严重塑性变形锆金属的微结构演化与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强度和塑性是结构材料两个重要的力学性能参数,一种优秀的结构材料应该同时具有高强度和高塑性的特点。但是,强度和塑性却往往呈现倒置的关系。虽然很多方法都能大幅度提高金属材料的强度,但是往往制备出的材料塑性都比较差。这是因为金属材料塑性变形的载体是位错,而传统强化机制的共同点就是通过阻碍位错运动来实现的。本文以六方结构锆金属为研究对象,以提高强塑性为目的,以液氮低温冷轧结合热退火和高压变形为手段,研究了严重塑性变形锆金属的微结构随变形工艺和后处理工艺参数的演化,并系统地研究了微结构、位错组态和力学性能之间的关系。
     利用液氮低温冷轧结合真空热退火,制备出了具有多尺度结构的锆金属。在该多尺度结构锆中,粗晶体积分数为~24%,超细晶为~56%,纳米尺度晶粒和亚晶为~20%。与已报道的结果相比,该多尺度结构锆金属表现出强度和塑性同步提高的特点,其抗拉强度和均匀延伸率分别为~658MPa和~8.5%。系统研究了多尺度结构的形成机制及其与力学性能的关系。
     研究了液氮低温冷轧应变速率对退火锆金属微结构演化的影响。研究表明,液氮低温冷轧变形工艺的高应变速率能够有效提高位错存储密度,进而提高再结晶形核率并促进晶粒的异常长大,这有利于多尺度结构的形成。
     通过改变液氮低温冷轧应变速率调控了严重塑性变形锆金属中的位错组态,得到了具有不同位错组态和力学性能的液氮低温变形锆板材,提出了通过调控位错组态来调控材料力学性能的观点。研究了位错组态与力学性能之间的关系,并将高应变速率变形样品的高强度归因于高位错密度带来的位错森林强化作用,将高塑性归因于板条位错组态中预存位错的开动。
     利用高压限制变形对液氮低温变形锆金属进行了微结构调控。在液氮低温冷轧锆中发现了机械退火现象,即材料的强度、位错密度随压缩应变的增大而降低,塑性随压缩应变的增大而增大。利用该机械退火现象,制备出了具有高强塑性的纳米结构锆金属,其抗拉强度和均匀延伸率分别为~843MPa和~6.7%。研究了液氮低温冷轧变形锆金属中机械退火现象形成的原因,以及机械退火样品的微结构与力学性能的关系。
     发现了液氮低温冷轧锆中一种反常的位错团簇现象。该现象不同于传统再结晶过程中位错重新组合、湮没的规律,大量位错以团簇的形式稳定存在于完全再结晶的样品中。这种位错团簇结构的存在不仅提高了材料的强度,而且提高了材料的加工硬化能力,并通过在拉伸变形过程中的结构演化,为塑性变形提供贡献。通过引入位错团簇结构,获得了综合性能优异的锆金属,并系统研究了位错团簇结构的形成、演化及其与力学性能的关系。
Strength and ductility are two important parameters of structural materials, and both ofhigh strength and ductility are desirable for structural applications. Unfortunately, strengthand ductility are exclusive. One metal can be strong, or ductile, but rarely both at the sametime. Although many technologies have been employed to improve the strength of metals,but these metals always exhibit poor ductility due to the limited motion of dislocations.The reason is that dislocations are carriers of plastic deformation and their motion ishindered in these strengthened metals. In the present study, we chose Zr as a model metalto study the microstructure evolution and mechanical properties of the metal withcryorolling deformation, high pressure confinement deformation and thermal annealingparameters, in order to enhance the strength and ductility simultaneously.
     In the present study, a multimodal grain structure composed of coarse grains (~24%),ultrafine grains (~56%), and nanoscale grains or subgrains (~20%) has been formed in hcppure Zr by employing cryorolling combined with subsequent low-temperature annealing.The multimodal structured Zr exhibits a high ultimate tensile strength (~658MPa) andlarge uniform elongation (~8.5%), demonstrating a good combination of high strength andductility. The formation mechanism of multimodal structure and the deformationmechanism of multimodal structured Zr are discussed in-depth.
     The effect of strain rate on the microstructures of cryorolled Zr before and afterannealing has been investigated. The dislocation density increases with increasing strainrate, resulting in different microstructures after annealing via increasing recrystallizationnucleation rate and prompting the abnormal growth of grains.
     The dislocation configuration of cryorolled Zr has been tailored by using various strainrate cryorolling. Dislocation configurations have a significant effect on mechanicalproperties of cryorolled Zr, which can be used to optimization of mechanical properties ofsevere deformed metals, a simultaneous increase in strength and ductility is obtained athigh strain rate of=2.24s-1. The increases in strength can be attributed to high-densitydislocations, and the increase in ductility to the motion of preexisting dislocations in lamellar configuration.
     An abnormal mechanical annealing behavior, i.e. a significant reduction in dislocationdensity and strength with increasing compression strain, has been observed in thecryorolled Zr suffered high-pressure (HP) confinement deformation. A good combinationof high strength and ductility has been achieved in the mechanically annealed sample. Thisunusual mechanical annealing behavior results from the motion of preexistinghigh-density dislocations in the cryorolled Zr under high stress. The formation mechanismof nanoscale grains and subgrains are discussed deeply.
     Abundant dislocation clusters formed in the cryorolled Zr after500℃thermalannealing, which can’t be explained by conventional recrystallization theory. Dislocationclusters become smaller and multiple upon tensile deformation, contributing to the strainhardening and plastic deformation of the sample. A good combination of high strength andductility has been obtained in the coarse-grained Zr sample. The formation mechanism,deformation mechanism and the relation between dislocation cluster and mechanicalproperties have been discussed.
引文
[1] Lu K. The Future of Metals [J]. Science,2010,328:319-320.
    [2] Ma E. Eight Routes to Improve the Tensile Ductility of Bulk Nanostructured Metals and Alloys [J].Journal of the Minerals, Metals and Materials Society,2006,58(4):49-53.
    [3] Zhao Y H, Zhu Y T, Enrique J L. Strategies for Improving Tensile Ductility of BulkNanostructured Materials [J]. Advanced Engineering Materials,2010,12(8):769-778.
    [4] Valiev R. Nanostructuring of Metals by Severe Plastic Deformation for Advanced Properties [J].Nature Materials,2004,3(8):511–516.
    [5] Lu K, Lu L, Suresh S. Strengthening Materials by Engineering Coherent Internal Boundaries atthe Nanoscale [J]. Science,2009,324:349-352.
    [6] Zhao Y H, Zhu Y T, Liao X Z, Horita Z, Landon T G. Tailoring Stacking Fault Energy for HighDuctility and High Strength in Ultrafine Grained Cu and its Alloy [J]. Applied Physics Letters,2006,89(12):121906-1-3.
    [7] Zhao Y H, Liao X Z, Cheng S, Ma E, Zhu Y T. Simultaneously Increasing the Ductility andStrength of Nanostructured Alloys [J]. Advanced Materials,2006,18(17):2280–2283.
    [8] He G, Eckert J, L ser W, Schultz L. Novel Ti-Base Nanostructure-Dendrite Composite withEnhanced Plasticity [J]. Nature materials,2003,2(1):33–37.
    [9] William D, Callister Jr, David G, Rethwisch. Materials Science and Engineering: An Introduction
    [M]. Eighth Edition, New York: John Wiley&Sons,2009.
    [10] Gleiter H. Nanocrystalline Materials [J]. Progress in Materials Science,1989,33(4):223-315.
    [11] Valiev R Z, Estrin Y, Horita Z, Langdon T G, Zehetbauer M J, Zhu Y T. Producing BulkUltrafine-grained Materials by Severe Plastic Deformation [J]. Journal of the Minerals, Metals andMaterials Society,2006,58(4):33-39.
    [12] Witkin D B, Lavernia E J. Synthesis and Mechanical Behavior of Nanostructured Materials viaCryomilling [J]. Progress in Materials Science,2006,51(1):1-60.
    [13] Fujiwara H, Nakatani M, Yoshida T, Zhang Z, Ameyama K. Outstanding Mechanical Properties inthe Materials with A Nano/Meso Hybrid Microstructure [J], Mater. Sci. Forum2008,584-586:55-60.
    [14] Sanders P G, Eastman J A, Weertman J R. Elastic and Tensile Behavior of Nanocrystalline Copperand Palladium [J]. Acta Materialia,1997,45(10):4019-4025.
    [15] Zhao Y H, Topping T, Bingert J F, Dangelewicz A M, Li Y, Liu W, et al. High Tensile Ductility andStrength in Bulk Nanostructured Nickel [J]. Advanced Materials,2008,20(16):3028-3033.
    [16] Anselmi-Tamburini U, Woolman J N, Munir Z A. Transparent Nanometric Cubic and TetragonalZirconia Obtained by High-Pressure Pulsed Electric Current Sintering [J], Advanced FunctionalMaterials,2007,17(16):3267-3273.
    [17] Rofagha R, Langer R, Elsherik A M, Erb U, Palumbo G, Aust K T. The Corrosion Behaviour ofNanocrystalline Nickel [J]. Scripta Metallurgica et Materialia,1991,25(12):2867-2872.
    [18] Valiev R Z, Isamgaliev R K, Alexandrov I V. Bulk Nanostructured Materials from Severe PlasticDeformation [J]. Progress in Materials Science.2000,45(2):103-189.
    [19] Koch C C, Morris D G, Lu K, Inoue A. Ductility of Nanostructured Materials [J], MRSBulletin,1999,24:54-58.
    [20] Koch C C. Optimization of Strength and Ductility in Nanocrystalline and Ultrafine GrainedMetals [J]. Scripta Materialia,2003,49(7):657-662.
    [21] Zhu Y T, Liao X Z. Nanostructured Metals: Retaining Ductility [J]. Nature Materials,2004,3:351-352.
    [22] Ma E. Instabilities and Ductility of Nanocrystalline and Ultrafine-Grained Metals [J]. ScriptaMaterialia,2003,49(7):663-668.
    [23] Koch C C, Youssef K M, Scattergood R O, Murty K L. Breakthroughs in Optimization ofMechanical Properties of Nanostructured Metals and Alloys [J]. Advanced Engineering Materials,2005,7(9):787-794.
    [24] Ma E. Eight Routes to Improve the Tensile Ductility of Bulk Nanostructured Metals and Alloys [J].Journal of the Minerals, Metals and Materials Society,2006,58(4):49-53.
    [25] Koch C C, Structural Nanocrystalline Materials: An Overview [J], J. Mater. Sci.2007,42(5):1403-1414.
    [26] Zhao Y H, Zhan Q, Topping T D, Li Y, Liu W, Lavernia E J. Improving Ductility in UltrafineGrained Nickel with Porosity and Segregation Via Deformation [J]. Materials Science andEngineering: A,2010,527(7-8):1744-1750.
    [27] Sanders P G., Youngdahl C J, Weertman J R. The Strength of Nanocrystalline Metals with andWithout Flaws [J]. Materials Science and Engineering: A,1997,234:77-82.
    [28] Hart E W. Theory of the Tensile Test [J]. Acta Metallurgica,1967,15(2):351-355.
    [29] Horita Z, Furukawa M, Nemoto M, Barnes A J, Langdon T G. Superplastic forming at high strainrates after severe plastic deformation [J]. Acta Materialia,2000,48(14):3633-3640.
    [30] Budrov Z, Swygenhoven H V, Derlet P M, Petegem S V, Schmitt B. Plastic Deformation withReversible Peak Broadening in Nanocrystalline Nickel [J]. Science,2004,304:273-276.
    [31] Zhu Y T, Huang J Y, Gubicza J, Unga′R T, Wang Y M, Ma E, Valiev R Z. Nanostructures in TiProcessed by Severe Plastic Deformation [J]. Materials Research,2003,18(8):1908-1917.
    [32] Yamakov V, Wolf D, Phillpot S R, Mukherjee A K, Gleiter H. Deformation-mechanism Map forNanocrystalline Metals by Molecular-dynamics Simulation [J]. Nature Materials,2004,3:43-47.
    [33] Swygenhoven H V, Derlet P M, Fr seth A G. Stacking Fault Energies and Slip in NanocrystallineMetals [J]. Nature Materials,2004,3:399-403.
    [34] Wang Y M, Chen M W, Zhou F H, Ma E. High Tensile Ductility in A Nanostructured Metal [J].Nature,2002,419:912-915.
    [35] Tellkamp V L, Melmed A, Lavernia E J. Mechanical Behavior and Microstructure of A ThermallyStable Bulk Nanostructured Al Alloy [J], Metallurgical and Materials Transactions A,2001,32(9):2335-2343.
    [36] Weertman J R, Farkas D, Hemker K, Kung H, Mayo M, Mitra R, Swygenhoven V H. Structureand Mechanical Behavior of Bulk Nanocrystalline Materials [J], MRS Bulletin,1999;24:44-50.
    [37] Kim W J, Chung C S, Ma D S, Hong S I, Kim H K. Optimization of Strength and Ductility of2024Al by Equal Channel Angular Pressing (ECAP) and Post-ECAP Aging [J]. Scripta Materialia,2003,49(4):333-338.
    [38] Kim J K, Kim H K, Park J W, Kim W J. Large Enhancement in Mechanical Properties of the6061Al Alloys after a Single Pressing by ECAP [J]. Scripta Materialia,2005,53(10):1207-1211.
    [39] Horita Z, Ohashi K, Fujita T, Kaneko K, Langdon T G. Achieving High Strength and HighDuctility in Precipitation-Hardened Alloys [J]. Advanced Materials,2005,17(13):1599-1602.
    [40] Shanmugasundaram T, Murty B S, Sarma V S. Development of Ultrafine Grained High StrengthAl–Cu Alloy by Cryorolling [J]. Scripta Materialia,2006,54(12):2013-2017.
    [41] Cheng S, Zhao Y. H, Zhu Y T, Ma E. Optimizing the Strength and Ductility of Fine Structured2024Al alloy by Nano-precipitation [J]. Acta Materialia,2007,55(17):5822-5832.
    [42] Takata N, Ohtake Y, Kita K, Kitagawa K, Tsuji N. Increasing the Ductility of Ultrafine-GrainedCopper Alloy by Introducing Fine Precipitates [J]. Scripta Materialia,2009,60(7):590-593.
    [43] Ertorer O, Topping T D, Li Y, Moss W, Lavernia E J. Enhanced Tensile Strength and HighDuctility in Cryomilled Commercially Pure Titanium [J]. Scripta Materialia,2009,60(7):586-589.
    [44] Ertorer O, Topping T D, Li Y, Zhao Y H, Moss W, Lavernia E J. Strategies for Improving Ductilityof Cryomilled Nanostructured Titanium [J], Materials Science Forum,2010,633–634:459-469.
    [45] Han B Q, Huang J Y, Zhu Y T, Lavernia E J. Strain Rate Dependence of Properties ofCryomilled Bimodal5083Al Alloys [J], Acta Materialia,2006,54(11):3015-3024.
    [46] Ertorer O, Topping T D, Li Y, Zhao Y H, Moss W, Lavernia E J. Enhanced tensile strength andhigh ductility in cryomilled commercially pure titanium [J], Scripta Materialia2009,60(7):586-589
    [47] El-Atwani O, Quach D V, Efe M, Cantwell P R, Heim B, Schultz B, et al. Multimodal Grain SizeDistribution and High Hardness in Fine Grained Tungsten Fabricated By Spark Plasma Sintering[J]. Materials Science and Engineering: A,2011,528(18):5670-5677.
    [48] Srinivasarao B, Oh-ishi K, Ohkubo T, Mukai T, Hono K. Synthesis of High-Strength BimodallyGrained Iron by Mechanical Alloying and Spark Plasma Sintering [J]. Scripta Materialia,2008,58(9):759-762.
    [49] Zhao Y, Topping T, Li Y, Lavernia E J. Strength and Ductility of Bi-modal Cu [J]. AdvancedEngineering Materials: A,2011,13(9):865-871.
    [50] Jin H, Lloyd D J. Effect of a Duplex Grain Size on the Tensile Ductility of an Ultra-Fine GrainedAl–Mg Alloy, AA5754, Produced by Asymmetric Rolling and Annealing [J]. Scripta Materialia,2004,50(10):1319-1323.
    [51] Sevillano J G, Aldazabal J. Ductilization of Nanocrystalline Materials for Structural Applications[J]. Scripta Materialia,2004,51(8):795-800.
    [52] Li Y S, Zhang Y, Tao N R, Lu K. Effect of Thermal Annealing on Mechanical Properties of aNanostructured Copper Prepared by Means of Dynamic Plastic Deformation [J]. ScriptaMaterialia,2008,59(4):475-478.
    [53] Zhao Y H, Liao X Z, Cheng S, Ma E, Zhu Y T. Simultaneously Increasing the Ductility andStrength of Nanostructured Alloys [J]. Advanced Materials,2006,18(17):2280-2283.
    [54] Wang Y B, Sui M L. Atomic-scale In-situ Observation of Lattice Dislocations Passing throughTwin Boundaries [J]. Applied Physics Letters,2009,94(2):021909.
    [55] Wang Y B, Wu B, Sui M L. Dynamical Dislocation Emission Processes from Twin Boundaries [J].Applied Physics Letters,2008,93(4):041906.
    [56] Lu L, Shen Y F, Chen X H, Qian L H, Lu K. Ultrahigh Strength and High Electrical Conductivityin Copper [J]. Science,2004,304:422-426.
    [57] Zhao Y H, Bingert J F, Liao X Z, Cui B Z, Han K, Sergueeva A V, et al. Simultaneously Increasingthe Ductility and Strength of Ultra-fine-grained Pure Copper [J]. Advanced Materials,2006,18:2949-2953.
    [58] Karimpoor A A, Erb U, Aust K T, Palumbo G. High Strength Nanocrystalline Cobalt with HighTensile Ductility [J]. Scripta Materialia,2003,49(7):651-656.
    [59] Li Y, Zhang Y, Tao N, Lu K. Effect of Thermal Annealing on Mechanical Properties ofaNanostructured Copper Prepared by Means of Dynamic Plastic Deformation [J]. ScriptaMaterialia,2008,59(4):475-478.
    [60] Meyers M A, V hringer O, Lubarda V A. The Onset of Twinning in Metals: a ConstitutiveDescription [J]. Acta Materialia,2005,49(19):4025-4039.
    [61] Carter C B, Ray I L F. On the Stacking-fault Energies of Copper Alloys [J]. PhilosophicalMagazine,1977,35(1):189-200.
    [62] Ungar T, Balogh L, Zhao Y H, Zhu Y T, Horita Z, Xu C, et al. Influence of Stacking-fault Energyon Microstructural Characteristics of Ultrafine-grain Copper and Copper–zinc Alloys [J]. ActaMaterialia,2008,56(4):809-820.
    [63] Zhao Y H, Liao X Z, Zhu Y T, Horita Z,T. Langdon G. Tailoring Stacking Fault Energy for HighDuctility and High Strength in Ultrafine Grained Cu and Its Alloy [J]. Applied Physics Letters,2006,89(12):121906.
    [64] Zhao Y H, Liao X Z, Horita Z, Langdon T G, Zhu Y T. Determining the Optimal Stacking FaultEnergy for Achieving High Ductility in Ultrafine-grained Cu–Zn Alloys [J]. Materials Science andEngineering: A,2008,493(1-2):123-129.
    [65] Cheng S, Choo H, Zhao Y H, Wang X L, Zhu Y T, Wang Y D, et al. High Ductility ofUltrafine-grained Steel Via Phase Transformation [J]. Materials Research,2009,23(6):1578-1586.
    [66] Son Y I, Lee Y K, Park K T, Lee C S, Shin D H. Ultrafine Grained Ferrite–martensite Dual PhaseSteels Fabricated Via Equal Channel Angular Pressing: Microstructure and Tensile Properties [J].Acta Materialia,2005,53(11):3125-3134.
    [67] Youssef K M, Scattergood R O, Murty K L, Horton J A, Koch C C. Ultrahigh Strength and HighDuctility of Bulk Nanocrystalline Copper [J]. Applied Physics Letters,2005,87(9):091904.
    [68] Schi tz J, Jacobsen K W. A Maximum in the Strength of Nanocrystalline Copper [J]. Science,2010,301:1357-1359.
    [69] Legros M, Gianola D S, Hemker K J. In-situ TEM Observations of Fast Grain-Boundary Motionin Stressed Nanocrystalline Aluminum Films [J]. Acta Materialia,2008,56(14):3380-3393.
    [70] Schiotz J, Di Tolla F D, Jacobsen K W. Softening of Nanocrystalline Metals at Very Small GrainSizes [J]. Nature,1998,391:561-563.
    [71] Yip S. Nanocrystals: The Strongest Size [J]. Nature,1998,391:532-533.
    [72] Shan Z, Stach E A, Wiezorek J M K, Knapp J A, Follstaedt D M, Mao S X. Grain Boundary-mediated Plasticity in Nanocrystalline Nickel [J]. Science,2004,305(5684):654-657.
    [73]薛饶伯,俊友译,B.勒斯特曼, F.凯尔兹,锆上册[M].北京:中国工业出版社,1965.
    [74]熊炳昆,温旺光,杨新民,李蕙媛,罗方成,张伟,郭靖茂,锆铪冶金[M].北京:冶金工业出版社,2002.
    [75] George P S, Gerry D. M, Zirconium in The Nuclear Industry [M]:12th International Symposium,Philadelphia,2000.
    [76] Salda a L, MéNdez-Vilas A, Jiang L, Multigner M, GonzáLez C, Jose L, et al. In VitroBiocompatibility of an Ultrafine Grained Zirconium Biomaterials [J]. Biomaterials,2007,28(30):4343-4354.
    [77] Richardson K. Medical Device Innovator Rebuilds Lives with Zirconium Knee Implant [J].Outlook,2001,22(4):1-8.
    [78] Sarma D S, Al-Otaibi K M, Murty K L. Tensile Properties and Deformation Mechanisms inZirconium [J]. Materals Transactions JIM,1992,33(6):596-603.
    [79] Sokurskii I N, Protsenko L N. Deformation Systems of α-Zirconium [J]. Atomic Energy,1958,4(5):579-582.
    [80] Monnet G., Devincre B, Kubin L P. Dislocation Study of Prismatic Slip Systems and TheirInteractions in Hexagonal Close Packed Metals: Application to Zirconium [J]. Acta Materialia,2004,52(14):4317-4328.
    [81] Kad B K, Gebert J-M, Perez-Prado M T, Kassner M E, Meyers M A. Ultrafine-Grain-SizedZirconium by Dynamic Deformation [J]. Acta Materialia,2006,54(16):4111-4127.
    [82] Jiang L, PéRez-Prado M T, Gruber P A, Arzt E, Ruano O A, Kassner M E. Microstructure andMechanical Properties of Equiaxed Ultrafine-Grained Zr Fabricated by Accumulative RollBonding [J]. Acta Materialia,2008,56(6):1228-1242.
    [83] Jiang L, Ruano O A, Kassner M E, Perez-Prado M T. The Fabrication of Bulk Ultrafine-GrainedZirconium by Accumulative Roll Bonding [J]. Journal of the Minerals, Metals and MaterialsSociety,2007,59(6):42-45.
    [84] Dinda G P, Ro¨Sner H, Wilde G.. Synthesis of Bulk Nanostructured Ni, Ti and Zr by Repeatedcold rolling [J]. Scripta Materialia,2005,52(7):577-582.
    [85] Tabachnikova E D, Podol’ski A V, Bengus V Z, Smirnov S N, Natsik V D, Azhazha V M, et al.Mechanical Properties of Ultrafine-grain Zirconium in the Temperature Range4.2–300K [J]. LowTemperature Physics,2008,34(11):969-975.
    [86] Yang Z N, Xiao Y Y, Zhang F C, Yan Z G.. Effect of Cold Rolling on Microstructure andMechanical Properties of Pure Zr [J]. Materials Science and Engineering: A,2012,556:728-733.
    [87] Edalati K, Horita Z, Yagi S, Matsubara E. Allotropic Phase Transformation of Pure Zirconium byHigh-Pressure Torsion [J]. Materials Science and Engineering: A,2009,523(1-2):277-281.
    [88] Terry C L. Metals and Alloys Nanostructured by Severe Plastic Deformation: CommercializationPathways [J]. Metals and Materials Society,2006,58(4):28-32.
    [89] Rangaraju N, Raghuram T, Krishna B V, Rao K P, Venugopal P. Effect of Cryorolling andAnnealing on Microstructure and Properties of Commercially Pure Aluminium [J]. MaterialsScience and Engineering: A,2005,398(1-2):246-251.
    [90] Lee Y B, Shin D H, Park K T, Nam W J. Effect of Annealing Temperature on Microstructures andMechanical Properties of a5083Al Alloy Deformed at Cryogenic Temperature [J]. ScriptaMaterialia,2004,51(4):355-359.
    [91] Kauffmann A, Freudenberger J, Geissler D, Yin S, Schillinger W, Sarma V S,et al. SevereDeformation Twinning in Pure Copper by Cryogenic Wire Drawing [J]. Acta Materialia,2011,59(20):7816-7823.
    [92] Kralia L, Singh I V, Pathak P M, Jayaganthan R. An Experimental Study of Mechanical andFatigue Behavior of Cryorolled Al6063Alloy [J]. Mechanical and Materials Engineering,2012,7(2):124-127.
    [93] Panigrahi S K, Jayaganthan R. A Study on the Combined Treatment of Cryorolling,Short-Annealing, and Aging for the Development of Ultrafine-Grained Al6063Alloy withEnhanced Strength and Ductility [J]. Metallurgical and Materials Transactions A,2010,41(10):2675-2690.
    [94] Das P, Jayaganthan R, Chowdhury T, Singh V. Improvement of Fracture Toughness (KIC) of7075Al Alloy by Cryorolling Process [J]. Materials Science,2011,683:81-94.
    [95] Shanmugasundaram T, Murty B S, Sarma V S. Development of Ultrafine Grained High StrengthAl–Cu Alloy by Cryorolling [J]. Scripta Materialia,2006,54(12):2013-2017.
    [96] Cheng S, Zhao Y H, Zhu Y T, Ma E. Optimizing The Strength and Ductility of Fine Structured2024Al Alloy by Nano-Precipitation [J]. Acta Materialia,2007,55(17):5822-5832.
    [97] Sarkar A, Mukherjee P, Barat P. X-Ray Diffraction Studies on Asymmetrically Broadened Peaks ofHeavily Deformed Zirconium-Based Alloys [J]. Materials Science and Engineering: A,2008,485(1-2):176–181.
    [98] Sahooa S K, Hiwarkara V D, Majumdara A, Samajdara I, Panta P, Deyb G K, et al. Presence andAbsence of Significant Twinning: Effects on Cold Deformed Microstructures of Single PhaseZircaloy-2[J]. Materials Science and Engineering: A,2009,518(1-2):47-55.
    [99] A.J.C. Wilson, On Variance as a Measure of Line Broadening in Diffractometry General Theoryand Small Particle Size [J], Proceedings of the Physical Society,1962,80:286-294.
    [100] Groma I. X-Ray Line Broadening Due to An Inhomogeneous Dislocation Distribution [J].Physical Review B,1998,57(13):7535-7542.
    [101] Zhao Y H, Liao X Z, Cheng S, Ma E, Zhu Y T. Simultaneously Increasing the Ductility andStrength of Nanostructured Alloys [J]. Advance Materials,2006,18(3):2280-2283.
    [102] Lee T R, Chang C P, Kao P W. The Tensile Behavior and Deformation Microstructure ofCryorolled and Annealed Pure Nickel [J]. Materials Science and Engineering: A,2005,408(1-2):131-135.
    [103] Wang Y M, Ma E. Three Strategies to Achieve Uniform Tensile Deformation in a NanostructuredMetal [J]. Acta Materialia,2004,52(6):1699-1709.
    [104] Northwooda D O. The Development and Applications of Zirconium Alloys [J]. Materials Design1985,6:58-70.
    [105] Cerreta E, Gray III G T, Hixson R S, Rigg P A, Brown D W. The Influence of Interstitial Oxygenand Peak Pressure on the Shock Loading Behavior of Zirconium [J]. Acta Materialia,2005,53:1751-1758.
    [106] Good V, Widding K, Hunter G, Heuer D. Oxidized Zirconium: A Potentially Longer Lasting HipImplant [J]. Materials Design,2005,26:618-622.
    [107] Li Y S, Zhang Y, Tao N R, Lu K. Effect of the Zener–Hollomon Parameter on the Microstructuresand Mechanical Properties of Cu Subjected to Plastic Deformation [J]. Acta Materialia,2009,57(3):761-772.
    [108] Care S, Bretheau T. Plastic Flow and Damage of α-Zirconium Polycrystals [J]. Journal DePhysique IV,1993,3:533-536.
    [109] Sarma D S, Al-Otaibi K M, Murty K L. Tensile Properties and Deformation Mechanisms inZirconium [J]. Materials Transactions JIM,1992;33(6):596-603.
    [110] Brunstetter D R, Kling H P, Alexander B H. The Tensile Properties of Zirconium at ElevatedTemperatures [M]. New York: Sylvania Electric Products Inc,1950:3-18.
    [111] Wang Y M, Ma E, Chen M W. Enhanced Tensile Ductility and Toughness in Nanostructured Cu[J]. Applied Physics Letters,2002,80(13):2395-2397.
    [112] Yang D K, Hodgson P D, Wen C E. Simultaneously Enhanced Strength and Ductility of TitaniumVia Multimodal Grain Structure [J]. Scripta Materialia,2010,63(9):941-944.
    [113] Wang Y M, Jiao T, Ma E. Dynamic Processes For Nanostructure Development in Cu after SevereCryogenic Rolling Deformation [J]. Materials Transactions,2003,44(10):1926-1934.
    [114] Wang Y M, E Ma. Temperature and Strain Rate Effects on the Strength and Ductility ofNanostructured Copper [J]. Applied Physics Letters,2003,83(15):3165-3167.
    [115] BorbéLy A, Groma I. Variance Method for the Evaluation of Particle Size and DislocationDensity from X-Ray Bragg Peaks [J]. Applied Physics Letters,2001,79(12):1772-1774.
    [116] Hull D, Bacon D J. Introduction to Dislocation [M]. Fourth Edition, Oxford: Butterworth-Heinemann,2001.
    [117] Huang F, Tao N R, Lu K. Effects of Strain Rate and Deformation Temperature on Microstructuresand Hardness in Plastically Deformed Pure Aluminum [J]. Materials Science and Technology,2011,27(1):1-7.
    [118] Wang K, Tao N, Liu G, Lu J, Lu K. Plastic Strain-induced Grain Refinement at The NanometerScale in Copper [J].Acta Materialia,2006,54(19):5281-5291.
    [119] Tao N R, Lu K. Nanoscale Structural Refinement Via Deformation Twinning in Face-CenteredCubic Metals [J]. Scripta Materialia,2009,60(12):1039-1043.
    [120] Gang U G, Lee S H, Nam W J. The Evolution of Microstructure and Mechanical Properties of A5052Aluminium Alloy by The Application of Cryogenic Rolling and Warm Rolling [J]. MaterialsTransactions,2009,50(1):82-86.
    [121] Yang D K, Cizek K P, Hodgson P D D, Wen C E. Microstructure Evolution and NanograinFormation During Shear Localization in Cold-Rolled Titanium [J]. Acta Materialia,2010,58(13):4536-4548.
    [122] He Z Y, He X W. A Study on The Deformation Of Metals [J], Materials Processing Technology,1999,88(1-3):1-9.
    [123] Ma E, Shen T D, Wu X L. Nanostructured Metals: Less Is More [J]. Nature Materials,2006,5:515-516.
    [124] Valiev R Z, Alexandrov I V, Zhu Y T, Lowe T C. Paradox of Strength and Ductility in MetalsProcessed by Severe Plastic Deformation [J], Materials Research,2002,17(1):5-8.
    [125] Huang X X. Tailoring Dislocation Structure and Mechanical Properties of Nanostructured MetalsProduced by Plastic Deformation [J]. Scripta Materialia.2009,60(12):1078-1082.
    [126] Lu L, Chen X, Huang X, Lu K. Revealing the Maximum Strength in Nanotwinned Copper[J].Science,2009,323:607-610.
    [127] Huang X X, Hansen N, Tsuji N. Hardening by Annealing and Softening by Deformation inNanostructured Metals [J]. Science,2006,312:249-251.
    [128] Shan Z W, Mishra R K, Syed Asif S A, Warren O L, Minor A M. Mechanical Annealing andSource-limited Deformation in Submicrometre-diameter Ni Crystals [J]. Nature Materials,2007,7:115-119.
    [129] Aronofsky J. Evaluation of Stress Distribution in the Symmetrical Neck of Flat Tensile Bars [J],Applied Mechanics,1951,18:75-84.
    [130] Huang L, Li Q J, Shan Z W, Li J, Sun J, Ma E. A New Regime for Mechanical Annealing andStrong Sample-size Strengthening in Body Centred Cubic Molybdenum [J]. NatureCommunications,2011,2:547-551.
    [131] Beaudoin A J, Acharya A, Chen S R, Korzekwa D A, Stout M G. Consideration of Grain-sizeEffect and Kinetics in the Plastic Deformation of Metal Polycrystals [J]. Acta Materialia,2000,48(13):3409-3423.
    [132] Wang Y M, Ma E, Valiev R Z, Zhu Y T. Tough Nanostructured Metals at Cryogenic Temperatures[J]. Advanced Materials,2004,16(4):328-331.
    [133] Cerreta E K, Frank I J, Gray III G T, Trujillo C P, Korzekwa D A, Dougherty L M. The Influenceof Microstructure on the Mechanical Response of Copper in Shear [J]. Materials Science andEngineering: A,2009,501(1-2):207-219.
    [134] Panigrahi S K, Jayaganthan R. Development of Ultrafine Grained Al–Mg–Si Alloy withEnhanced Strength and Ductility[J]. Journal of Alloys and Compounds,2009,470(1-2):285-288.
    [135] Sushanta K P, Jayaganthan R. Effect of Ageing on Microstructure and Mechanical Properties ofBulk, Cryorolled, and Room Temperature Rolled Al7075Alloy [J]. Alloys and Compounds,2011,509(40):9609-9616.
    [136] Liddicoat P V, Liao X Z, Zhao Y H, Zhu Y T, Murashkin M Y, Lavernia E J,et al. Nanostructural Hierarchy Increases The Strength Of Aluminium Alloys [J], NatureCommunications,2010,1(6):63-69.
    [137] Dieter G E. Mechanical Metallurgy, Third Ed., London: Mcgraw-Hill,1988.
    [138] Wolf D, Yamakov V, Phillpot S R, Mukherjee A, Gleiter H. Deformation of NanocrystallineMaterials by Molecular-dynamics Simulation: Relationship to Experiments [J]. Acta Materialia,2005,53(1):1-40.
    [139] Van Swygenhoven H. Grain Boundaries and Dislocations [J]. Science,2002,296:66-67.
    [140] Jiang Z H, Liu X L, Li G Y, Jiang Q, Lian J S. Strain Rate Sensitivity of a Nanocrystalline CuSynthesized by Electric Brush Plating [J]. Applied Physics Letters,2006,88(14):143115.
    [141] Niu J J, Zhang J Y, Liu G, Zhang P, Lei S Y, Zhang G J, et al. Size-Dependent DeformationMechanisms and Strain-Rate Sensitivity in Nanostructured Cu/X (X=Cr, Zr) Multilayer Films [J].Acta Materialia,2012,60(9):3677-3689.
    [142] Fan G J, Fu L F, Qiao D C, Choo H, Liaw P K, Browning N D. Grain Growth in a BulkNanocrystalline Co Alloy During Tensile Plastic Deformation [J]. Scripta Materialia,2006,54(12):2137-2141.
    [143] Valiev R Z. Materials Science: Nanomaterial Advantage [J]. Nature,2002,419:887-889.
    [144] Jia D, Wang Y M, Ramesh K T, Ma E, Zhu Y T, Valiev R Z. Deformation Behavior and PlasticInstabilities of Ultrafine-grained Titanium [J]. Applied Physics Letters,2001,79(5):611-613.
    [145] Jiang X, Jia C L. The Coalescence of [001] Diamond Grains Heteroepitaxially Grown on (001)Silicon [J]. Applied Physics Letters,1996,69(25):3902-3904.
    [146] Ovid’ko I A. Deformation of Nanostructures [J]. Science,2002,295:2386.
    [147] Murayama M, Howe J M, Hidaka H, Takaki S. Atomic-Level Observation of DisclinationDipoles in Mechanically Milled, Nanocrystalline Fe [J]. Science,2002,295:2433-2435.
    [148] Mcfadden S X, Mishra R S, Valiev R Z, Zhilyaev A P, Mukherjee A K. Low-temperatureSuperplasticity in Nanostructured Nickel and Metal Alloys [J]. Nature,1999,398:684-686.
    [149] Swygenhoven H V, Caro A. Plastic Behavior of Nanophase Ni: A Molecular Dynamics ComputerSimulation [J]. Applied Physics Letters,1997,71(12):1652-1654.
    [150] Hasnaoui A, Derlet P M, Swygenhoven H V. Interaction Between Dislocations and GrainBoundaries Under An Indenter-a Molecular Dynamics Simulation [J]. Acta Materialia,2004,52(8):2251-2258.
    [151] Froseth A, Swygenhoven H V, Derlet P M. The Influence of Twins on The Mechanical Propertiesof NC-Al [J]. Acta Materialia,2004,52(8):2259-2268.
    [152] Onimus F, Monnet I, Be′chade J L, Prioul C, Pilvin P. A Statistical TEM Investigation ofDislocation Channeling Mechanism in Neutron Irradiated Zirconium Alloys [J], Journal ofNuclear Materials,2004,328:165-179.
    [153] Onimus F, Be′chade JL, Duguay C, Gilbon D, Pilvin P. Investigation of Neutron RadiationEffects on The Mechanical Behavior of Recrystallized Zirconium Alloys [J]. Journal of NuclearMaterials,2006,358:176–189.
    [154] Was G S, Fundamentals of Radiation Materials Science-Metals and Alloy [M], Berlin: Springer,2007:581-642.
    [155] Foremana AJE, Junction Reaction Hardening by Dislocation Loops [J].1968,17(146):353-364.
    [156] Williams D B, Carter C B, Transmission Electron Microscopy [M], New York: Springer,2009:448-449.
    [157] Zhdanov S K, Thoma M H, Knapek C A, Morfill G E. Compact Dislocation Clusters in ATwo-Dimensional Highly Ordered Complex Plasma [J], New Journal of Physics,2012,14:023030.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700