融盐自发浸渗过程与微米级多孔陶瓷基复合相变储能材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热能存储技术可以解决热能供给和需求失配的矛盾,因而是提高能源利用率和保护环境的有效手段。利用相变材料的相变潜热来存储热能的技术,具有储能密度大、蓄放热过程近似等温、过程易控制等优点,倍受研究者的关注。
     本文率先采用自发熔融浸渗工艺实现了熔融无机盐和陶瓷预制体的浸渗复合,并成功地制备出Na_2SO_4/SiO_2新型复合相变储能材料。该材料既兼备了现有无机盐相变蓄热材料和固相显热蓄热材料两者的长处,又克服了两者的不足。在储能过程中,该材料可与相容性流体直接接触换热,大大提高了换热效率。
     本文从热力学、静力学和动力学的角度出发,分析了自发熔融浸渗全过程,确立了自发浸渗过程应符合的热力学和静力学条件,并建立了熔融无机盐Na_2SO_4渗入SiO_2多孔陶瓷预制体的动力学模型,理论上确定了浸渗过程的各个影响因素并详细分析了它们之间的相互关系,形成了较为完整的无机盐/陶瓷基复合相变储能材料自发熔融浸渗理论体系。在理论研究的基础上,通过实验,以石英粉为骨料,淀粉为造孔剂,配以一定量其它添加剂,采用单面加压成型,1200~1300℃烧结,成功地制备出显气孔率在40~50%,孔径大小介于5~40/μm,平均孔径为26~30/μm之间,骨料颗粒之间粘结较好,形成了较为理想的三维空间网络孔洞结构的多孔陶瓷预制体,该预制体完全可以用于进行后续的自发熔融浸渗研究。
     在分析了硫酸钠和石英之间具有很好的高温化学相容性和浸润性的基础上,进行浸渗合成实验,测试了各试样的浸渗率和相对密度,分析了预制体制备工艺和浸渗合成工艺对复合储能材料的浸渗率和相对密度的影响,获得最佳工艺参数,确定浸渗温度在900~1000℃,浸渗时间在1小时左右,浸渗方式采用浸液浸渗,并最终成功地制备出了浸渗率(Na_2SO_4的百分含量)在42.3%~53.4%,相对密度高达92%~95%的复合相变储能材料。
     利用金相显微镜、扫描电镜、X射线衍射、X射线能谱仪等手段,分析了复合储能材料的物相组成、晶型变化及其显微组织结构。研究结果表明最终制备出的复合相变储能材料在常温下的主要物相为α—石英和芒硝Na_2SO_4—T,与制
Heat energy storage technique can solve the mismatch of energy supply and demand. It is an effective measure to improve energy utilization efficiency and protect environment for lack of energy resource. Research workers pay much attention to the technique that makes full use of phase change materials'(PCMs) latent heat to store heat energy for its high heat storage density and its isothermal process in melting and freezing.In this paper, a new type salt/ceramic composite energy storage material(CESM) is fabricated successfully by applying an innovating technology firstly which is molten Na_2S)_4 infiltrating porous ceramics performs spontaneously. This material which composed of sensible ceramic heat storage materials and molten salt latent heat storage materials integrates their advantages and overcomes their disadvantages. In the process of energy storage, this material can exchange heat by contacting directly with compatible fluid, so the efficiency of exchanging heat is improved greatly.The conditions of thermodynamics and statics and the kinetics model of molten salt infiltrating porous ceramics performs are established. Influence factors of infiltrating process are ascertained theoretically and their correlation is analyzed. A whole system info of molten salt infiltrating porous performs spontaneously is formed. In experimentation, powder of quartz is used for main raw material and starch is used for pore forming material. Through half-dry press molding, 1200-1300 °C sintering, a three-dimensional network structural porous ceramics performs is fabricated successfully that porosity is 40-50%, pore size is 5-40 μ m and average pore size is 26-30 μ m. It is feasible completely that these performs are used for later infiltrating research.High temperature chemical compatibility and wetting between molten Na_2SO_4 and quartz are analyzed. Through infiltrating experiment, a new NaSO_4/SiO_2 CESM is fabricated successfully that infiltration percentage is 42.3-53.4% and relative
引文
[1] 余晓福,张正国,王世平.复合蓄热材料研究进展[J].新能源,1999,21 (9):35-38.
    [2] 戴彧,唐黎明.相变储热材料研究进展[J].化学世界,2001(12):662-665.
    [3] 崔海亭,袁修干,侯欣宾.蓄热技术的研究进展与应用[J].化工进展,2002,21(1):23—25.
    [4] Gulseren, Baran, Ahmet, Sari. Phase change and heat transfer character -ristics of eutectic mixture of palmitic and stearic acids as PCM in latent heat storage system[J]. Energy Conversion and Management, 2003(44): 3227-3246.
    [5] 李爱菊,张仁元,周晓霞.化学储能材料开发与应用[J].广东工业大学学报,2002,19(1):81—84.
    [6] 张寅平,胡汉平,孔祥东等.相变储能—理论和应用[M].合肥:中国科学技术大学出版社,1996.
    [7] Mohammed, M. F., Amar, M. K., Siddique, A. K. R., et al. A review on phase change energy storage: materials and applications[J]. Energy Conversion and Management, 2004(45): 1597-1615.
    [8] Belen, Z., Jose, M. M., Luisa, F. C., et al. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications[J]. Applied Thermal Energy, 2003(23): 251-283.
    [9] Dincer, S. Dost and Xiangguo Li. Thermal energy storage application from an energy saving perspective[J]. International Journal of Global Energy Issues, 1997, 9(46): 351-364.
    [10] Hasnain, S. M. Review on sustainable thermal energy storage technology, Part 1: Heat storage materials and techniques[J]. Energy conversion and Management, 1998, 39(11): 1127-1138.
    [11] Jean, P., Michel, F., Cecil, V.. Thermal storage by latent heat: a viable option for energy conservation in buildings[J]. Energy Sources, 1993, 15(1): 85-93.
    [12] Kamil, K.. Utilization of solar energy and waste heat[J]. Energy Sources, 1999, 21 (7): 595-610.
    [13] Bascetincelik, A., Ozturk, H. H., Paksoy, H. O., Demirel, Y.. Energetic and exergetic efficiency of latent heat storage system for greenhouse heating[J]. Renewable Energy, 1999, 16(1): 691-694.
    [14] Marliacy, P., Solimando, R., Bouroukba, M., Schuffenecker, L.. Thermo —dynamics of crystallization of sodium sulfate decahydrate in H_2O-NaCl-Na_2SO_4: application to Na_2SO_4·10H_2O-based latent heat storage materials[J]. Thermochimica Acta, 2000(344): 85-94.
    [15] Garg, H. P., Mullock, S. C., Bhargava, A. K.. Solar Thermal Energy Storage[M]. Holland: Reidel Publishing Company, 1985.
    [16] Yagi, J., Akiyama, T.. Storage of thermal energy for effective use of waste heat form industries[J]. Journal of Materials Processing rechnolgy, 1995(48): 793-804.
    [17] Dincer, B.. On thermal energy storage systems and applications in buildings [J]. Energy and Buildings, 2002 (34): 377-388.
    [18] Abhat, A. Low temperature latent heat thermal energy storage: heat storage materials [J]. Solar Energy, 1983(30): 313-332.
    [19] 徐瑞,荆天辅.材料热力学与动力学[M].哈尔滨:哈尔滨工业大学出版社,2003.
    [20] Aceves S M, Nakamura H and Reistard G M. The effects of freezing and melting on the efficiency of latent heat storage system[J]. Chemical Engineering, 1994, 27 (6): 779-784.
    [21] Biswas, D. R..Thermal energy storage using sodium sulphate deca -hydrate and water [J]. Solar Energy, 1997 (19): 99-101.
    [22] Lane, G. A.. Solar heat storage: latent heat material, Vol. Ⅰ, Backgroud and scientific principles[M]. Florida: CRC Press, 1983.
    [23] 崔海亭,杨锋。蓄热技术及其应用[M].北京:化学工业出版社,2004.
    [24] Dincer, I., Rosen, M. A.. Thermal energy storage, Systems and Applications[M], Chichester(England): John Wiley & Sons, 2002.
    [25] Lane, G. A.. Low temperature heat storage with phase change materials [J]. Int. J. Ambient Energy, 1980(1): 155-168.
    [26] 张仁元.相变材料与相变储能技术专题报告.中国科学院广州分院学术报告会,广东,广州,2001.
    [27] Adebiyi G A, Hodge B K, Steele W G. Computer simulation of a high-temperature thermal energy storage system employing multiple families of phase change storage materials[J]. Energy Resources Technology, ASME, 1996 (18): 102—111.
    [28] 崔海亭,袁修干,侯欣宾.高温熔盐相变蓄热材料[J].太阳能,2003(1):27—28.
    [29] 邢玉明,崔海亭,袁修干.高温熔盐相变蓄热系统的数值模拟[J].北京航空航天大学学报,2002,28(3):295—297.
    [30] 侯欣宾,崔海亭.高温相变蓄热在空间太阳能热动力发电系统的应用[J].河北科技大学学报,2001,22(2):1—7.
    [31] 天津化工研究院.无机盐工业手册(下册)[M].北京:化学工业出版社,1992.
    [32] 周晓霞.铝硅合金储热性能及其对容器的腐蚀与防护研究:[硕士学位论文].广东,广州,广东工业大学图书馆,2003.
    [33] Dtana Farkas, C. E. Birchenall. New eutectic alloys and their heat s of transformation[J]. Metallurgical Transaction A, 1985(16A): 3 23-328.
    [34] Ernest Birchenall, Alanf Biechman. Heat storage in eutectic alloys[J]. Metallurgical Transaction A, 1980 (11A): 1415-1420.
    [35] 邹向,兆丰,赵锡伟.铝硅合金用作相变储能材料的研究[J].新能源,1996,18(6):1-3.
    [36] 邹向,王良.液态铝硅合金的浸蚀研究[J].腐蚀与防护,1995,20(5):214-216.
    [37] 邹向,张仁元,范绮莲等.金属相变储热容器的高温腐蚀和防护[J].腐蚀 与防护,1992,13(3):111—114.
    [38] Farid, M. M., Mohamed, A. K.. Effect of natural convection on the process of melting and solidification of paraffin wax[J]. Chem. Eng. Commun, 1987(57): 297—316.
    [39] Farid, M. M., Husian, R. M.. An electrical storage heater using phase change method of heat storage[J]. Energy Conversion and Mangment, 1990(30): 219-230.
    [40] Farid, M. M., Kim, Y., Kanzawa, A.. Thermal performance of heat storage module using PCMs with different melting temperatures-experimental [J]. Journal of Solar Energy Enginering, 1990(112): 125-131.
    [41] 姜勇,丁恩勇,戴国康.一种新型的相变储能功能高分子材料[J].高分子材料科学与工程,2001,17(3):173-175.
    [42] 姜勇,丁恩勇,戴国康.相变储能材料的研究进展[J].广州化学,1999,(3):48-54.
    [43] Benson, D. K.. Solid state phase transition in pentaerythritol and related polyhydric alcohols[J]. Solar Energy Materials, 1986(13): 133-152.
    [44] Font, J.. Calorimetric study of the mixture PE/NPG and PG/NGE[J]. Solar Energy Materials, 1987(15): 299-310.
    [45] 姜勇,丁恩勇,杨玉芹等.化学法和共混法制备PEG/CDA相变材料的性台比较[J].纤维素科学与技术,2000,8(2):36-41.
    [46] 丁恩勇,戴国康,姜勇.对具有固—固相变性质的功能纤维素的合成和研芋[A].见:广东省化学会第六届学术年会论文集[C].广东,广州,2001.
    [47] 张丽芝,张庆.相变贮热材料[J].化工新型材料.1999,27(2):19-21.
    [48] 邢登清,迟广山,阮德水等.多元醇二元体系固-固相变贮热的研究[J].太阳能学报,1995,16(2):133-137.
    [49] Xiaowu Wang, Enrong Ding, Wenxian Lin, et al. Heat storage performance of the binary systems neopentyl glycol/pentaerythritol and neopentyl glycol/trihydroxy methyl-aminomethane as solid-solid phase change materials[J]. Energy Conversion and Management, 2000 (41): 129-134.
    [50] 阮德水,张太平.相变材料的DSC研究[J].太阳能学报,1994,15(1):19-24.
    [51] 于少明,蒋长龙,杭国培等.固—固相变贮能材料研究现状与进展[J].化工新型材料,2002,30(7):19—21.
    [52] Xu Ruyun. Studies of Solid-solid Phase Transition for (n-C_(18)H_(37)NH_3)_2MCl_4[J]. Thermo-chemical Acta, 1990,164:307 - 314.
    [53] Ye Hong, Ge Xin-shi. Preparation of polythyleneparaffin compound as a form-stable solid-liquid phase change material[J]. Solar Energy Materials & Solar Cells, 2000(64):37-44.
    [54] S Hokoi, T Kuroki. Use of phase change material to control indoor thermal enviroment[A].Proc of 7th Inter Conf on Thermal Energy Storage[C], Sapporo, Japan, 1997:337-342.
    [55] 叶宏,程丹鹏,葛新石等.定形相变贮能式地板辐射采暖系统数值模型的实验验证及参数分析[J].太阳能学报,2004,25(2):189—194.
    [56] 谭雨非.相变材料在电供暖建筑中的可能性研究[J].低温建筑技术,2003(2):55-57.
    [57] 李爱菊,张仁元,黄金.定形相变储能材料的研究进展及其应用[J].新技术新工艺,2004(2):45—47.
    [58] 叶宏.新型相变贮热材料[J].太阳能,2000(3):10-11.
    [59] 秦鹏华,杨睿,张寅平,林坤平.定形相变材料的热性能[J].清华大学学报(自然科学版),2003,43(6):833-835.
    [60] 张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2002.
    [61] 秦培煜,周世权.能源材料的研究现状及发展前景[J].节能,2002(5):5—7.
    [62] 林怡辉,张正国,王世平.溶胶—凝胶法制备新型蓄能复合材料[J].太阳能学报,2001,22(3):334—337.
    [63] 林怡辉,张正国,王世平.一种新型相变蓄热材料的实验研究[J].江汉石油学院学报,2001,23(4):81—83.
    [64] Randy J. petri, Estela T Ong and Terry D Claar. High-temperature salt/ceramic thermal storage phase-change media[A], in: Proceedings 18th IECEC Meeting[C], 1983: 1796-1774.
    [65] A. Gluck, R. Tamme, H. Kalfa, et al. Development and Testing of Advanced TES materials for Solar Thermal Central Receier Plants[A]. in: Proc. ISES Solar World Congress[C], 1991: 1943-1948.
    [66] E. Hahne, U. Taut and Y. Grob. Salt Ceramic Thermal Energy Storage for Solar Thermal Central Receiver Plants[A]. in: Proc. ISES Solar World Congress[C], 1991: 1937-1942.
    [67] D. Steiner, M. Wierse, M. Groll. Development and Investigation of Thermal Energy Storage Systems for the Media Temperature Range[A]. in: Proceedings 30th IECEC Meeting[C], New York: D. Yogi Goswami, Landis Kannberg, 1995: 193-198.
    [68] R. Tamme, U. Taut and C. Struber. Advanced Regenerator Media for Industrial and Solar Thermal Application[A]. in:Proc. 25th IECEC Meeting[C]. New york: H. Arastoopur, 1990: 1452-1460.
    [69] 张仁元,朱泽培,朱焕良.相变(复合)储能技术应用与开发可行性研究报告中国科学院广州能源研究所报国家纪委节能局,广东,广州,1988.
    [70] R. Tamme, U. Taut and C. Struber. Energy storage development for solar thermal process[J]. Solar Energy Materials, 1991(24): 386-396.
    [71] 张仁元,柯秀芳,李爱菊.显热/潜热复合储能材料的研究[J].新能源.2000,22(12):29-31.
    [72] 王华等.燃料工业炉用陶瓷与熔融盐复合蓄热材料的制备[J].工业加热2002(4):20-22.
    [73] 张仁元,柯秀芳,李爱菊.无机盐/陶瓷基复合储能材料的制备和性能[J].材料研究学报,2000,14(6):652-656.
    [74] 王辅亚.共晶盐/陶瓷基相变复合材料新型储能元件的研制[J].矿物岩石地球化学通报,1997,16(增刊):75-76.
    [75] 李庭寿,冯改山,戴龙大.钢铁工业用节能降耗耐火材料[M].北京:冶金工业出版社,2002.
    [76] 余际星,曾有鹏.旋转型蓄热式换热器蓄热体材料的选择.工业炉,1996 (2):P37—40.
    [77] 蔡作乾,王琏,杨根.陶瓷材料辞典.北京:化学工业出版社,2002.
    [78] Randy J. Petri, Estela T. ong. High Temperature Composite Thermal Storage Systems for Industrial Application[A]. in: Proceedings of 20th Energy Technology Conference[C], Washington, DC, 1985.
    [79] Terry Claar. D, et al. Composite Salt Ceramic Media for Thermal Energy Storage Application[A]. in: Proceedings 17th IECEC Meeting[C], 1982. 2043-2048.
    [80] Schwerin. M, Listle. W. Development of a latent heat storage system with ceramic matrix for utilization of industrial waste heat. Final Report, Alpha Labor, Ismaning(DE), 1998.
    [81] Notter, W., Lechner, Th.. rhermophysical properties of the composite ceramic- salt system(SiO_2/Na_2SO_4) [J]. Thermochimica Acta, 1993(218): 455-463.
    [82] ALI A. JALALZADEH-AZAR, W. GLENN and GEORGE A. ADEBIYI. Performance comparison of high-temperature packed bed operation with PCM and sensible-heat pellets[J]. International Journal of Energy Research, 1997, 21(11): 1039-1052.
    [83] M. Hadjieva, et al. Composite salt-hydrate concrete system for building energy storage. Renewable Energy 2000(19): 111-115.
    [84] M. Hadjieva, R. Stojkov, Tz. Filipova. Compatibility of salt hydrate to porous concrete matrix in PCM energy storage composite structure[J]. Renewable Energy 2001(19): 11-15.
    [85] 邹向.储热用高温相变复合材料[J].新能源,1995,17(12):27—29.
    [86] 李爱菊,张仁元,柯秀芳等.Na_2SO_4/SiO_2定形复合储热材料的性能研究[J].材料开发与应用,2003,18(6):21—23.
    [87] 李爱菊,张仁元,柯秀芳.工业炉用Na_2SO_4/SiO_2复合蓄热材料的研究[J].材料导报,2003,17(11):69—71.
    [88] 李爱菊.无机盐/陶瓷基复合储能材料制备、性能及其熔化传热过程的研究:[博士学位论文].广东,广州,广东工业大学图书馆,2004.
    [89] 曾国勋,李爱菊,蔡尚昆.烧结温度与时间对Na_2SO_4/SiO_2,复合储能陶瓷储热性能的影响.冶金能源,2003,22(1):16—17.
    [90] 柯秀芳,张仁元.无机盐/陶瓷基超微结构多孔介质熔化过程传热研究[J].中国工程热物理学报,2005,26(1):113-115.
    [91] 王华,Y.Ito,T.Nohira,乔欢.新型陶瓷与熔融盐复合蓄热材料优化组合的数值模拟.中国有色金属学报,2002,12(3):550-555.
    [92] Petri R, Ong E T, Kardas A. Development of composite latent/sensible heat storage media. ORNL/Sub/86-95001-1, 1990.
    [93] 黄金,张仁元,李昌明,李爱菊.无机盐熔渗多孔陶瓷熔渗过程分析 材料导报 2004,18(9):94—95.
    [94] 黄金,张仁元,李爱菊.无机盐陶瓷基复合储能材料的制备技术新技术新工艺 2004(7):49-51.
    [95] Strumpf H J, Coombs M G. Solar receiver for the space station Brayton engine[J]. Journal of Solar Energy Engineering, 1988(110): 295-300.
    [96] Strumpf H J, Coombs M G. Solar receiver experiment for the space station Brayton engine[J]. Journal of Solar Energy Engineering, 1990(112): 12-18.
    [97] Slade P G. Advances in materials development for high vacuum interrupter contacts[J]. IEEE Trans on CPMT, 1994, 17 (1): 96—106.
    [98] Yangbin, Randall M. Powder injection molding and infiltration sintering of superfine grain W-Cu[J]. The International Journal of Powder Metallurgy, 1997, 33 (4): 55—63.
    [99] G. H. Schiroky , D. V. Miller, M. K. Aghajanjan and A. S. Fareed. Fabrication of CMMs and MMCs using Novel Processes[J]. Key Engineering Materials, 1997, 127 (131): 141—152.
    [100] 边涛.TiC/Ni_3Al复合材料的制备及组织和性能研究:[硕士学位论文].浙江,杭州,浙江大学图书馆,2002.
    [101] 吴人洁.复合材料[M].天津:天津大学出版社,2002.
    [102] 李荣久,茹红强,孙旭东.陶瓷—金属复合材料[M].冶金工业出版社, 北京,2002.
    [103] Erkki Levanen, Tapio Mantyla, Pasi Mikkola, Jarl B. Rosenholm. Influen —ce of additives on capillary absorption of aqueous solutions into asymmetric porous ceramic substrate[J]. Joural of Colloid and Inter —faceScience, 2001(234): 28-34。
    [104] Marcelo, L., Mariela, A.. Capillary rise in porous media[J]. Journal of Colloid and Interface Science, 2001(234): 35-43.
    [105] 徐桂兰.高温用特殊复合材料[M].冶金工业出版社,北京,2002.
    [106] Washburn E W. The dynamics of capillary flow[J]. Physical Review, 1921, 1 (3): 273—283.
    [107] Jacaues oudar.顾锡人译.表面物理化学(上册).北京:科学出版社,1984.
    [108] Won-Kyu Rnim, Kenichi Ohsaka. Thermophysical properties measurement of molten silicon by high-temperature electrostatic levitator density, volume expansion, specific heat capacity, emissivity, surface tension and viscosity[J]. Journal of Crystal Growth, 2000(208): 313-321.
    [109] Jeannine Saggio-Woyansky, Curtis E. Scott, W. P. Minnear. American Ceramic Society Bulletin, 1992, 71(11): 1674.
    [110] 王连星,宁青菊,姚治才.多孔陶瓷材料[J].硅酸盐通报,1998(1):41—45.
    [111] 朱小龙.硅藻土基多孔陶瓷的制备及其性能的研究:[硕士学位论文].广东,广州,华南理工大学图书馆,2001.
    [112] 朱新文,江东亮,谭寿洪.多孔陶瓷的制备、性能及应用:(Ⅰ)多孔陶瓷的制造工艺[J].陶瓷学报,2003,24(1):39—45.
    [113] Sonuparlak B., etal. United States Patent, US4777153, 1988.
    [114] 彭长琪,任国浩,彭华.用粉石英烧制多孔陶瓷的实验研究[J].武汉工业大学学报,1995,17(2):28-31.
    [115] 李月琴.多孔陶瓷的制备与性能研究:[硕士学位论文].广东,广州,华南理工大学图书馆,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700