臧喜民,黄晓颖.电渣连铸小方坯表面质量的影响因素[J].特殊钢, 2006,27(5):49~50
    [91]方程,钟士红.钢的回火工艺和回火方程[M].北京;机械工业出版社,1993
    [92]刘宗昌.金属学与热处理[M].北京;化学工业出版社,2008
    [93] GB/T 228~2002金属材料室温拉伸试验方法,中华人民共和国国家标准
    [94] GB/T 229~2002金属夏比缺口冲击试验方法
    [95] GB10561~89钢中非金属夹杂物显微评定方法
    [96] ShaojunLiua,QunyingHuanga,ChunjingLi,In?uence of non-metal inclusions on mechanical properties of CLAM steel[J]. J. Nucl. Mater.,84(2009):1214~1218
    [97] S.K.Dhua, AmitavaRay, S.K.Sen, M.S.Prasad, K.B.Mishra, S.Jha, In?uence of nonmetallic inclusion characteristics on themechanical properties of rail steel[J].J. Mater Eng.Perform.,1999,9:700~709.
    [98] O.Repetylo, M.Olette, P.Kozakevitich, Doxidation of liquid steel with aluminum and elimination of the resulting alumina[J]. J. Metals,1967,19:45~49.
    [99] Z.B.Xu, E.L.Gammal, In?uence of inclusion content and morphology on mechanical properties of steel[J].J. Iron Steel Res. 1994,6:18~23.
    [100] W.Rees, B.Hopkins, Intergranular brittleness in iron–oxygen alloys[J]. J. Iron Steel Inst. 1952,172:403~409
    [101]周玉,武高辉编著.材料分析测试技术[M] .哈尔滨;哈尔滨工业大学出版社,1998
    [102] Y.Z. Shen, S.H. Kim, C.H. Han, H.D. Cho, W.S. Ryu, C.B. Lee, Vanadium nitride precipitate phase in a 9% chromium steel for nuclear power plant applications[J].J. Nucl. Mater.,2008,374:403~412.
    [103] S.G. Hong, W.B. Lee, C.G. Park, The effects of tungsten addition on the microstructural stability of 9Cr~Mo Steels[J].J. Nucl. Mater.,2001,288:202~207

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700