熔盐法制备氧化镁及含镁尖晶石粉体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
熔盐合成法是近代发展起来的一种无机材料合成方法。它采用一种或几种低熔点的盐类作为反应介质,在高温熔融盐中完成合成反应,然后采用合适的溶剂将盐类溶解,经过滤、洗涤得到合成产物。由于熔盐合成法具有工艺简单、成本低廉、合成温度低、保温时间短、合成产物的化学成分稳定均匀等优点,因而在合成高熔点氧化物粉体和电子陶瓷粉体及其它功能粉体材料等领域广泛应用。
     本论文在LiCl熔盐介质中合成了氧化镁粉体,研究了原料种类、反应温度和保温时间、熔盐的相对含量对氧化镁产物性能的影响,研究发现:熔盐介质中,采用MgCl2、CaCO3原料合成氧化镁粉体,Mg2+离子与Ca2+离子发生置换反应,生成碳酸镁等中间产物,其结晶程度比天然菱镁矿高,分解反应的反应级数接近1,平均表观活化能Ea=221.23kJ/mol;采用MgCl2、CaCO3原料和MgCl2、CaO原料制备的氧化镁粉体,大小分布较均匀,主要由近似球状形貌的颗粒组成,采用MgCl2·6H2O、CaCO3原料和MgCl2、MgCa(CO3)2原料制备的氧化镁粉体形貌不一,大小分布不均匀,四种原料中,MgCl2·6H2O、CaCO3原料制备的氧化镁活性相对较好;反应温度的升高和保温时间的延长有利于氧化镁晶体的生长,氧化镁产物晶胞体积变小,真密度增大,活性降低;增大LiCl的加入量有利于氧化镁晶体的生长,氧化镁产物的结晶度增大,平均粒径增大,活性降低。
     将熔盐介质中合成的氧化镁水解,通过加入不同表面活性剂控制氢氧化镁前驱体的形貌,从而制备不同形貌的氧化镁粉体,研究了不同形貌氧化镁粉体对硅钢坯体性能的影响,结果表明:MgCl2·6H2O、CaCO3、LiCl反应体系热处理后,经PEG溶液浸泡得到纤维状氢氧化镁,经EDTA-PEG溶液浸泡得到四面体形貌氢氧化镁,纤维状的氢氧化镁分解得到链状形貌氧化镁,四面体形貌的氢氧化镁分解为氧化镁后仍保持四面体形貌;MgCl2、CaCO3、LiCl反应体系热处理后,经PEG溶液浸泡得到纤维状氢氧化镁,经EDTA-PEG溶液浸泡,得到片状形貌氢氧化镁,纤维状的氢氧化镁分解得到多孔棒状形貌氧化镁,片状形貌氢氧化镁分解为氧化镁后仍保持片状形貌。分别将四种不同形貌的氧化镁粉体喷涂于硅钢坯体表面,经退火处理后,通过对硅钢坯体涂层的显微结构和硅钢坯体磁性性能检测发现,多孔棒状形貌氧化镁喷涂的硅钢坯体质量较好,四面体形貌氧化镁喷涂的硅钢坯体质量较差。
     以熔盐法制备氧化镁为基础,在熔盐介质中合成了镁铬尖晶石和镁铝尖晶石,研究了原料和熔盐种类、反应温度和保温时间对镁铬尖晶石和镁铝尖晶石形成与生长的影响。研究发现:原料和熔盐种类对镁铬尖晶石形成与生长影响显著,选用NaCl-KCl复合熔盐作为反应介质,分别采用MgCl2、MgCl2·6H20和CaCO3原料替代MgO原料与Cr2O3反应,所合成的镁铬尖晶石晶体发育良好;反应温度的升高和保温时间的延长有利于镁铬尖晶石晶体的生长,镁铬尖晶石产物结晶程度增大,真密度增大,平均粒径增大。镁铝尖晶石产物的形貌则与氧化铝的形貌有关,熔盐种类对镁铝尖晶石产物的影响主要通过反应物在不同熔盐介质中溶解度的不同来实现;反应温度的升高和保温时间的延长有利于镁铝尖晶石晶体的生长,镁铝尖晶石产物结晶程度增大,真密度增大,平均粒径变大。
     与NaCl和Na2C03单一熔盐相比,NaCl-KCl复合熔盐更有利于镁铬尖晶石和镁铝尖晶石晶体的形成与生长。NaCl-KCl复合熔盐介质中合成镁铬尖晶石和镁铝尖晶石,“模板生长”机理和“溶解-析出”机理同时并存,然而在合成镁铬尖晶石晶体过程中“溶解-析出”机理占主导地位,合成镁铝尖晶石晶体过程中,“模板生长”机理起主要作用。
Molten salt method is recently developed as a novel synthetic method for inorganic materials. Based on one or more low melting point salts as a reaction medium, which can be dissolved by the appropriate solvent, the reaction is easily carried out via the media and pure product can be obtained after filtering and washing. Due the advantages of the simple process, low cost and synthetic temperature, short reaction time and high stability in chemical compositions, molten salt method has been widely applied in different fields, such as in the synthesis of high melting point oxide powders, electronic ceramic powders and other functional powder materials.
     Magnesium oxide powders were synthesized in LiCl molten salt media. The effects of different raw materials, such as reaction temperature, holding time and the relative content of molten salt on the performances of the products have been studied. The results indicated that Ca2+ ions were replaced by Mg2+ ions and produced magnesium carbonate and other intermediate products with MgCl2 and CaCO3 raw materials. Compared to natural magnesite, the as-prepared magnesium carbonate had a higher degree of crystallinity and its order of decomposition closed to 1, and the average apparent activation energy, Ea, is 221.23 kJ/mol. Using MgCl2 and CaCO3, and MgCl2 and CaO as raw materials respectively, the prepared magnesium oxides were characterized with a uniform size distribution and a near sphere-like morphology. Whereas using MgCl2·6H2O and CaCO3, and MgCl2 and MgCa(CO3)2 as raw materials, the both prepared products had the mixed morphologies and uneven size distributions, in which the former product has a relatively better reactive activity, a higher reaction temperature and longer holding time were favorable for the growth of magnesium oxide crystals, resulting in the decrease of crystal cell volume and reactive activity, and the increase of true density. The increase of LiCl addition content was favorable for the growth of magnesium oxide crystals, leading to the increase of crystalinity degree and mean particle size and the decrease of reactive activity.
     By adding different surfactants, the morphologies of the magnesium hydroxide are controlled to yield the corresponding morphologies of MgO powders. As for the MgCl2·6H2O, CaCO3 and LiCl reaction system, fibrous magnesium hydroxide was produced after the heat treatment and soaking of the PEG solution and it can be decomposed to form chain-like morphology of magnesium oxide. Accordingly, tetrahedral shape magnesium hydroxide by EDTA-PEG magnesium hydroxide can produce tetrahedron magnesium oxide. Seemly, as for MgCl2, CaCO3 and LiCl reaction system, fiber-like and flake-like magnesium hydroxide can be respectively obtained under the soaking of PEG and EDTA-PEG solutions, which can be transformed into porous rod and flake magnesium oxide, accordingly. The four different morphologic magnesium oxide powers were spayed on the surfaces of Si-steel billet respectively. The results of the microstructures and magnetic examinations showed that Si-steel billets were of high performance coated by porous rod-like Magnesium oxide powders, while they were of poor performance by tetrahedron magnesium oxide.
     Furthermore, MgCr2O4 and MgAl2O4 spinel powders were synthesized in molten salt media. The effects of different raw materials, salts, heating temperature and holding time on the performances of the final products have been studied respectively. It is found that both raw materials and salts played an important role in the formation of MgCr2O4 and its crystal growth. They were well-developed by using MgCl2, MgCl2·6H2O and CaCO3 as raw materials in NaCl-KCl mixture molten salt. Further research has found that a higher reaction temperature and longer holding time were favorable for the growth of MgCr2O4 spinel crystals, resulting in the increase of MgCr2O4 spinel crystallinity, true density and average particle size. The morphology of MgAl2O4 spinel powder was closely related to alumina materials. A higher reaction temperature and holding time favored the growth of MgAl2O4 spinel crystals, resulting in the increase of its crystallinity, true density and average particle size.
     Compared with single NaCl and single Na2CO3 salt, NaCl-KCl mixture salts were more favorable for the formation and growth of MgCr2O4 and MgAl2O4 spinel crystals. The two mechanisms, "dissolution-precipitation" and "template formation", were involved in MgCr2O4 or MgAl2O4 spinel formation. "dissolution-precipitation" mechanism acted a leading role in the course of MgCr2O4 synthesis while "template formation" was dominant in MgAl2O4 formation.
引文
[1]Mishra B, Olson D L. Molten Salt Applications in Materials Processing [J]. Journal of Physics and Chemistry of Solids,2005,66(2):396-401
    [2]段淑贞,孙家跃,乔芝郁.熔盐化学[M].北京:冶金工业出版社,1990:29-30
    [3]谢刚.熔融盐理论与应用[M].北京:冶金工业出版社,1998:1-7
    [4]Hsiang H I, Chang C H. Molten Salt Synthesis and Magnetic Properties of 3BaO2·CoO·12Fe2O3 Powder [J]. Journal of Magnetism and Magnetic Materials,2004, 278(1-2):218-222
    [5]张冰,曹传宝,许亚杰等.熔盐法合成莫来石晶须[J].无机化学学报,2005,21(2):277-280
    [6]Hashimoto S, Zhang S W, Lee W E, et al. Synthesis of Magnesium Aluminate Spinel Platelets from α-Alumina Platelet and Magnesium Sulfate Precursors [J]. J Am Ceram Soc.,2003, 86(11):1959-1961
    [7]Kim J H, Myung S T, Sun Y K. Molten Salt Synthesis of LiNi0.5Mn1.5O4 Spinel for 5V Class Cathode Material of Li-ion Secondary Battery [J]. Electrochemical Acta,2004,49(2):219-227
    [8]Wang X, Gao L S, Zhou F, et al. Large-Scale Synthesis of α-LiFeO2 Nanorods by Low-Temperature Molten Salt Synthesis Method [J]. Journal of Crystal Growth,2004, 265(1-2):220-223
    [9]Arendt R H. Liquid-phase Sintering of Magnetically Isotropic and Anise by the Reaction of BaFe2O4 with Fe2O3 [J]. Journal Solid State Chem.1973,8(4):339-347
    [10]Arendt R.H, Rosolowski J H, Szymaszek J W. Lead Zirconate Titanate Ceramics from Molten Salt Solvent Synthesized Powders [J]. Materials Research Bulletin,1979, (14): 703-709
    [11]田中青,刘韩星,余洪滔等.微波介质陶瓷粉体的合成方法研究[J].材料导报,2003,17(12):48-51
    [12]宋煜听,李承恩,晏海学.熔盐法合成SrBi2Ta209粉体[J].无机材料学报,2002,17(1):145-148
    [13]郝华,罗大兵,刘韩星等.熔盐法合成SrBi4Ti4O15片状铁电陶瓷粉末[J].武汉理工大学学报,2004,26(1):4-6
    [14]曹建,谢嘉宁,张业凤.熔盐法合成BaFe11Co0.5Ti0.5O19磁性粉体及其性能分析[J].功能材料,1996,27(5):446-448
    [15]Hsiang H I, Chang C H. Molten Salt synthesis and Magnetic Properties of 3BaO2·CoO·12Fe2O3 powder [J]. Journal of Magnetism and Magnetic Materials,2004, 278(1-2):218-222
    [16]Liu S F, Fu W T. Synthesis of Superconducting Ba1-xKxBiO3 by a Modified Molten Salt Process [J]. Materials Research Bulletin,2001,36(7-8):1505-1512
    [17]K.S. Tan, M.V. Reddy, G.V. Subba, et al. High Performance LiCoO2 by Molten Salt Synthesis for Li-ion Batteries [J]. Journal of powder source,2005,147:241-248
    [18]Thirumal M, Jain P A, Ganguli K. Molten Salt Synthesis of Complex Perovskite-related Dielectric Oxides [J]. Materials Chemistry and Physics,2001,70(1):7-11
    [19]Wang X, Song J, Gao L S, et al. Synthesis of Single Crystalline Layered Lithium Manganese Oxide Nanorods. [J]. Solid State Communications,2004,132(11):783-785
    [20]Kim J H, Myung S T, Sun Y K. Molten Salt Synthesis of LiNi0.5Mn1.5O4 Spinel for 5V Class Cathode Material of Li-ion Secondary Battery [J]. Electrochemical Acta,2004,49(2): 219-227
    [21]Wang X, Gao L S, Zhou F, et al. Large-scale Synthesis of α-LiFeO2 Nanorods by Low-temperature Molten Salt Synthesis method [J]. Journal of Crystal Growth,2004, 265(1-2):220-223
    [22]黄卫国译.熔盐法合成纳米MgAl2O4粉[J].耐火材料,2002,5:251
    [23]Afanasiev P, Geanter C. Synthesis of Solid Materials in Molten Nitrates [M]. Coordination Chemistry Reviews,1998,178-180(2):1725-1752
    [24]Nitta K, Shau T M, Sugahara J. Flaky Aluminum Oxide and Pearlescent Pigments and Production Thereof. EP0763573A2,1997-03-19
    [25]Bhaduris S, Bhaduris S B., Microstructural and mechanical properties of nanocrystalline spinel and related composites [J]. Ceram Inter.,2002,28:152-158.
    [26]Hashimoto S, Zhang S W, Lee W E, et al. Synthesis of Magnesium Aluminate Spinel Platelets from α-Al2O3 Platelet and Magnesium Sulfate Precursors [J]. J. Am Ceram Soc., 2003,86(11):1959-1961
    [27]张冰,曹传宝,许亚杰等.熔盐法合成莫来石晶须[J].无机化学学报,2005,21(2):277-280
    [28]朱伯铨,李雪冬.在硫酸钠熔盐中合成莫来石的热力学研究[J].硅酸盐学报,2006,34(1):76-80
    [30]Docters T, Chovelon J M, Herrmann JM, et al. Syntheses of TiO2 Photocatalysis by the molten salts method:Application to the Photocatalysis degradation of Prosulfuron. Applied Catalysis B:Environmental,2004,50(4):219-224
    [31]Singh N B. Preparation of Metal Oxides and Chemistry of Oxides Ions in Nitrate [J]. Progress in Crystal Growth and Characterization of Materials,2002:183-188
    [32]Choo H S, Lee K Y, Kim Y S, et al. Synthesis of Ni3Al Intermetallic Powder in Eutectic Molten Salts [J]. Intermetallics,2005,13(2):157-161
    [33]Zhao J L, Cui L S, Gao W F, et al. Synthesis of NiTi Particles by Chemical Reaction in Molten Salts [J]. Intermetallics,2005,13(3-4):301
    [34]Singh N B. Preparation of metal oxides and chemistry of oxides ions in nitrate. Progress in Crystal Growth and Characterization of Materials,2002:183-188
    [35]张克从,张乐惠.晶体化学[M].北京:科学出版社,1981:285-297
    [36]胡庆福.镁化合物生产与应用[M].北京:化学工业出版社,2004
    [37]全跃主编.镁质材料生产与应用[M].北京:冶金工业出版社,
    [38]Tori M, Shimzaki H, Endo T, etal. Operation Results IHI Flue Gas Desulfurization System for Coal Fired Boiler of IPP [J]. IHI Engineering Review,2001,34(4):114-117
    [39]U Rappold, G Luft, New Dry Process for Separating HC1 from Flue Gases by Adsorption on MgO [J]. Chem. Eng. And Tech,1999,22(10):843-846.
    [40]Cao Zhonghua. Use of Magnesium for Treatment of Wastewater from Tanning Operations [J]. Vodosnabzhenic Sanitamaya Tekhnika,1999.(5):29-30
    [41]Boon H T, Yjoon T T, Mohd Dmar A K. Removal of Dyes and Industrial Dye Waste by Magnesium Chloride [J]. Water Research,2000,34(2):597-601
    [42]Stark J V, Klabunde K J. Nanoscale Metal Oxide Particles/Clusters as Chemical Reagents Unique Surface Chemistry on Magnesium Oxide as Show by Enhanced Adsorption of Acid Gases [J]. Chemical Materials,1996,8(8):1904-1912
    [43]Hokazono S, Man-o K, Kato A. The Sintering behaviour of spinel powders produced by a homogeneous precipitation technique [J]. Br Ceram Trans.,1992,91(3):77-79.
    [44]Lee J H, Jeong T W,Yun S G, et al. Thickness Effect on Secondary Electron Emission of MgO Layer [J]. Appl Surf Sci.,2001,174:62-69.
    [45]Nomura I, Murakami S, Ektessabi A, et al. Ion beam processing of magnesium oxide thin films for PDP application [J]. Appl. Surf Sci,2004,238:113-116
    [46]Shukla S K, Parashar G K, Mishar A P, et al. Nano-like Magnesium Oxide Films and Its Significance in Optical Fiber Humidity Sensor [J]. Sensors and Actuators B,2004,98:5-11
    [47]代厚全,骆开均,张万成.从蛇纹石制备轻质碳酸镁和轻质氧化镁的扩试研究[J].四川师范大学学报,1998,21(2):192
    [48]李俊梅,张志刚,宋玉军.轻质氧化镁制备新工艺条件优化[J].化工冶金,1998,19(1):68
    [49]秦时云.国产第二代硅钢氧化镁通过上海市科委产品技术鉴定[J].无机盐工业,2000,32(1):44
    [50]徐旺生,宣爱国.由白云石制备特种硅钢级氧化镁工艺研究[J].化工矿物与加工,2002,(1):4-6
    [51]中国药物大词典编委会编.中国药物大词典[M].下册,北京:中国医药科技出版社,1991
    [52]崔玉红,张桂香,孙会芳.医药氧化镁的研制[J].苏盐科技,1993,(1):1-2
    [53]高心魁.熔融耐火材料[M].北京:冶金工业出版社,1995
    [54]全跃,刘德禄.颗粒体积密度3.4g/cm3高纯镁砂的生产研制[J].中国非金属矿工业导刊,2002,(4):21-22
    [55]Shukla S K, Parashar G K, Mishar A P, et al. Nano-like Magnesium Oxide Films and Its Significance in Optical Fiber Humidity Sensor [J]. Sensors and Actuators B,2004,98:5-11
    [56]朱亚先,曾人杰,刘新锦.等.MO粉的制备及表征[J].厦门大学学报,2001,40(6):1256-1259
    [57]Yin Yadong, Zhang Guangtao, Xia Younan. Synthesis and Characternation of MgO Nanowires through a Vapor-phase Precursor Method [J]. Adv Funct Mater.,2002, 12(4):293
    [58]Stark. J.V, Klabunde. K. J. Nanoscale magnesium oxide used to adsorb SO2 and CO2: NATO ASI Series [J]. Appiled sciences,1994, (1):260-260
    [59]Stark. J. V., Klabunde. K. J. Nanoscale metal oxide particles/clusters as chemical reagents Unique surface chemistry on magnesium oxide as show by enhanced adsorption of acid gases [J]. Chemical Materials,1996.8(8):1904-1912
    [60]Bandara J, Hadapangoda C C, Jayasekera W G. TiO/MgO composite photo catalyst. The role of MgO in photo-induced charge carrier separation [J]. Appl Cataly B:Environmental, 2004,50:83
    [61]李克,聂聪,吕功煊等.Ni-Sn-MgO催化热解CO制备碳纳米管[J].分子催化,2005,19(6):419
    [62]Boon H T, Yjoon T T, Mohd Dmar A K. Removal of Dyes and Industrial Dye Waste by Magnesium Chloride [J]. Water Research,2000,34(2):597-601
    [63]Shukla S K, Parashar G K, Mishar A P, et al. Nano-like Magnesium Oxide Films and Its Significance in Optical Fiber Humidity Sensor [J]. Sensors and Actuators B,2004,98:5-11
    [64]Thoms H, Eppie M, Reller A. The Thermal Decomposition of Magnesium Alcoholates to magnesia (MgO):Studies by IR and Thermal analysis [J]. Solide State Ionics,1997, 101-103:79
    [65]In-chyuan H, Yuhuan X, John D. Electrical and Optical Properties of MgO Thin Film Prepared by Sol-Gel Technique [J]. Journal of SOL-GEL science and Technology,1997, 9:295-301
    [66]Lee J H, Jeong T W, Yun S G, et al. Thickness effect on secondary electron emission of MgO layer [J]. Appl. Surf Sci,2001,174:62-69.
    [67]Nomura I, Murakami S., Ektessabi A., et al. Ion beam processing of magnesium oxide thin films for PDP application [J]. Appl. Surf Sci,2004,238:113-116
    [68]Meier Andreas, Grill Michael. Process for Manufacturing Fibrous Magnesium Oxide P, PCT Int. Appl:WO9114659,1991.
    [69]Yeionghun H, Jung S J, Lee J J, et al. Deposition of MgO Films by ICP Assisted Evaporation [J]. Surf Coat Techn,2003,174-175:235
    [70]Nomura I, Murakami S, Ektessabi A, et al. Ion beam processing of magnesium oxide thin films for PDP application [J]. Appl. Surf Sci,2004,238:113-116
    [71]Kiichro K, Yoshishige S, Yukio K. MgO Films Deposited by Chemical Vapor Deposition [J]. Journal of materials science letters,1984,3:423-426
    [72]Yamaguchi Akira. Production of Magnesia Whisker P. Japan:JP5 132400,1993.
    [73]吴万佰.谈用菱镁矿生产轻质碳酸镁和氧化镁[J].非金属矿,1997,118(4):45-46
    [74]郑荣光,方俗勋.白云石循环法生产氧化镁新工艺[J].华东地质学院学报,1999,22(2):175-179
    [75]王关清.纯碱法生产氧化镁[J].无机盐工业,1987,8(4):13-15
    [76]姜运田,张振伟,林瑛,李业新.老卤-碳铵法制备轻质氧化镁的研究[J].济南大学学报,2004,18(3):246-248
    [77]李天文,王向荣,乔冷.高镁卤水氨再生循环法生产轻质氧化镁[J].无机盐工业,1993,(2):12-14
    [78]李陇岗,钟辉,杨建元.盐湖水氯镁石制备高纯镁砂的研究进展[J].盐湖研究,2004,12(1):57-61
    [79]黄爱红,沈德阳.MgCr204的低温合成及其表征[J].无机盐工业,1992,(6):11-14
    [80]李日升.镁铬尖晶石的制取及应用[J].中国搪瓷,2003,6:52-54
    [81]邓勇跃,汪厚植等.共沉淀法制备镁铬尖晶石粉体[J].无机盐工业,2005,(7):32-35
    [82]彭容秋.重金属冶炼学[M].长沙:中南工业大学出版社1991,9
    [83]徐曾启主编.炉外精炼[M].北京:冶金工业出版社,2002,3
    [84]王健东,潘波等.RH炉用高级镁铬砖的研究与侵蚀机理分析[J].炼钢,2007,23(4):34-64
    [85]于仁红.铜转炉介质对镁铬耐火材料侵蚀机理的研究[D].硕士学位论文,2002,5
    [86]Petkov, V., Jones, P. T., E. Boydens. Chemical Corrosion Mechanisms of Magnesia-Chromite and Chrome-Free Refractory Bricks by Copper Metal and Anode Slag [J]. Journal of the European Ceramic Society,2007,27:2433-2444
    [87]Ming-Hsiung Hona,Chia-Chan Hsua. Corrosion of magnesia-chrime in molten MgO-Al2O3-SiO2-CaO-FetO slag [J]. Materials Chemistry and Physics Physics,2008, 110:247-255
    [88]J.L.Liow, P.Tsinkis and N.B.Gray. Study of Refractory Wear in the Tuyere Region of a Piece-Smith Nicki convertor [J]. Canadian Metallurgical Quarterly,1998,2(37):99-117
    [89]H. Barthel. Wear of Chromium-Magnesite Brick in Copper Smelting Furnaces [J]. Interceramics,1981,30:250-258
    [90]Crites, M.D., Karakus M., Schlesinger M.E. Interaction of Chrome-free Refractories with Copper Smelting and Converting Slags [J]. Canadian Metallurgical Quarterly,2000,39, 129-134
    [91]宋林喜.水煤浆气化操作对高铬耐火材料的影响[J].耐火材料,2001,35(3):155-157
    [92]齐晓青,李宏等.水煤浆加压气化炉用高铬耐火材料的显微结构及损毁机理[J].耐火材料,2002,36(5):255-258
    [93]李红霞.水泥窑用碱性耐火材料无铬化的技术进展[J].中国水泥,2004,10
    [94]云斯林,章道运.镁铬砖在大型干法水泥窑回转窑烧成带的损毁[J].耐火材料,2004,38(4):238-241
    [95]Lim Rooi Ping, Abdul-Majeed Azad, Teng Wan Dung. Magnesium Aluminate (MgAl2O4) Spinel Produced Via Self-heat-sustained (SHS) Technique. [J].Materials Research Bulletin 2001,36:1417-1430.
    [96]马亚鲁.化学共沉淀法制备镁铝尖晶石粉末的研究[J].无机盐工业,1998,30(1):3-5
    [97]赵惠忠,葛山,张鑫等.共沉淀-真空冷冻干燥法制备纳米MgAl204粉体[J].耐火材料.2005,39(3):168-171.
    [98]Wantae Kim, Fumio Saito. Effect of Grinding on Synthesis of MgAl2O4 Spinel from a Powder Mixture of Mg(OH)2 and Al(OH)3 [J]. Powder Technology,2000,113:109-113
    [99]Ibram Ganesh, Bakki Srinivas, Roy Johnson, et al. Microwave Assisted Solid State Reaction Synthesis of MgAl2O4 Spinel Powders [J]. Journal of the European Ceramic Society,2004,24:201-207.
    [100]Z. Li, W. E. Lee & S. Zhang. Low Temperature Synthesis of Calcium Zirconate (CaZrO3) Powder from Molten Salts [J]. Am. Ceram. Soc.,2007,90:364
    [101]S. Hashimoto, S. Zhang, W. E. Lee & A. Yamaguchi, Synthesis of Magnesium Aluminate Spinel Platelets from-Alumina Platelet and Magnesium Sulfate Precursors [J]. Am. Ceram. Soc.2003,86:1959
    [102]Z. Y. Cai, X. R. Xing, R. B. Yu. Large-scale Synthesis of PbI-xLaxTiO3 Ceramic Powders by Molten Salt Method [J]. Alloys and Compounds,31(2006)273-277.
    [103]F. L. Alvarez, D. M. Pasquevich, A. E. Bohe [J]. J. Mater. Sci,2005,40,1193.
    [104]V. L. Cherghinets and T. P. Rebrova. Acidity of Cations and the Solubility of Oxides in the Eutectic KCl Melt at 700℃ [J]. Zhurnal Fuicheskoi Khimil,73(4)687.9(1999).
    [105]N. K. Vonkresenskays and G N. Kashicheev. The solubility of metal oxides in fused salts [J]. Akad. Navk,27.255.67(1956).
    [106]Ito. T, Kojima. N and Nagashima. A. Redetermination of the viscosity of molten NaCl aelevated temperature [J]. Thermophys,1989(10):819-831.
    [107]Wakao M, Minami K and Nagashima A. Viscosity measurements of molten LiCl in the temperature range 886-1275K [J]. Thermophys,1991(12):223-230.
    [108]鲁仁予,董俊.菱镁矿在氮气气氛中的热分解动力学[J].贵州大学学报(自然科学版),2009,4(2):45-47
    [109]蒋引珊,王玉洁,徐长耀等.热分解法研究矿物分解过程动力学[J].长春科技大学学报2000,1:90-93
    [110]郑红霞,廖新生,汪琦等.菱镁矿粉及其料球分解的TG动力学[J].辽宁科技大学学报2008,(21):29-31
    [111]任庆利,刘斌,陈寿田.热液环境下氢氧化镁结晶形态机理研究[J].稀有金属材料与工程,2004,1(1):47-50
    [112]Delarue G., Chemical properties of the eutectic LiCl and KCl. I. Metallic oxides [J]. Electroanal Chem,1960,285-300.
    [113]Inman D., Legey J.C. and Spencer R. A Potentiometric Study of Alumina Solubility and the Influence of Complexing by Fluoride Ions in LiCl-KCl [J]. Appl. Electrochem, 1978(8):273-276
    [114]Shaowei Zhang, D.D.Jayaseelan, G. Bhattacharya. Molten Salt Synthesis of Magnesium Aluminate (MgAl2O4) Spinel Powder [J]. Am. Ceram. Soc.,2006,89[5]:1724-1726
    [115]D.D.Jayaseelan, Shaowei Zhang, S. Hashimoto.Template formation of magnesium aluminate (MgAl2O4)spinel microplatelets in molten salt [J]. European Ceramic Society 2007,27:4745-4749
    [116]M. E. Ebrahimi, M. Allahverd, A. Safari. Synthesis of High Aspect Ratio Platelet SrTiO3 [J]. Am. Ceram. Soc.,2005,88[8]:2129-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700