微波法制备人造金红石新工艺及设备研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然金红石和人造金红石是盐酸法和硫酸法生产二氧化钛(TiO2)颜料的重要原料之一。目前,可利用的高品位天然金红石的供应量急剧减少,探索一种在较低的能源消耗和较小的环境污染下生产人造金红石的方法已经日趋迫切。因此,从可以大量利用的钛渣资源中制备人造金红石成为一种发展趋势。
     微波加热技术广泛地应用到实验研究和工业生产过程中,与传统加热技术相比,微波加热的主要优势是内部加热和整体加热,因此加热过程非常迅速,从而节约能源和缩短处理时间。微波加热具有较高的电磁转换效率,加热效率高。此外,微波加热设备的尺寸较小,被加热材料和微波源之间不直接接触,是一种清洁、绿色的生产模式。
     本论文根据云南省生产的高钛渣的结构与特征,提出一种微波加热—选矿联合工艺制备高品质的人造金红石产品的新工艺,并与常规加热方式进行了对比。高钛渣在微波加热和传统加热前后的化学成份,晶体结构,显微结构和表面官能团通过X射线衍射,扫描电子显微镜,能谱分析,拉曼光谱,傅立叶变换红外光谱等方法进行分析。高钛渣的主要成分为钛的氧化物、FeO、A1203、SiO2、MgO和MnO,以及硫、磷、碳等少量元素。XRD分析结果表明,高钛渣的主要物相是锐钛型TiO2和Fe3Ti3O10(M3O5型黑钛石固溶体),以及少量的金红石型TiO2SEM-EDAX分析结果表明,高钛渣表面比较光滑,样品表面出现明显的凹陷和条状裂痕。FT-IR光谱分析结果表明,493.3cm-1处的特征峰是因为高钛渣Ti O2的Ti-O和Ti-O-Ti伸缩振动形成的。Raman光谱分析结果表明,在155.2,195.8,393.7,515.5and637.3cm-1处出现锐钛型TiO2,Ti3O5,Ti2O3的拉曼振动模式特征峰。热分析结果表明,高钛渣在850℃左右出现了放热峰,说明在此温度范围,锐钛型TiO2开始不可逆地转变为金红石型TiO2。影响锐钛矿TiO2向金红石TiO2变的实验条件主要包括:温度,颗粒大小,氧化物的合成方法等。
     采用微波谐振腔扰动技术测试了高钛渣的微波吸波特性。通过分析和计算微波波谱图中波谱的相对频率移动和电压振幅,得到测试样品的微波吸收性能。并测试了高钛渣在微波场中的升温曲线。系统研究了不同粒度的高钛渣、混合不同含量V2O5、微波焙烧前后对样品的微波吸波特性的影响。测试结果表明,高钛渣具有较强的微波吸收能力,能够在微波场中迅速地被加热。当高钛渣粒度为180μm,混合V205的含量为10%时,在各自的微波波谱图中,具有较大的相对频率移动和较低的电压振幅,此时为不同条件下样品吸波特性测试的最佳条件
     在微波加热过程中,系统研究了微波焙烧温度和保温时间对二氧化钛品位,硫、碳含量和Ti02晶型转变的影响。随着微波加热温度和保温时间的增加,二氧化钛品位和硫、碳含量都呈减少的趋势,与常规加热相比,时间缩短。从XRD中可以看出,金红石Ti02的(101),(111)和(211)晶面的衍射峰强度逐渐增加,锐钛型Ti02和Fe3Ti3O10的各个晶面的衍射峰强度逐渐降低。Raman结果表明,位于396.8,515.2,637.0cm-1为锐钛型Ti02的拉曼振动模式特征峰强度逐渐减少,位于153.2cm-1为Ti305的拉曼振动模式特征峰消失,位于197.2cm-1为Ti2O3的拉曼振动模式特征峰消失。位于244.6,445.6,615.0cm-1为金红石型TiO2的拉曼振动模式特征峰的强度逐渐增加,并移至低波数,产生红移。FT-IR结果表明,在1697.Ocm-1处的吸收峰为样品中所含水分的H-O-H的弯曲振动吸收峰消失,在1089.6cm-1处为O-H键的弯曲振动吸收峰减弱,在529.3cm-1处为TiO2八面配位体的振动引起的特征峰移至高波数,产生蓝移。SEM结果表明,经过微波处理后的样品呈现出不规则的针状结构,在样品的表面上很多的孔被打开,导致了样品的表面积增大。样品中的其他杂质如锰、镁、硅等富集在灰白色的小颗粒中,有利于下一步的选矿分离过程。
     选择微波加热温度,微波功率和保温时间作为自变量,人造金红石含量作为因变量,采用响应曲面法(RSM)和中心组合设计(CCD)对微波加热焙烧高钛渣制备人造金红石工艺进行参数优化设计。采用最小二乘法和非线性回归分析实验结果,得到因变量与自变量的二阶多项式,该模型的相关系数值R2为0.9691,校正决定系数值adj.R2为0.9382,说明各个自变量独立作用于因变量。失拟项F-value为3.47,说明失拟项相对于纯误差不具有显著性。变异系数CV为0.45%,说明了设计的条件实验具有较高的精度和较好的可靠性。通过对非线性回归方程的求解和对响应曲面和等高线的分析,得到微波焙烧高钛渣的最佳工艺参数为:焙烧温度936℃,微波功率2.5kW,保温时间48min。在此工艺条件下的试验值与预测值比较接近,误差较小
     为了提高微波焙烧产物中Ti02的含量,采用选矿工艺除去其中的杂质。探索球磨时间,磁场强度,浮选药剂等因素对微波焙烧产物中二氧化钛含量的影响。当磨矿时间为60min,磁选电流为5A,抑制剂CMC的用量选用为250g/t,捕收剂羟肟酸的用量选用为300g/t,产品的二氧化钛品位达到91.25%,满足国家人造金红石行业标准中优级品标准。
     本课题从微波焙烧高钛渣的反应过程对微波高温管式反应器的性能的需求,根据电磁场理论,设计得到微波谐振腔的尺寸。通过分析计算结果,设计出矩形波导的内截面尺寸,以确保微波能以最佳的传输效率进入微波谐振腔。合理选择功率馈口,使得微波能够在微波谐振腔内形成多种模式分布,从而获得微波场强均匀、功率密度大的微波场。通过非相干功率合成技术,微波功率源由2只频率为2450MHz,功率为1.5kW的磁控管组成,并采用水循环冷却的方式。此外,该微波高温管式反应器还包含了阳极电源、灯丝电源、电气系统以及磁控管和电器元件的冷却系统。因此,微波高温管式反应器能够在高温条件和高功率密度下进行连续工作。选用低介电常数、低功率损耗、低热膨胀系数的微波专用陶瓷管,并采取多种保温材料保温。采用K型热电偶测量温度,并置于接近样品的位置。热电偶提供的反馈信号用于控制磁控管的功率,调节微波加热过程中的温度,防止过热现象。采用Solid edge三维设计软件对微波高温管式反应器的微波谐振腔、矩形波导、功率馈口及其附属零部件进行建模、优化设计、模拟装配。
     采用层次分析法和模糊综合评价法对微波高温管式反应器的生命周期进行了分析和评价。选择环境属性,资源属性,经济属性,性能属性和功能属性作为评价指标,系统地研究了评价指标对评价模型的影响。评价过程涉及到层次结构的建立,评价标准的建立,选择权重矩阵,两两对比矩阵的建立和模糊评价矩阵的建立,采用模糊数学方法和统计方法计算微波高温管式反应器的绿色度结果。结果表明研制的微波高温管式反应器具有很好的绿色度,满足绿色制造的目标,特别在能源消耗,处理时间和环境污染方面具有较好的效果。通过采用层次分析法和模糊分析法对微波高温管式反应器进行生命周期评价,能够提供了一种在较低的资源消耗和较少的环境污染下研制微波高温管式反应器的方法。
Titanium dioxide pigments are manufactured by the chloride or sulfate processes, in which natural rutile or synthetic rutile is used as raw materials. Since available resources of high grade natural rutile tend to diminish, to explore new method to produce synthetic rutile with low energy consumption and less environment pollution is necessary. Thus, producing synthetic rutile from abundantly available high titanium slag becomes a major alternative.
     Microwave heating has been widely used in research and industrial processes. Compared with conventional heating techniques, the advantage of using microwave heating is that microwave heating is both internal and volumetric heating. Therefore, microwave heating is very rapid, resulting in energy savings and shortening the processing time. Since microwave heating has a high efficiency to convert electricity energy to electromagnetic energy. Additional advantages include greater control of the microwave heating process, no direct contact between the heating source and heated materials and reduced equipment size, which can fulfil the mode of green and clean manufacturing.
     The work addresses preparation of a new method for high grade synthetic rutile using combined microwave heating and mineral processing technology. The new processing was basically in accordance with the structure and characteristic of high titanium slag from Yunnan Province. The thermal stability, crystal structures, microstructure, surface chemical functional groups and molecular structures of samples were characterized by thermogravimetry and differential thermal analysis (TG/DTA), X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared spectrometer (FT-IR) and Raman spectroscopy techniques, respectively. High titanium slag mainly contains iron titanium oxide, FeO, Al2O3, SiO2, MgO, MnO, and minor elements, such as S, P and C. It can be seen from XRD results that anatase TiO2and Fe3Ti2O10(anosovite-type of M3O5) were mainly crystalline compounds in high titanium slag. In addition, a minor amount of rutile TiO2was present. From the SEM-EDAX, the results indicated that the surface structure of primary particles with tighter and smoother surface morphology could be observed in the samples. And more fine cracks could be found on the surface from the SEM image. It has confirmed from FT-IR that the IR bands at493.3cm-1could be ascribed to the bending vibrations of Ti-O and Ti-O-Ti of the TiO2units. The Raman spectrum of the samples showed peaks at155.2,195.8,393.7,515.5and637.3cm-1which were directly attributable to anatase, Ti2O5, and Ti2O3. DTA curve analyses show the exothermic peaks at850.0℃, the thermal analysis results indicate that the anatase TiO2was irreversible conversion to the rutile TiO2in this temperature range. The transformation of anatase TiO2to rutile TiO2was influenced by several experimental conditions, such as temperature, particle size and synthetic method of dioxide.
     Microwave absorbing properties of high titanium slag were investigated using microwave cavity perturbation technique. By analyzing of the changing behavior and calculating the amplitude of voltage and the shift of frequency of the microwave spectrums, the microwave absorbing properties of samples were obtained. The temperature rise curve of high titanium slag in microwave heating process was acquired. Effects of particle size of high titanium slag and mixtures of high titanium slag with different mass fractions of V2O5on microwave absorbing properties were investigated systematically. The results show that high titanium slag has good microwave absorption property, and it can be heated effectively and efficiently in the microwave field. High frequency shift and low amplitude of voltage make high titanium slag an ideal microwave absorbent.180μm of particle size and10%mass fraction of V2O5were found to be the optimum conditions for microwave absorption, respectively.
     The effects of microwave heating temperature and holding time on the crystal phase transformation of TiO2, content of TiO2, sulfur content and carbon content were systematically investigated under microwave heating processing. With increasing microwave heating temperature and holding time, the content of TiO2, sulfur content and carbon content decreases, shorten processing time remarkably compared to conventional heating. It can be observed from XRD that the intensity of diffraction peak of the lattice planes (101),(111) and (211) of rutile TiO2were increased and the intensity of diffraction peak of anatase TiO2and Fe2Ti2O1o were decreased. With increasing microwave heating temperature and holding time, the content of TiO2, sulfur content and carbon content decreases, shorten processing time remarkably compared to conventional heating. The intensity of Raman vibrations bands of anatase TiO2at396.8,515.2and637.0cm-1decrease, the intensity of Raman vibrations bands of Ti3O5and the intensity of Raman vibrations bands of Ti2O3at153.2cm-1and197.2cm-1disappears, respectively. And the intensity of Raman vibrations bands of rutile TiO2at244.6,445.6and615.0cm-1increase, and the peaks individually redshifts to low-wave number after microwave irradiation. It can be observed from FT-IR that the most obvious change in the spectrum is that the absorption band the bending vibrations of H-O-H at1697.0cm-1disappears, and the bands of the bending vibrations of O-H at1089.6cm-1become barely visible, and the stretching vibrations of octahedral metal ion in the TiO2units at529.3cm-1individually blueshift to high-wave number. From the SEM image, the results indicated that microwave treated samples appears irregular with a complex acicular structure. The pores of samples surface can be opened through microwave irradiation, which lead to increased surface area. The impurity minerals such as Si, Al, Mg and Mn in the samples have been enriched into the gray granule. They were propitious to the minerals separation processing.
     Microwave heating temperature, microwave power, and time were the main three dominant factors selected as independent variables. Synthetic rutile content was selected as a dependent variable affected by these factors. Response surface methodology and central composite design were implemented to optimize the experimental conditions for preparing synthetic rutile from high titanium slag by microwave irradiation. By applying least squares method and multiple regression analysis on the experimental results, the second order polynomial equation was found to explain the dependent variable by considering the independent variable. The coefficient of determination (R2) of the model was obtained0.9691, and the value of the adjusted determination coefficient (adj.R2) was0.9382, which suggested that there were excellent correlations between the independent variables. The F-value of the lack-of-fit of3.47implies the lack-of-fit is significant relative to the pure error. In the present case, a very lower value of CV (0.45%) clearly showed a high degree of precision and a good deal of reliability of the experimental values. The optimum experimental conditions of microwave roasting high titanium slag obtained from solving nonlinear regression equation and analyzing response surface and contour. These optimal conditions were microwave temperature of936℃, microwave power of2.5kW, and holding time of48min. Only small deviations were found between the experimental values and the predicted values.
     In order to improve the quality of TiO2, the minerals separation processing has been proposed for removing the impurity minerals from the microwave roasted production. The effects of milling time, magnetic field strength and flotation reagent on titanium dioxide of microwave roasted samples. Milling time of60min, magnetic field electric current of5A, CMC inhibitor used in flotation separation of250g/t. hydroximic a cid catching agent used in flotation separation of300g/t, the titanium dioxide content of91.25%was obtained, while the synthetic rutile reaches the National Class I Standard.
     The requirements of the reaction behaviour of microwave high temperature tube reactor during the actual reaction of microwave roasting high titanium slag were studied in this article. According to the classical electromagnetic theory, the sizes of the microwave resonant cavity were designed. In order to make sure that microwave will efficiently transfer into the microwave resonant cavity, the cross-section size of the rectangular waveguide were obtained on the basis of an analysis of calculation results. We can adopt a reasonable choice for the power transmission, it would ensure that microwave were distributed in various patterns in the microwave resonant cavity and obtained a uniform and power microwave field. The microwave power supply for the microwave high temperature tube reactor was made of2magnetrons using the non-coherent power synthesis of power technology, which was cooled by water circulation, at2.45GHz frequency and1.5kW power. The microwave high temperature tube reactor consists of an anode power, a filament power, an electrical systems and a cooling system of the magnetron and the electrical components. Therefore, the microwave high temperature tube reactor can work continuously at high temperature conditions and high power density. Considering the integrated requirements of low dielectric constant, low power consumption and low heat expansion coefficient, the special microwave ceramic tube was selected with different thermal insulation material. The temperature was measured using a Type K thermocouple, placed at the closest proximity to the sample. The thermocouple provides feedback information to the control panel that controls the power to the magnetron, controlling the temperature of the sample during the microwave treatment process in order to prevent the sample from overheating. Modelling, optimization design and simulating assembly of microwave resonant cavity, rectangular waveguide, power transmission and it spare and accessory parts of the microwave high temperature tube reactor using Solid Edge3D design software.
     In this study, analytic hierarchy process and fuzzy comprehensive evaluation were implemented to the analyzed and assessed for the life cycle assessment of microwave high temperature tube furnace. The effects of the evaluation aspect, such as environmental impact, resource consumption, economy, capability and function, on the mathematical model were systematically investigated. The process involves constructing hierarchical structure, comparing pairwise comparison matrices, establishing assessment criteria, setting weight matrix and fuzzy assessment matrix, and then calculating green degree of microwave high temperature tube furnace by fuzzy mathematical method and statistical technique. The results show that microwave high temperature tube furnace has a good green degree, which can be fulfill with the aim of green manufacture, especially in energy consumption, processing time and environmental protection. Life cycle assessment of microwave high temperature tube furnace using analytic hierarchy process and fuzzy comprehensive evaluation was an easy and practical way to provide a mechanism for improving microwave high temperature tube furnace quality with low resource consumption and less environment pollution.
引文
[1]刘玉民.钾系亚熔盐法处理钛资源的应用基础研究[D],北京:中国科学院过程工程研究所博士学位论文,2007.
    [2]杨合.含钛高炉渣再资源化的一个启发性观点[D].沈阳:东北大学博士学位论文,2005.
    [3]薛天艳.氢氧化钠熔盐分解高钛渣制备二氧化钛清洁新工艺的研究[D].大连:大连理供大学博士学位论文,2009.
    [4]李文兵.富钛料制备及氯化工艺的基础研究[D].北京:中国科学院过程工科研究所博士学位论文,2004.
    [5]王明玉.含钛高炉熔渣吹炼过程及析出相的研究[D].沈阳:东北大学博士学位论文,2005.
    [6]陈朝华,刘长河.钛白粉生产及应用技术[M].化学工业出版社,2006.
    [7]莫畏,邓国珠.钛冶金[M].北京:冶金工业出版社,1998.
    [8]邓国珠,黄北卫,王雪飞.制取人造金红石工艺技术的新进展[J].钢铁钒钛,2004,3:44-50.
    [9]李大成,刘恒,周大利.钛冶炼工艺[M].化学工业出版社,2009.
    [10]Mohanty J. and Mishra P.. Direct determination of iron in titania slag leach liquor using thiocyanate[J]. Journal of Scientific & Industrial Research,2005, 64(10),741-743.
    [11]Li C., Liang B. and Wang H.Y.. Preparation of synthetic rutile by hydrochloric acid leaching of mechanically activated Panzhihua ilmenite[J]. Hydrometallurgy, 2008,91(1-4),121-129.
    [12]马勇.人造金红石生产路线的探讨[J].钛工业进展,2003,1:20-23.
    [13]李文兵.富钛料制备及氯化工艺的基础研究[D].北京:中国科学院过程工程研究所博士学位论文,2004.
    [14]刘玉民.钾系亚熔盐法处理钛资源的应用基础研究[D],北京:中国科学院过程工程研究所博士学位论文,2007.
    [15]张力.含钛渣中钛的选择性富集和长大行为[D],沈阳:东北大学博士学位论文.2002.
    [16]付念新.含钛高炉渣中钛组分选择性析出[D],沈阳:东北大学博士学位论文,1997.
    [17]孙康.钛提取冶金[M].北京:冶金工业出版社,2001.
    [18]李大纲.高炉渣中有价组分选择性析出与解离[D].沈阳:东北大学博士学位论文,2005.
    [19]杨绍利,盛继孚.钛铁矿熔炼钛渣与生铁技术[M].北京:冶金工业出版社,2006.
    [20]郭宇峰.钒钛磁铁矿固态还原强化及综合利用研究[D].长沙:中南大学博士学位论文,2007.
    [21]陈晋.微波氧化焙烧高钛渣制备人造金红石新工艺的研究[D].昆明:昆明理工大学硕士学位论文,2008.
    [22]Toromanoff I. and Habashi F.. Transformation of a low-grade titanium slag into synthetic rutile[J]. International Journal of Mineral Processing,1985,15(1-2), 65-81.
    [23]Goso X. and Kale A., Production of titanium metal powder by the HDH process[J]. Journal of the South African Institute of Mining and Metallurgy,2011, 111(3),203-210.
    [24]Zhao Y.Y., Xu H.R. and Zhu G.S.. Hydrothermal preparation of TiO2 films on titanium sponge substrate[J]. Journal of Inorganic Materials,2011,26(2).155-158.
    [25]Schwandt C., Alexander D.T.L. and Fray D.J.. The electro-deoxidation of porous titanium dioxide precursors in molten calcium chloride under cathodic potential control[J]. Electrochimica Acta,2009,54(14),3819-3829.
    [26]L, W. and Zeng T.. Preparation of TiO2 anatase nanocrystals by TiCl4 hydrolysis with additive H2SO4[J]. PloS one,2011,6(6), e21082.
    [27]Shang Y.M., Li J., Zhang P., Song Z.G., Li Y.Z. and Huang H.M.. Esterification and selective esterification in the presence of TiC 14[J]. Chemical Research in Chinese Universities,2007,23(6),669-673.
    [28]Xiao S.H., Jiang W.F., Luo K., Xia J.H. and Zhang L.. Structure and ferroelectric properties of barium titanate films synthesized by sol-gel method[J]. Materials Chemistry and Physics,2011,127(3),420-425.
    [29]Bai S.D., Guan F., Hu M., Yuan S.F., Guo J.P. and Liu D.S.. Mononuclear titanium compounds based on the silyl-linked bis (amidinate) ligand:synthesis, characterization and ethylene polymerization[J]. Dalton Transactions,2011,40(30), 7686-7688.
    [30]Kondoh K., Threrujirapapong T., Umeda J., Imai H. and Fugetsu B. Microstructural and mMechanical properties of titanium matrix composites reinforced with nano carbon materials via powder metallurgy process[J]. Materials Science Forum,2009,495-499.
    [31]Lahiri A.. Influence of ascorbate and oxalic acid for the removal of iron and alkali from alkali roasted ilmenite to produce synthetic rutile[J]. Industrial & Engineering Chemistry Research,2010,49(18),8847-8851.
    [32]Ling W., Xinhai L., Zhixing W., Huajun G., Xiaojuan W., Feixiang W., Jie F., Zhiguo W. and Lingjun L.. A novel process for producing synthetic rutile and LiFePO4 cathode material from ilmenite[J]. Journal of Alloys and Compounds,2010, 506(1):271-278.
    [33]Bradshaw S., Louw W., van der Merwe C., Reader H., Kingman S., Celuch M. and Kijewska W.. Techno-economic considerations in the commercial microwave processing of mineral ores[J]. Journal of Microwave Power & Electromagnetic Energy,2007,40(4):228-240.
    [34]Walkiewicz J.W., Kazonich G., McGill S.L.. Microwave Heating Characteristics of Selected Minerals and Compounds[J]. Minerals & Metallurgy Processing,1988,5(1):39-42.
    [35]Chen T.T., Dutrizac J.E., Haque K.E., Wyslouzil W., Kashyap S.. The relative transparency of minerals to microwave radiation[J]. Canadian Metallurgical Quarterly,1984,23(3):349-351.
    [36]彭金辉.刘纯鹏.微波场中矿物及其化合物的升温特性[J].中国有色金属学报.1997,7(3):50-51.
    [37]彭金辉.微波能技术[M].昆明:云南科技出版社,1998.
    [38]黄孟阳,彭金辉.雷鹰,黄铭.张世敏.微波场中钛精矿的温升行为及吸波特性[J].四川大学学报(工程科学版),2007,39(2):111-115.
    [39]金饮汉.戴树珊,黄卡玛.微波化学[M].北京:中国科学技术出版社,1999.
    [40]Yoshikawa N., Ishizuka E., Mashiko K., Chen Y. and Taniguchi S., Brief review on microwave (MW) heating, its application to iron & steel industry and to the relevant environmental techniques. ISIJ International,2007,47(4),523-527.
    [41]Parrent K.G., Colo G.. Apparatus for treatment of ore particles[P]. US Patent, 4887799,1989.
    [42]Ford J.D. and Pei D.C.T.. High temperature chemical processing via microwave absorption[J]. The Journal of Microwave Power,1967,2(2):61-64.
    [43]McGill S.L., Walkiewicz J.W. and Smyres G.A.. The effects of power level on the microwave heating of selected chemicals and minerals[C]. Materials Research Society proceedings,1988,124:247-253.
    [44]Kingman S.W. and Rowoson N.A.. Microwave treatment of minerals-a review[J]. Minerals Engineering,1998,11(11):1081-1087.
    [45]Al-Harahsheh M. and Kingman S.W.. Microwave-assisted leaching-a review[J]. Hydrometallurgy,2004,73:189-203.
    [46]Haque K.Z.. Microwave energy for mineral treatment process-a brief review[J]. International Journal of Mineral Processing.1999,57:1-24.
    [47]Jones D.A., Lelyveld T.P., Mavrofidis S.D., Kingman S.W. and Miles N.J.. Microwave heating applications in enviromnental engineering-a review[J]. Resources Conservation and Recycling,2002,34(2),75-90.
    [48]Metaxas A.C. and Meredith R.J.. Industrial Microwave Heating[M]. London: Peter Peregrinus.1983.
    [49]Hua Y.X. and Liu C.P.. Heating rate of minerals and compounds in microwave field[J]. Transactions of Non-Ferrous Metals Society of China.1996,6(1):35-40.
    [50]Amankwah R.K., Khan A.U., Pickles C.A. and Yen, W.T.. Improved grindability and gold liberation by microwave pretreatment of a free-milling gold ore[J]. Mineral Processing and Extractive Metallurgy,2005,114:30-36.
    [51]刘全军,熊燕琴.微波在铁矿石选择性磨细中的应用机理研究[J].云南冶金,1997,26(3):25-28.
    [52]刘全军,陈景河.微波助磨与微波助浸技术[M].北京:冶金工业出版社.2005.
    [53]Kingman S.W. and Rowson N.A.. The effect of microwave radiation on the magnetic properties of minerals[J]. Journal of Microwave Power and Electromagnetic Energy,2000,35(2):144-150.
    [54]Kingman S.W., Vorster W. and Rowson N.A.. The influence of mineralogy on microwave assisted grinding[J]. Minerals Engineering,2000,13(3):313-327.
    [55]范先锋,N.A.罗森.微波能在钛铁矿选矿中的应用[J].国外金属矿选矿1999,2:2-7.
    [56]Haque K.E. Microwave energy for mineral treatment processes-a brief review[J]. International Journal of Mineral Processing,1999,57(1):1-24.
    [57]Nanthakumar B., Pickles C.A. and Kelebek S.. Microwave pretreatment of a double refractory gold ore[J]. Minerals Engineering.2007,20(11):1109-1119.
    [58]魏明安.张锐敏.微波处理难浸微细粒包裹金的实验研究[J].矿冶,2001,1:74-77.
    [59]谷晋川,刘亚川,谢扩军,张允湘.难选冶金矿微波预处理研究[J].有色金属,2003,55(2):54-57.
    [60]Scott G.. Bradshaw S.M. and Eksteen J.J.. The effect of microwave pretreatment on the liberation of a copper carbonatite ore after milling[J], International Journal of Mineral Processing,2008,85(4):121-128.
    [61]Pan Y.K, Wang X.Z. and Liu X.D.. Modern dehydration technology[M]. Beijing:Chemical Industry Press.2007. (in Chinese)
    [62]Li Y.. Lei Y., Zhang L.B., Peng J.H. and Li C.L.. Microwave drying characteristics and kinetics of ilmenite[J]. Transactions of Nonferrous Metals Society of China,2011,21(1):202-207.
    [63]尚新华.使用煤通过微波加热还原铁矿[J].国外选矿快报,1998,3:13-16.
    [64]Pickles C.A.. Microwave drying of nickeliferous limonitic laterite ores [J]. Canadian Metallurgical Quarterly,2005,44(3):397-407.
    [65]李新冬,赵玲.微波技术应用于褐铁矿干燥脱水的实验研究[J].中国资源综台利用,2006,24(6):9-10.
    [66]彭金辉,郭胜惠,张世敏,朱艳丽.微波加热干燥钛精矿研究[J].昆明理工大学学报(理工版),2004,29(4):5-9.
    [67]朱艳丽,彭金辉,张世敏.范兴祥,张利波,黄孟阳.郭胜惠.闪锌矿的微波干燥规律研究[J].昆明理工大学学报(理工版),2006,31(2):29-33.
    [68]武文华,唐惠庆,黄务涤.微波干燥和焙烧球团矿[J].北京科技大学学报,1994,16(2):118-121.
    [69]秦文峰,彭金辉,樊希安,肖新志,袁茂强.微波辐射法干燥仲钼酸铵新工艺[J].中国钼业,2002,26(6):28-31.
    [70]范兴祥,彭金辉,张世敏,张利波,郭胜惠.微波辐射干燥单水氢氧化锂的研究[J].轻金属,2003,6:19-21.
    [71]林培喜,李晓明.微波加热干燥法用于硫酸铜中结晶水的测定[J].茂名学院学报,2003,13(3):22-24.
    [72]张世敏,彭金辉,范兴祥,郭胜惠,张利波,杨坤彬.微波辐射法干燥锡酸钠新工艺[J].有色矿冶,2004,20(2):34-36.
    [73]秦文峰,彭金辉,樊希安,向守义,杨晓青,袁茂强.微波煅烧铝酸铵制取高纯三氧化钼新工艺[J].新技术新工艺,2004,(4):42-44.
    [74]杨卜,彭金辉,汪云华,张世敏,范兴祥,郭胜惠.微波辐射煅烧法制取氧化锌新工艺[J].新技术新工艺,2005,12:47-48.
    [75]郭胜惠,彭金辉,范兴祥,张利波.微波煅烧碱式碳酸锌制取氧化锌[J].有色金属,2002,54(4):53-55.
    [76]杨卜,彭金辉,范兴祥,吕传涛,张世敏.微波辐射煅烧碱式碳酸镁制备轻质活性氧化镁[J].无机盐工业,2005,37(11):26-28.
    [77]樊希安,彭金辉,秦文峰,郭胜惠,张世敏.微波辐射Mg(OH)2制备轻质活性MgO新工艺[J].轻金属,2003,7:42-44.
    [78]郭宇峰,肖春梅,姜涛,邱冠周,黄柱成,董海刚.活化焙烧-酸浸法富集中低品位富钛料[J].中国有色金属学报,2005,9:1446-1451.
    [79]魏莉.屈战龙,朴慧京.微波焙烧预处理难浸金矿物[J].过程工程学报,2009,S1:56-60.
    [80]欧阳国强,张小云,田学达,李熠,谢森.微波焙烧对石煤提钒的影响[J].中国有色金属学报,2008,4:750-754.
    [81]Momchilova S. and Nikolova-Damyanova B.. Quantitative TLC and gas chromatography determination of the lipid composition of raw and microwaved roasted walnuts, hazelnuts, and almonds[J]. Journal of Liquid Chromatography & Related Technologies.2007,30(15):2267-2285.
    [82]Anjum F., Anwar F., Jamil A. and Iqbal M.. Microwave roasting effects on the physico-chemical composition and oxidative stability of sunflower seed oil[J]. Journal of the American Oil Chemists Society,2006,83(9):777-784.
    [83]Samouhos M., Hutcheon R. and Paspaharis L.. Microwave reduction of copper (Ⅱ) oxide and malachite concentrate[J]. Minerals Engineering,2011,24(8): 903-913.
    [84]de Castro E.R., Mourao M.B., Jermolovicius L.A., Takano C. and Senise J.T. Carbothermal reduction of iron ore applying microwave Energy[J]. Steel Research International,2011,83(2):131-138.
    [85]Standish N., Worner H.K. and Gupta G.. Temperature distribution in microwave heated iron ore-carbon composites[J]. Journal of Microwave Power and Electromagnetic Energy,1990.25(2):75-80.
    [86]Liu C.P.. Xu Y.S. and Hua Y.X.. Application of Microwave Radiation to Extractive Metallurgy[J]. Journal of Materials Science and Technology,1990, 6(2):121-124.
    [87]Hua Y.X.. Microwave-assisted carbothermic reduction of limonits[J]. Acts metallurgica sinica (English letters),1996,9(3):164-170.
    [88]黄孟阳,彭金辉.张世敏,孙艳,汪云华,黄铭,范兴祥.微波加热还原钛精矿制取富钛料新工艺[J].钢铁钒钛,2005,26(3):24-28.
    [89]黄盂阳,彭金辉,黄铭,张世敏,范兴祥,雷鹰.微波加热还原钛精矿制取富钛料扩大试验[J].有色金属(冶炼部分).2007,6:31-34.
    [90]张世敏,黄孟阳,彭金辉,黄铭.雷鹰,李雨,范兴祥.微波还原越南钛精矿制备初级富钛料新工艺研究[J].矿产综合利用,2007,3:17-20.
    [91]张世敏,彭金辉.黄孟阳.孙艳,张利波,范兴祥.郭胜惠.雷鹰.微波加热钛精矿含碳球团制取初级富钛料的研究[J].稀有金属,2006,30(2):78-81.
    [92]Standish N.. Worner H.K. and Obuchowski D.Y., Particle size effect in microwave heating of granular materials[J]. Powder Technology,1991,66(3): 225-230.
    [93]陈津,刘浏,曾加庆等.微波加热还原含碳铁矿分粉实验研究[J].钢铁,2000,6:1-5.
    [94]戴长虹,杨静漪,蔺玉胜.微波法合成SiC纳米微粉[J].青岛化工学院学报,1999,20(1):39-43.
    [95]李俊,罗柳娟,彭虎.微波碳热还原法制备氮化钒的研究和实践[J].铁合金,2005,3:23-25.
    [96]Che X., Su X., Chi R.A. and Yu J., Microwave assisted atmospheric acid leaching of nickel from laterite ore[J]. Rare Metals,2010,29(3):327-332.
    [97]Zhai X.J., Wu Q., Fu Y., Lin-zhi M.A., Fan C.L. and Li N.J., Leaching of nickel laterite ore assisted by microwave technique[J]. Transactions of Nonferrous Metals Society of China.2010,20:S77-S81.
    [98]Li W., Peng J.H., Zhang L.B., Zhang Z.B., Li L., Zhang S.M. and Guo S.H. Pilot-scale extraction of zinc from the spent catalyst of vinyl acetate synthesis by microwave irradiation[J]. Hydrometallurgy,2008,92(1-2):79-85.
    [99]Peng J.H., Liu C.P., Kinetics of leaching sphalerite with pyrolusite simultaneously by microwave irradiation[J]. Transactions of Nonferrous Metals Society of China,1997,7(3):152-154.
    [100]彭金辉,刘纯鹏.微波场中FeCl3溶液浸出闪锌矿动力学[J].中国有色金属学报,1992,2(1):47-49.
    [101]丁伟安.微波辐射加热在湿法冶金中的应用[J].有色金属(冶炼部分),2007,3:43-44.
    [102]Haque K.E.难处理金精矿的微波辐射预处理[A].北京:原子能出版社,1998.
    [103]Luo S.D., Yan M., Schaffer G.B. and Qian M. Sintering of Titanium in Vacuum by Microwave Radiation. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science,2011,42A(8):2466-2474.
    [104]Alexeff 1. and Meek T.T. The effect of electric field intensity on the microwave sintering of zirconia. Materials Letters,2011,65(14):2111-2113.
    [105]Sandoval M.L., Talou M.H., de Souto P.M., Kiminami R.H.G.A. and Camerucci M.A. Microwave sintering of cordierite precursor green bodies prepared by starch consolidation. Ceramics International,2011,37(4):1237-1243.
    [106]Bai Z., Xie C., Zhang S., Xu W. and Xu J. Microwave sintering of ZnO nanopowders and characterization for gas sensing. Materials Science and Engineering B-Advanced Functional Solid-State Materials,2011,176(2):181-186.
    [107]Saitou K. Microwave Sintering of Iron, Cobalt, Copper and Stainless Steel powder[J]. Scripta Materialia,2006,54:875-879.
    [108]Gedevanishvili S, Agrawal D, and Roy R. Microwave combuston synthesis and sintering of inter-meallics and alloys[J]. Journal of Materials Science Letters, 1999,18:665-668.
    [109]黄加伍,彭虎.粉末冶金Fe-Cu-C合金的微波烧结研究[J].矿冶工程,2005,10:77-79.
    [110]李俊.文俊翔,冷观武等.微波烧结高磁导率Mn-Zn铁氧体材料的研究[J].磁性材料及器件,2004,4:36-38.
    [111]彭元东,张兆辉,吴彬等.压制压力对微波烧结W-Ni-Fe高密度合金性能的影响[J].粉末冶金材料科学与工程,2007,3:156-159.
    [112]周健,程吉平,傅文斌.2450MHz/5kW改进的单模腔型微波烧结系统研制[J].武汉工业大学学报,1999,21(4):4-6.
    [113]Agrawal D., Cheng J., Seegopau P., et al. Grain growth control in microwave sintering of ultrafine WC-Co composite powder compacts[J]. Powder Metallurgy, 2000,43(1):15-16.
    [114]Agrawal D., Microwave sintering, brazing and melting of metallic materials[J]. Sohn International Symposium advanced processing of metals and materials,2006,183-192.
    [115]Li Y., Xu F., Hu X., Qu H., Miao H., Zhang Z. and Xiao T. In situ investigation of SiC powder's microwave sintering by SR-CT technique[J]. Science China-Technological Sciences,2011,54(6),1382-1388.
    [116]黄铭,彭金辉,王家强,张世敏,张利波,郭胜惠,夏洪应.微波与物质相互作用加热机理的理论研究[J].昆明理工大学学报(理工版),2005,30(6):15-17.
    [117]陈艳.白晨光,何宜柱,吉川日升,谷口尚司.高钛高炉渣在微波场中的加热行为[J].钢铁钒钛,2006,27(1):12-16.
    [118]周晓东.昆明地区钛铁矿的结构及微波介电特性[J].云南化工,1992,3:7-8.
    [119]彭金辉,刘纯鹏.微波场中矿物及其化合物的升温特性[J].中国有色金属学报,1997,7(3):50-51.
    [120]Samanli S.. A comparison of the results obtained from grinding in a stirred media mill lignite coal samples treated with microwave and untreated samples[J]. Fuel,2011,90(2):659-664.
    [121]Kaya E.. Comminution behaviour of microwave heated two sulphide copper ores[J]. Indian Journal of Chemical Technology,2010,17(6):455-461.
    [122]彭金辉,郭胜惠,张世敏,张世敏,朱艳丽.微波加热干燥钛精矿研究[J].昆明理工大学学报,2004,29(4):5-9.
    [123]Lei Y., Li Y., Peng J.H., Guo S.H., Li W., Zhang L.B. and Wan R.D., Carbothermic reduction of panzhihua oxidized ilmenite in a microwave field[J]. ISIJ International,2011.51(3):337-343.
    [124]Standish N. and Huang W.. Microwave application in carbothermic reduction of iron-ores. ISIJ International,1991,31(3):241-245.
    [125]Walkiewicz J.W.. Kazonich G. and McGill S.L.. Microwave heating characterictics of selected minerals and compounds[J]. Minerals and Metallurgical Processing,1988,28(2):39-42.
    [126]Kelly R.M. and Rowson N.A.. Microwave reduction of oxidised ilmenite concentrates[J]. Minerals Engineering,1995,8(11):1427-1438.
    [127]Peng J.H., Yang J.J., Huang M. and Huang M.Y.. Microwave-assisted reduction and leaching process of Ilmenite[J]. The 8th International Symposium on Antennas, Propagation and Em Theory, Proceedings,2008,1-3:371-374.
    [128]Krishnan K.H., Mohanty D.B. and Sharma K.D.. The effect of microwave irradiations on the leaching of zinc from bulk sulphide concentrates produced from Rampura-Agucha tailings[J]. Hydrometallurgy,2007,89(3-4):332-336.
    [129]Al-Harahsheh M. and Kingman S.. The influence of microwaves on the leaching of sphalerite in ferric chloride[J]. Chemical Engineering and Processing, 2007,46(10):883-888.
    [130]Silva M., Kyser K., Oates C. and Beauchemin D.. Microwave-assisted continuous leaching on-line with inductively coupled plasma mass spectrometry for exploration and environmental geochemistry[J]. Journal of Geochemical Exploration,2007,94(1-3):30-42.
    [131]徐程浩,刘代俊.高炉渣制取高钛渣的新工艺研究[J].四川化工,2005,8(5):7-9.
    [132]孙艳,彭金辉,黄孟阳,张世敏,汪云华,张利波,朱艳丽.微波选择性浸出制取高品质富钛料的研究[J].有色金属(冶炼部分),2006(3):29-31.
    [133]刘福萍,陆明.微波有机合成及反应器研究新进展[J].精细化工中间体,2004,2:1-4.
    [134]James C. R., Tinga W. R. and Voss Wag., Microwave Power Engineering[M]. New York:Academic Press,1968.
    [135]吴苏,白向钰,鹿安理,吴爱萍,张文雪.陶瓷材料微波加工用高场强单模谐振腔的研究[J].应用基础与工程科学学报,1998,1:43-47.
    [136]孙永志.杨鸿生.矩形波导谐振腔微波化学反应器的研究[J].电子学报,2006.9:1708-1710.
    [137]Kashyap S.C. and Wyslouzil W.. Metheds for improving heating uniformity of microwave ovens[J]. Journal of Microwave Power and Electromagnetic Energy, 1977,123.12(3):223-230.
    [138]Asmussen J., Lin H.H., Manring B. and Fritz R.. Single-mode or controlled multimede microwave cavity applicator for precision materials processing[J]. Review of Scientific Instruments,1987,588,58(8):1477-3486.
    [139]Ishil T.K., Yan Y.H. and Kipp R.J.. Improvement of microwave power ustribution by the use of the first order principle of geometri-cal optics for scientific microwave oven cavity[J]. Journal of Microwave Power and Electromagnetic Energy,1979,143,14(3):201-218.
    [140]Li W., Zhang L.B., Peng J.H., Li N., Zhang S.M. and Guo S.H.. Effects of microwave irradiation on the basic properties of woodceramics made from carbonized tobacco stems impregnated with phenolic resin[J]. Industrial Crops and Products,2008,28(2):143-154.
    [141]孙永志,杨鸿生.矩形波导谐振腔微波化学反应器的研究[J].电子学报,2006,34(9):1708-1710.
    [142]周健,程吉平.2450MHz/5kW改进的单模腔型微波烧结系统研制[J].武汉工业大学学报.1999,21(4):4-6.
    [143]黄铭.微波与颗粒物质相互作用的机理及应用研究[D].昆明:昆明理工大学博士学位论文.2006.
    [144]Janney M.A. and Kinmrey H.D.. Ceramic Powder science II[M]. Westerville, Ohio:American ceramic society,1988.
    [145]Apte S. and MacDonald W.D., Microwave Sintering Kilogram Batches of Silicon Nitride[J]. Microwaves III,1995,55-62.
    [146]易健宏,唐新文,罗述东,李丽娅,彭元东.微波烧结技术的进展及展望[J].粉末冶金技术,2003,21(6):351-354.
    [147]张世敏,彭金辉,张利波,范兴祥,郭胜惠.微波加热中试装置及硫酸铜的干燥[J].有色冶金,2003,55(2):40-42.
    [148]张利波,彭金辉,张世敏,范兴祥,郭胜惠.微波加热中试装置的研制及再生载金炭的实验[J].冶金设备,2002,5:35-36.
    [149]车磊,杨林,肖德满.多模腔双频微波烧结炉的设计[J].大连轻工业学院学报,2003,22(4):277-280.
    [150]马宁,杨林,刘智.微波高温烧结自动控制系统设计[J].大连轻工业学院学报,2006,25(1):131-134.
    [151]邹继兆,曾燮榕,熊信柏,梅成,唐汉玲,李龙.微波高温加热真空系统的研制[J].微波学报.2006,22(6):67-70.
    [152]彭金辉,陈菜,郭胜惠,陈晋,李军.微波高温管式反应器的研制与应用[J].压电与声光,2008,30(S2):20-22.
    [153]Beek W.J., Muttzall K.M.K. and Heuven van J.W.. Transport Phenomena[M].北京:化学工业出版社,2003.
    [154]张先棹.冶金传输原理[M].北京:冶金工业出版社,1988.
    [155]肖兴国,谢蕴国.冶金反应工程学[M].北京:冶金工业出版社,1989.
    [156]萧泽强.冶金中单元过程和现象的研究[M].北京:冶金工业出版社,2006.
    [157]高家锐.动量、热量、质量传输原理[M].重庆:重庆大学出版社.1987.
    [158]郭锴.化学反应工程(第二版)[M].北京:化学工业出版社,2008.
    [159]姜信真.化学反应工程学概要[M].西安:西北大学出版社,1985.
    [160]崔恩选.化学工艺学[M].北京:高等教育出版社,1985.
    [161]邹华生,钟理,伍饮,赖万东.传热传质过程设备设计[M].广州:华南理工大学出版社,2007.
    [162]王承阳.热能与动力工程基础[M].北京:冶金工业出版社,2010.
    [163]吉泽升,朱荣凯,李丹.传输原理[M].哈尔滨:哈尔滨工业大学出版社, 2002.
    [164]杨文熊.传输概论(传力传热和传质)[M].上海:上海交通大学出版社1988.
    [165]沈巧珍,杜建明.冶金传输原理[M].北京:冶金工业出版社,2006.
    [166]肖兴国,谢蕴国.冶金反应工程学基础[M].北京:冶金工业出版社1997.
    [167]萧泽强,朱苗勇.冶金过程数值模拟分析技术的应用[M].北京:冶金工业出版社.2006.
    [168]曲英,刘今.冶金反应工程学导论[M].北京:冶金工业出版社,1988.
    [169]沈颐身,李保卫,吴懋林.冶金传输原理基础[M].北京:冶金工业出版社,2003.
    [170]黄孟阳.高钙镁钛精矿制备高品质富钛料新工艺及理论研究[D].昆明:昆明理工大学博士学位论文,2006.
    [171]董海刚.高钙镁电炉钛渣制备优质人造金红石的研究[D].长沙:中南大学博十学位论文,2010.
    [172]YS/T 514.1-2009,高钛渣、金红石化学分析方法二氧化钛量的测定硫酸铁铵容量法[S].北京:中国标准出版社,2009.
    [173]袁伟.童津泓.纯Ti2O3中Ti3+含量的测定[J].陕西化工,1999,3:30-33.
    [174]YS/T 514.2-2009,高钛渣、金红石化学分析方法全铁量的测定重铬酸钾容量法[S].北京:中国标准出版社,2009.
    [175]Zhang Z.Y., Qu W.W., Peng J.H., Zhang L.B., Ma X.Y., Zhang Z.B. and Li W.. Comparison between microwave and conventional thermal reactivations of spent activated carbon generated from vinyl acetate synthesis[J]. Desalination, 2009,249(1):247-252.
    [176]Zhang Z.Y., Peng J.H.. Srinivasakannan C., Zhang Z.B., Zhang L.B. Fernandez Y. and Menendez J.A.. Leaching zinc from spent catalyst:Process optimization using response surface methodology[J]. Journal of Hazardous Materials,2010,176(1-3):1113-1117.
    [177]Li W.. Zhang L.B.. Peng J.H., Li N., Zhang S.M. and Guo S.H. Effects of microwave irradiation on the basic properties of woodceramics made from carbonized tobacco stems impregnated with phenolic resin[J]. Industrial Crops and Products,2008,28(2):143-154.
    [178]Zhang L.B., Li W., Peng J.H., Li N., Pu J.Z., Zhang S.M. and Guo S.H.. Raman spectroscopic investigation of the woodceramics derived from carbonized tobacco stems/phenolic resin composite[J]. Materials & Design,2008,29(10): 2066-2071.
    [179]Chen G., Chen J., Peng J. and Srinivasakannan C Dissociation of Ti2O3 from titania slag under mechanical activation[J]. Journal of Alloys and Compounds,2011,509(24):L244-L247.
    [180]Liu B.G., Peng J.H., Zhang L.B., Li W. and Zhou L.X.. Kinetics of non-isothermal decomposition of basic cobalt carbonate[J]. Canadian Journal of Chemical Engineering,2010.88(5).777-782.
    [181]张力,李光强,娄太平,隋智通.高钛渣中钛组分的选择性富集与长大[J].金属学报,2002,4:400-402.
    [182]李辽沙.五元渣(CMSTA)中钛选择性富集的基础研究[D].沈阳:东北大学博士学位论文,2001.
    [183]黄孟阳,彭金辉,张世敏,孙艳,汪云华.黄铭,范兴祥.微波加热还原高钛渣制取富钛料新工艺[J].钢铁钒钛,2005,26(3):24-28.
    [184]Zhang Y.J., Qi T. and Zhang Y.. A novel preparation of titanium dioxide from titanium slag[J]. Hydrometallurgy,2009,96(1-2):52-56.
    [185]Samal S.. Mohapatra B.K., Mukherjee P.S. and Chatterjee S.K., Integrated XRD, EPMA and XRF study of ilmenite and titania slag used in pigment production[J]. Journal of Alloys and Compounds.2009,474(1-2):484-489.
    [186]李玉山.TiO2/SiO2纳米粉体的相变及其红外性能[J].河北师范大学学报(自然科学版),2009,33(1):55-57.
    [187]Hu Y., Tsai H.L. and Huang C.L.. Phase transformation of precipitated TiO2 nanoparticles[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2003,344(1-2):209-214.
    [188]Bishop D. and Calka A.. Phase transformations in ilmenite induced by electric discharge assisted mechanical milling[J]. Journal of Alloys and Compounds,2009,469(1-2):380-385.
    [189]邓国珠,陈霞.钛渣的氧化过程[J].钢铁钒钛,1988,2:41-48.
    [190]Li C., Liang B., Song H., Xu J.Q. and Wang X.Q.. Preparation of porous rutile titania from ilmenite by mechanical activation and subsequent sulfuric acid Ieaching[J]. Microporous and Mesoporous Materials.2008,115(3):293-300.
    [191]Li C. and Liang B.. Study on the mechanochemical oxidation of ilmenite[J]. Journal of Alloys and Compounds,2008,459(1-2):354-361.
    [192]Lasheen T.A.. Soda ash roasting of titania slag product from Rosetta ilmenite[J]. Hydrometallurgy.2008.93(3-4):124-128.
    [193]Dondi M.. Cruciani G., Balboni E., Guarini G. and Zanelli C Titania slag as a ceramic pigment[J]. Dyes and Pigments,2008,77(3):608-613.
    [194]Aslan N.. Application of response surface methodology and central composite rotatable design for modeling and optimization of a multi-gravity separator for chromite concentration[J]. Powder Technology,2008,185:80-86.
    [195]Hu Z.Y., Cai M. and Liang H.H.. Desirability function approach for the optimization of microwave-assisted extraction of saikosaponins from Radix Bupleuri[J], Separation and Purification Technology,2008.61:266-275.
    [196]Liu J., Wen S., Liu D., Lv M. and Liu L.. Response surface methodology for optimization of copper leaching from a low-grade flotation middling[J]. Minerals & Metallurgical Processing,2011,28(3):139-145.
    [197]Natarajan U., Periyanan P.R. and Yang S.H.. Multiple-response optimization for micro-endmilling process using response surface methodology[J]. International Journal of Advanced Manufacturing Technology,2011.56(1-4): 177-185.
    [198]Elsayed K. and Lacor C Modeling, analysis and optimization of aircyclones using artificial neural network, response surface methodology and CFD simulation approaches [J]. Powder Technology.2011,212(1):115-133.
    [199]Rashid U., Anwar F., Ashraf M., Saleem M. and Yusup S.. Application of response surface methodology for optimizing transesterification of Moringa oleifera oil:Biodiesel production[J]. Energy Conversion and Management,2011, 52(8-9):3034-3042.
    [200]Chakraborty R., Bera M., Mukhopadhyay P. and Bhattacharya P.. Prediction of optimal conditions of infrared assisted freeze-drying of aloe vera (Aloe barbadensis) using response surface methodology[J]. Separation and Purification Technology,2011,80(2):375-384.
    [201]Dutta S., Bhattacharyya A., Ganguly A., Gupta S. and Basu S.. Application of Response Surface Methodology for preparation of low-cost adsorbent from citrus fruit peel and for removal of Methylene Blue[J]. Desalination,2011, 275(1-3):26-36.
    [202]Chen G., Chen J., Peng J.H., Zhang S.M., Huang M.Y. and Lei Y.. Experimental investigation on high temperature roasting of high titanium slags[J], Light metal, 2008,17:46-48. (in Chinese)
    [203]Chen G., Xiong K., Peng J.H. and Chen J.. Optimization of combined mechanical activation-roasting parameters of titania slag using response surface methodology[J]. Advanced Powder Technology.2010,21(3):331-335.
    [204]Guo W.L. and Wang X.K.. Formation of the rutile TiO2 under ultrasonic irradiation[J]. Journal of Materials Science,2004,39(9):3265-3266.
    [205]de Villiers J.P.R., Verryn S.M.C. and Fernandes M.A.. Disintegration in high-grade titania slags:low temperature oxidation reactions of ferro-pseudobrookite[J]. Transactions of the Institution of Mining and Metallurgy Section C-Mineral Processing and Extractive Metallurgy,2004,113(2):66-74.
    [206]Liu B.G., Peng J.H., Zhang L.B., Srinivasakannan C., Huang M., Zhang Z.B. and Guo S.H.. Microwave absorbing characteristics and temperature increasing behavior of basic cobalt carbonate in microwave field[J]. Journal of Central South University of Technology,2010,17(6):1211-1215.
    [207]Huang M., Peng J.H., Yang J.J. and Wang J.Q.. Microwave cavity perturbation technique for measuring the moisture content of sulphide minerals concentrates[J]. Minerals Engineering,2007,1(1):92-94
    [208]Carter R.G.. Accuracy of microwave cavity perturbation measurements[J]. Microwave theory and techniques, IEEE Transactions on Microwave Theory and Techniques,2001,49(5):918-923
    [209]Liu B.G., Peng J.H., Zhang L.B., Srinivasakannan C., Huang M., Zhang Z.B. and Guo S.H.. Coupling and absorbing behavior of microwave irradiation on the Co(C2O4)-2H2O:Co3O4 system[J]. Journal of the Taiwan Institute of Chemical Engineers,2010,42(1),92-96.
    [210]Guo S.H., Li W., Peng J.H., Niu H., Huang M.Y., Zhang L.B., Zhang S.M. and Huang M.. Microwave-absorbing characteristics of mixtures of different carbonaceous reducing agents and oxidized Ilmenite[J]. International Journal of Mineral Processing,2009.93(3-4):289-293.
    [211]Xia H.Y.. Peng J.H., Niu H., Huang M.Y.. Zhang Z.Y., Zhang Z.B. and Huang M.. Non-isothermal microwave leaching kinetics and absorption characteristics of primary titanium-rich materials[J]. Transactions of Nonferrous Metals Society of China,2010,20(4):721-726.
    [212]黄铭,彭金辉,王家强.王家强.张世敏,张利波,郭胜惠.夏洪应.微波与物质相互作用加热机理的理论研究[J].昆明理工大学学报(理工版),2005,30(6):15-17.
    [213]Zhang L.B., Chen G., Peng J.H., Chen J., Guo S.H. and Duan X.H. Microwave absorbing properties of high titanium slag[J]. Journal of Central South University of Technology,2009.16(4):588-593.
    [214]Yu X.F., Wu N.Z., Xie Y.C. and Tang Y.Q.. The monolayer dispersion of V2O5 and its influence on the anatase-rutile transformation[J]. Journal of Materials Science Letters,2001,20(4):319-321.
    [215]Haber J. and Nowak P.. A catalysis related electrochemical study of the V2O5/TiO2(rutile) system[J]. Langmuir,1995,11(3):1024-1032.
    [216]Duan X.H., Srinivasakannan C., Peng J.H., Zhang L.B. and Zhang Z.Y.. Preparation of activated carbon from Jatropha hull with microwave heating: Optimization using response surface methodology[J]. Fuel Processing Technology, 2011.92(3):394-400.
    [217]Liu B.G., Peng J.H., Huang D.F., Zhang L.B., Hu J.M., Zhuang Z.B., Kong D.C., Guo S.H., Li C.X., Zhang S.M. and Xiao S.H.. Temperature rising characteristics of ammonium diurante in microwave fields[J]. Nuclear Engineering and Design,2010,240(10):2710-2713.
    [218]Peng J.H., Binner J. and Bradshaw S.. Microwave initiated self-propagating high temperature synthesis of materials[J]. Materials Science and Technology, 2002,18(12),1419-1427.
    [219]Ma S.J., Zhou X.W., Su X.J., Mo W., Yang J.L. and Liu P.. A new practical method to determine the microwave energy absorption ability of materials[J]. Minerals Engineering,2009,22(13):1154-1159.
    [220]陈晋,陈菜,彭金辉,张世敏,黄孟阳,雷鹰.高温焙烧高钛渣工艺的实验研究[J].轻金属,2009,(2):46-48.
    [221]曲彦平,杜鹤桂.MnO高钛渣的脱硫能力[J].东北大学学报(自然科学版),1996,17(6):602-605.
    [222]鄢毓璋,兰洪.高炉低钛渣脱硫的动力学研究[J].金属学报,1991,27(4):224-227.
    [223]Mahmoud M.H.H., Afifi A.A.I. and Ibrahim I.A.. Reductive leaching of ilmenite ore in hydrochloric acid for preparation of synthetic rutile[J]. Hydrometallurgy,2004,73(1-2):99-109.
    [224]Guo W.L. and Wang X.K., Formation of the rutile TiO2 under ultrasonic irradiation[J]. Journal of Materials Science,2004,39(9):3265-3266.
    [225]闵乃本.晶体生长的物理基础[M].上海:上海科学技术出版社,1982.
    [226]Borkar S.A. and Dharwadkar S.R.. Effect of microwave processing on polymorphic transformation of TiO2[J]. Ceramics International,2004,30(4): 509-514.
    [227]Pistorius P.C. and Coetzee C Physicochemical aspects of titanium slag production and solidification[J]. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science,2003,34(5):581-588.
    [228]Bessinger D., Geldenhuis J.M.A., Pistorius P.C., Mulaba A. and Hearne G.. The decrepitation of solidified high titania slags[J]. Journal of Non-Crystalline Solids.2001.282(1):132-142.
    [229]Grey I.E., Cranswick L.M.D., Li C., White T.J. and Bursill L.A.. New M3O5-anatase intergrowth structures formed during low-temperature oxidation of anosovite[J]. Journal of Solid State Chemistry,2000,150(1):128-138.
    [230]Pistorius P.C., The relationship between FeO and Ti2O3 in ilmenite smelter slags[J]. Scandinavian Journal of Metallurgy,2002,31(2):120-125.
    [231]Zhang R.B. and Gao L.. Effect of peptization on phase transformation of TiO2 nanoparticles[J]. Materials Research Bulletin,2001,36(11),1957-1965.
    [232]Welham N.J. and Williams J.S.. Carbothermic reduction of ilmenite (FeTiO3) and rutile(TiO2)[J]. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science,1999,30(6):1075-1081.
    [233]Suresh C., Biju V., Mukundan P. and Warrier K.G.K.. Anatase to rutile transformation in sol-gel titania by modification of precursor[J]. Polyhedron, 1998,17(18):3131-3135.
    [234]Gennari F.C. and Pasquevich D.M.. Kinetics of the anatase rutile transformation in TiO2 in the presence of Fe2O3[J]. Journal of Materials Science, 1998,33(6):1571-1578.
    [235]Galgali R.K., Ray H.S. and Chakrabarti A.K.. A study on carbothermic reduction of ilmenite ore in a plasma reactor[J]. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science,1998,29(6): 1175-1180.
    [236]Toromanoff I. and Habashi F.. The composition of a titanium slag from sorel[J]. Journal of the Less-Common Metals,1984,97(2):317-329.
    [237]Talebi A., Norli I., Alkarkhi A.F.M. and Teng T.T.. Optimization of coagulation process for landfill leachate pre-treatment using response surface methodology (RSM)[J]. Journal of Sustainable Development,2009,2(2):159-167.
    [238]Nyam K.L., Tan C.P., Lai O.M., Long K. and Man Y.B.C.. Enzyme-Assisted Aqueous Extraction of Kalahari Melon Seed Oil:Optimization Using Response Surface Methodology[J]. Journal of the American Oil Chemists Society,2009. 86(12):1235-1240.
    [239]Lim P.. Optimization of the rough cutting factors of impeller with five-axis machine using response surface methodology[J]. International Journal of Advanced Manufacturing Technology.2009.45(7-8):821-829.
    [240]Habib S.S.. Study of the parameters in electrical discharge machining through response surface methodology approach[J]. Applied Mathematical Modelling,2009,33(12):4397-4407.
    [241]El-Tayeb N.S.M., Yap T.C., Venkatesh V.C. and Brevern P.V.. Modeling of cryogenic frictional behaviour of titanium alloys using response surface methodology approach[J]. Materials & Design,2009.30(10):4023-4034.
    [242]Elavarasan P., Kondamudi K. and Upadhyayula S.. Statistical optimization of process variables in batch alkylation of p-cresol with tert-butyl alcohol using ionic liquid catalyst by response surface methodology[J]. Chemical Engineering Journal,2009,155(1-2):355-360.
    [243]Zheng X., Wang X., Lan Y., Shi J., Xue S.J. and Liu C.. Application of response surface methodology to optimize microwave-assisted extraction of silymarin from milk thistle seeds[J]. Separation and Purification Technology, 2009,70(1):34-40.
    [244]Krishnamoorthy A., Boopathy S.R. and Palanikumar K.. Delamination Analysis in Drilling of CFRP Composites Using Response Surface Methodology[J]. Journal of Composite Materials,2009.43(24):2885-2902.
    [245]Chen G., Peng J.H., Chen J., Zhang S.M.. Response surface methodology applied to optimize the experimental conditions for preparing synthetic rutile by microwave irradiation[J]. High Temperature Materials and Processes,2009,28(3): 165-174.
    [246]郭宇峰,肖春梅,姜涛,邱冠周,黄柱成,董海刚.活化焙烧-酸浸法富集中低品位富钛料[J].中国有色金属学报,2002,4:1146-1451.
    [247]Chachula F., Liu Q., Upgrading a rutile concent rate produced from athabasca oil sands tailings[J]. Fuel,2003,82(8):929-942.
    [248]王春秀,戴惠新.微细粒嵌布金红石矿磨矿工艺的研究[J],广东有色金属学报,2001,11(2):88-91.
    [249]向发柱,何平波,陈荩.脉动高梯度磁分离磁黄铁矿研究[J],中南工业大学学报,1997,28(1):21-24.
    [250]刘树贻.磁电选矿学[M],长沙:中南工业大学出版社,1994.
    [251]向发柱,何平波,陈荩.脉动高梯度磁分离磁黄铁矿研究[J],中南工业大学学报,1997,28(1):21-24.
    [252]任爱军,赵希兵.山西某金红石矿选矿试验研究[J],有色金属(选矿部分),2008,2:15-19.
    [253]梁经冬,黄淦祥.浮选理论与选冶实践[M].北京:冶金工业出版社,1995.
    [254]朱建光,朱一民.2010年浮选药剂的进展[J],有色金属(选矿部分),2011,3:54-63.
    [255]Jiang Y.R., Yin Z.G., Yi Y.L. and Zhou X.H.. Synthesis and collecting properties of novel carboxyl hydroxamic acids for diaspore and aluminosilicate minerals[J]. Minerals Engineering,2010,23:830-832.
    [256]未玉霜,朱建光.浮选药剂的化学原理(修订版)[M].北京:中南大学出版社,1996.
    [257]王剑军,劳晓峰.一种含羟基烷义双瞵酸钛铁矿捕收剂的合成及浮选性能研究[J].矿产综合利用,2010,4:24-26.
    [258]朱建光.浮选金红石用的捕收剂和调整剂[J],国外金属矿选矿,2008,2:3-8.
    [259]罗会龙,彭金辉,张利波,郭胜惠,刘秉国.高温微波反应器工业化应用部分关键问题分析[J].现代化工,2009,5:76-79.
    [260]邹继兆,曾燮榕,熊信柏,梅成,唐汉玲,李龙.微波高温加热真空系统的研制[J],微波学报,2006,22(6):67-70.
    [261]Ling C., Kuang G.L. and Liu F.K.. Design of High-power Microwave Waveguide Divider[J]. Plasma Science & Technology,2001.5:985-990.
    [262]李晓静,张思凯,于盛旺.唐伟忠,吕反修.微波等离子化学气相沉积金刚石膜新型微波谐振腔设计[J],功能材料,2010,41(11):1963-1965.
    [263]孙永志,杨鸿生.矩形波导谐振腔微波化学反应器的研究[J],电子学报,2006,34(9):1708-1710.
    [264]赵春晖,张朝柱.微波技术[M].北京:高等教育出版社,2007.
    [265]周希朗.微波技术与天线[M].南京:东南大学出版社,2009.
    [266]沈致远.微波技术[M].北京:国防工业出版社,1980.
    [267]冯恩信.电磁场与电磁波[M].西安:西安交通大学出版社,2005.
    [268]Bykov Y.V., Rybakov K.I. and Semenov V.E.. High-temperature microwave processing of materials[J], Journal of Physics D:Applied Physics,2001.34: R55-R77.
    [269]刘繁,汪建华.TE103单模谐振腔的计算模拟及优化[J],武汉工程大学学报.2009,3:56-59.
    [270]吴正娴.微波原理[M].武汉:武汉大学出版社,1995:178-190.
    [271]顾继慧.微波技术[M].北京:科学出版社,2004.
    [272]傅文斌.微波技术与天线[M].北京:机械工业出版社,2007.
    [273]陈孟尧.电磁场与微波技术[M].北京:高等教育出版社,1989.
    [274]彭沛夫.微波技术与实验[M].北京:清华大学出版社,2007.
    [275]孙道礼.微波技术[M].哈尔滨:哈尔滨工业大学出版社,1989.
    [276]阎润卿,李英慧.微波技术基础[M].北京:北京理工大学出版社,1997.
    [277]牛忠霞,雷雪,张德伟.微波技术及应用[M].北京:国防工业出版社,2005.
    [278]潘仲英.电磁波、天线与电波传播[M].北京:机械工业出版社,2003.
    [279]李绪益.电磁场与微波技术[M].广州:华南理工大学出版社,1999.
    [280]廖承恩.微波技术基础[M].西安:西安电子科技大学出版社,1994.
    [281]廖承恩.微波技术基础[M].北京:国防工业出版社,1984.
    [282]陈镇国.微波技术基础与应用[M].北京:北京邮电大学出版社,1996.
    [283]蔡杰,张留琬,吴召平,王效东,郭景坤,TE103单模谐振腔品质因数Q值的测量[J].中国科学院研究生院学报,1995,2:119-125.
    [284]彭金辉,陈菜,郭胜惠,张利波.张泽彪,张世敏,李军,支晓洁,一种可拆卸的多模微波谐振腔[P].中国实用新型专利,2010,CN201533423U.
    [285]陈为怀,李玉梅.微波振荡源[M].北京:人民邮电出版社,1984.
    [286]电子管设计手册编辑委员会.磁控管设计手册[M].北京:新华书店北京发行所,1979.
    [287]杨克俊.电磁兼容原理与设计技术[M].北京:人民邮电出版社,2004.
    [288]Gray P.R. and Meyer R.G.. Analog and Design of Analag Integrated Circuits[M].3rd. New York:John Wiley&Sons.1993.
    [289]康华光.陈大钦.电子技术基础[M].第4版.北京:高等教育出版社,1999.
    [290]姬宪法,张扬.高精度磁控管加热系统的设计与实现[J].电光与控制,2006,29(1):125-127.
    [291]彭金辉,陈菜,郭胜惠,张利波,张泽彪,张世敏,一种小功率连续微波磁控管阳极冷却水套[P].中国实用新型专利,2010,CN201570473U.
    [292]彭金辉,陈菜,郭胜惠,张利波,张泽彪,张世敏,李军,支晓洁,一种带冷却装置的微波矩形波导[P].中国实用新型专利,2010,CN201733474U.
    [293]北京邮电学院微波专业.微波技术基础[M].第1版.北京:人民邮电出版社,1980.
    [294]杨克俊.电磁兼容原理与设计技术[M].第1版.北京:人民邮电出版社,2004.
    [295]路宏敏,工程电磁兼容[M].第1版.西安:西安电子科技大学出版社,2003.
    [296]彭金辉,支晓洁,郭胜惠,孟彬,张利波,张世敏,陈菓,李军.一种微波冶金透波陶瓷材料及其制备方法[P],公开号:CN 200910095114.8.
    [297]郭胜惠.微波热处理制备部分稳定氧化锆新技术开发及扩大试验研究[D].昆明理工大学博士学位论文,2010.
    [298]彭金辉,陈菜,郭胜惠,张利波,张泽彪,张世敏,李军,支晓洁,一种带观察窗的微波管式炉的炉门结构[P].中国实用新型专利,2010,CN201463578U.
    [299]彭金辉,陈菓,郭胜惠,张利波,张泽彪,张世敏,保护气体微波管式炉的反应腔[P].中国实用新型专利,2010,CN201565296U.
    [300]张兆锋.微波炉用磁控管失效机理的探讨[C].第十二届微波能会议论文集,2005,10:66-68.
    [301]Bowman R.A.. A probe for measuring temperature in radio-frequency-heated material[J]. IEEE Treansaction on Microwave Theory Techniques,1976,21(4): 24-28.
    [302]刘飞,曹华军,何乃军.绿色制造的研究现状与发展趋势[J].机械工程学报,2000,2:105-110.
    [303]Chen G., Chen J., Peng. J.H. and Wan R.D.. Green evaluation of microwave-assisted leaching process of high titanium slag on life cycle assessment[J]. Transactions of Nonferrous Metals Society of China,2010.20: S198-S204.
    [304]刘光复,刘志峰,李刚.绿色设计与绿色制造[M].北京:机械工业出版社,1999.
    [305]李东波,唐敦兵,徐平.面向产品生命周期的价值分析和模糊综合评价[J].南京理工大学学报,2000,24(3):268-272.
    [306]王安民,杨晓,周津慧.制造系统的生命周期价值评价模型[J].系统工程与电子技术,2007,29(12):2077-2080.
    [307]Wang Q., Xu J., Fu T. and Li G.M.. A Fuzzy Analytic Hierarchy Process Application in comprehensive evaluation of artificial landscape water health[C]. 2009 3rd International Conference on Bioinformatics and Biomedical Engineering, 2009,1-11:5697-5700.
    [308]Johns L.S., Eyring G., Weinberg M., Jensen D., OTA J.R.. Green products by design:choice for a cleaner environment[M]. Congress of the United States Office of Technology Assessment,1993.
    [309]赵焕臣.层次分析法[M].北京:科学出版社,1986.
    [310]荩垆.实用模糊数学[M].北京:科技文献出版社,1989.
    [31]任善强.数学模型[M].重庆:重庆大学出版社,1983.
    [312]王秀伦,孙丽.全生命周期工艺数字化系统功能的研究[J].大连铁道学院学报,2002,23(2):28-32.
    [313]Zhang N., Ye H. and Liu Y.. Decision support for choosing optimal electromagnetic loop circuit opening scheme based on analytic hierarchy process and multi-level fuzzy comprehensive evaluation[J]. Engineering Intelligent Systems for Electrical Engineering and Communications,2008,16(4):183-191.
    [314]Zhang H.C., Kuo T.C. and Lu H.T.. Environmentally conscious design and manufacturing:A state-of-art survey[J]. Journal of Manufacturing System,1997, 16(5):352-371.
    [315]Gu Y.J., Chen, K.L. and Yang K.. Fuzzy comprehensive evaluation method based on analytic hierarchy process for falt risk analysis of power plant equipment[C]. Fifth International Conference on Fuzzy Systems and Knowledge Discovery,2008.3:443-448.
    [316]赵焕臣.层次分析法[M].北京:科学出版社,1986.
    [317]Yu T.. Zhou J., Zhao K., Wang W. and Wang W.. Study on project experts' evaluation based on analytic hierarchy process and fuzzy comprehensive evaluation[C]. International Conference on Intelligent Computation Technology and Automation,2008,1,941-945.
    [318]王丽颖,杨志刚,王秀伦.工艺数字化系统中的工序质量管理[J].计算机集成制造系统,2003,9(6):496-499.
    [319]戴均陶.现代管理评价技术[M].北京:机械工业出版社,1994.
    [320]杨伦标,高英仪.模糊数学原理及应用[M].广州:华南理工大学出版社1998:121-126.
    [321]任善强.数学模型[M].重庆:重庆大学出版社,1983.
    [322]汪培庄.模糊集合理论及其应用[M].上海:上海科学技术出版社,1983.
    [323]陈菜,陈晋,彭金辉,郭胜惠.模糊综合评价法在管式加热炉设计方案中的应用[J].现代制造工程,2008,5:16-18.
    [324]Chen G., Chen J. and Peng J.H.. Life cycle assessment of microwave tube furnace using analytic hierarchy process and fuzzy comprehensive evaluation. International Journal of Materials and Structural Integrity,2011,5(2/3):252-261.
    [325]陈菜,陈晋,彭金辉,郭胜惠,李军.微波处理高钛渣工艺的绿色性评价.金属矿山.2009,(2):163-167.
    [326]陈晋,陈菓,彭金辉,张世敏,黄孟阳.雷鹰.微波还原钛精矿工艺的绿色性评价模型及应用案例.轻金属.2008,(8):51-55.
    [327]陈菜,陈晋,彭金辉,郭胜惠,李军.基于生命周期的微波高温反应器绿色性评价.压电与声光,2008,30(S2):78-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700