高钙镁钛精矿制备高品质富钛料新工艺及理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对攀枝花钛精矿的特点和处理工艺中存在的问题,结合微波加热在冶金中应用的优点,本论文提出了微波处理高钙镁钛精矿制备高品质富钛料的新工艺,并进行了微波加热还原钛精矿、还原产物选矿分离小试和扩大试验研究,同时研究了钛精矿常规加热还原动力学、微波场中钛精矿碳热还原动力学以及初级富钛料常规加热和微波加热浸出动力学。采用钛精矿还原产物的XRD和吸波特性测试相结合的方法揭示了钛精矿还原过程的反应机理;通过对比常规加热和微波加热初级富钛料浸出和浸出动力学,发现微波浸出时残留铁、钙和镁的浸出率获得极大的提高,突出了微波处理高钙镁钛精矿的优势。
     论文把微波谐振腔微扰法测吸波特性的方法应用到钛精矿微波加热还原工艺中,发现了物料的吸波特性突变粒度范围和比例,合适的粒度和比例可以提高微波的能量利用率和减少试验量。测试结果表明,钛精矿、焦炭、钛精矿氧化产物、添加剂和标准物质的吸波特性依次减弱;高钙镁钛精矿合适的粒度为180~150μm或者90~74μm,结合升温过程确定了粒度为90~74μm;钛精矿的吸波特性好于椰壳炭、无烟煤和焦炭,并且三者配入量分别为20%、14%和5%的混合物发生了吸波特性的突变;钛精矿氧化产物的吸波特性弱于椰壳炭、焦炭和石墨,并且三者配入量分别为30%、30%和10%的混合物吸波特性较好;根据氧化产物的吸波特性得到微波氧化条件为:氧化温度800℃,氧化时间20min和钛精矿粒度为180~125μm。
     论文提出了微波加热还原-选矿分离-微波浸出制备高品质富钛料新工艺,并进行了单批球团料60kg公斤级微波还原扩大试验研究。论文通过条件试验得到了最佳工艺条件并在小试的基础上进行了单批球团料60kg公斤级微波还原扩大试验研究,结果表明,各项指标与小试吻合,说明了小试工艺参数可靠性和产物指标的稳定性。对微波加热还原产物进行了选矿分离试验研究,得到了选矿分离的最佳工艺条件并以小试最佳工艺参数进行了公斤级选矿分离扩大试验研究,确定了选矿分离联合工艺流程并获得TiO_2品位为72.01%初级富钛料和两种副产品铁粉。以获得的初级富钛料为浸出原料,进行了浸出试验研究,得到了合适的工艺条件。全工艺流程研究结果表明,所获得的富钛料指标为:二氧化钛品位为92.73%,钙镁含量为0.207%,铁含量为0.8%,MnO含量为0.13%,铁粉副产品的TFe含量为94.35%;微波加热还原钛精矿和常规加热还原相比,还原时间缩短了50%以上;微波浸出和常规浸出相比,微波浸出时间缩短了94~96%,铁浸出率是常规的1.82倍,镁的浸出率是常规的57.8倍。
     论文推导出在本试验条件下常规浸出和微波浸出初级富钛料动力学方程分别为:φ=K_0·r~(-1)·[HCl]~(0.4083)·exp(-55423.6/RT)(常规浸出)φ=K_0·r~(-1)·[HCl]~(0.5056)·exp(-44381.8/RT)(微波浸出)动力学试验研究表明,常规加热条件下,残留铁的浸出率最大为52.4%,钙镁几乎没有被浸出;微波加热条件下,残留铁的浸出率最大为95.8%,镁的浸出率最大为89.12%,钙的浸出率最大为52.2%。可见,微波加热浸出时铁、钙和镁浸出率有显著提高,符合从浸出渣中获得高品质富钛料的技术路线,体现了微波加热浸出对钙镁去除率高的优势。
     论文推导出钛精矿还原度为:R=4(16y+56x)(ΔW_Σ-f_(A-P)W-ΔW_(TiO_2)/7(16y+56x+112)×100%,发现氯化钠与硼酸钠对钛精矿还原存在协同催化的作用。以硅酸钠、氯化钠、硼酸钠和三者混合物为添加剂,进行了钛精矿碳热还原催化动力学研究。结果表明,四种添加剂还原反应过程均受铁晶粒成核和生长控制,发现氯化钠与硼酸钠对钛精矿的还原存在协同催化的作用,得到活化能为72.49kJ/mol,比单一的氯化钠或硼酸钠催化活化能分别降低39.54kJ/mol和28.25kJ/mol。表观活化能比两者都低,说明达到协同催化的效果。在1150℃,协同催化的还原度较硅酸钠催化提高47.03%。硅酸钠催化前期表观活化能为36.45kJ/mol,后期为135.14kJ/mol,随硅酸钠含量的增加,其还原度升高,在1150℃,还原度为22.74%。氯化钠催化的表观活化能为112.03kJ/mol,比硅酸钠催化钛精矿还原的后期活化能降低23.11kJ/mol。在1150℃,氯化钠催化的还原度比硅酸钠催化提高41.22%。硼酸钠催化的表观活化能为100.74kJ/mol,比硅酸钠催化钛精矿还原的后期活化能降低34.4kJ/mol。在1150℃,硼酸钠催化的还原度比硅酸钠催化提高32.21%。
     论文推导出微波场中钛精矿碳热还原铁晶粒生长动力学模型公式:lnkλ/cosθ(β_t~2-β_0~2)~(1/2)=-E/16.628T+C,该模型从晶粒粒径大小揭示铁晶粒成核和生长规律,并能获得激活能,对含铁矿石常规加热或微波加热铁晶粒生长具有适应性。研究表明,在铁晶粒生长过程中,铁晶粒粒径的lnd_t和1/T存在着线性关系,微波场中铁晶粒生长过程前期和后期的激活能分别31.04kJ/mol和69kJ/mol,与复合添加剂协同催化表观活化能比较接近。lnU和1/T也存在着线性关系,分别采用吸波特性参数的lnU和晶粒粒径大小的lnd_t描述铁晶粒生长具有相同的规律,即前期激活能小,后期变大。
     采用产物的吸波特性衰减电压等参数和产物的XRD分析表征了产物的吸波特性突变,发现组分含量的变化及新物相的生成是引起吸波特性突变原因。吸波特性和XRD分析表明,选矿分离产物吸波特性突变的原因是Fe、FeTi_2O_5和TiO_2等组分含量的变化所产生的。常规加热钛精矿还原反应开始有铁生成的温度为900℃,微波加热钛精矿还原反应开始有铁生成的温度为850℃。吸波特性的突变温度点具有相似规律,突变的原因是Fe的生成、FeTi_2O_5和TiO_2的含量变化引起吸波特性叠加所产生的。为吸波特性和XRD相结合的分析方法检测物质的生成和含量的变化提供借鉴作用。
     总之,本论文提出了一种微波处理高钙镁钛精矿制备富钛料的新工艺。新工艺拓宽了现有的攀枝花高钙镁钛精矿制备高品质富钛料工艺路线,对提高攀枝花钛精矿利用率具有较大的现实意义。论文采用的吸波特性和XRD测试相结合的方法,为微波在冶金中应用特别是钛冶金提取的应用提供理论依据。
In this thesis, a novel technology of preparing titanium-rich materials from ilmenite concentrate with high CaO and MgO content was put forward in order to deal with the characteristics of Panzhihua ilmenite concentrate, and serial problems in the ilmenite concentrate treatment processing, combined with the advantages of microwave heating in metallurgical application. At the same time, ilmenite concentrate reduction by microwave heating, small-scale and pilot-scale experimental studies of ore milling separation of reduction product, the reduction kinetics of ilmenite concentrate by conventional heating、kinetics of iron grain nucleation and growth in microwave field and leaching kinetics of primary titanium-rich materials by conventional and microwave heating were investigated. The reaction mechanism of ilmenite concentrate reduction was evaluated by using the measurement of microwave absorbing characteristics and XRD characterization of reduction product of ilmenite concentrate. Through the comparsions of the leaching and leaching kinetics of titanium-rich material by conventional and microwave heating, it was found that the leaching ratios of residual iron, CaO and MgO were enhanced greatly using microwave leaching, indicating the the advantages of dealing with ilmenite concentrate with high CaO and MgO content by microwave heating.
     The method of mearsuring microwave-absorbing characteristics using the technique of microwave cavity perturbation was used in the process of reduction of ilmenite concentrate by microwave heating, and obtained the particle size range and percent of materials microwave-absorbing characteristics mutation, and proper particle size and porcent could enhance the utilization ratio of microwave energy.It was found that the microwave-absorbing characteristics of ilmenite concentrate, carbon, oxdized ilmenite additive and standard material decrease in turn. The appropriate particle size for ilmenite concentrate with high CaO and MgO content was 180-150μm or 90-74μm. Taking into considerization of temperature rising process, the particle size was chosen to be 90-74μm. The microwave-absorbing characteristics of ilmenite concentrate was better than those of coconut carbon,coke and anthracite. And furthmore it was found that there was a mutation of microwave-absorbing characteristics for the ilmenite concentrate when the content of coconut carbon, anthracite and coke were 20%,14% and 5%, respectively. The microwave-absorbing characteristics of oxdized ilmenite concentrate was worse than those of coconut carbon, coke and anthracite. And furthmore it was found that the microwave-absorbing characteristics for the ilmenite concentrate was better when the mass content of coconut carbon, anthracite and coke were 30%, 30% and 10%, respectively. According to the microwave absorbing characteristics of oxidized product, the oxidation conditions by microwave heating were obtained as follow: the oxidization time was 20 min, oxidation temperature was 800℃and the particle size was 180-125μm
     A process of the titanium-rich material production by using microwave heating reduction, ore milling separation and microwave leaching was put forward on the basis of researches of microwave absorbing characteristics. The optimal conditions for ilmenite concentrate reduction by microwave heating were obtained through small scale reduction experiments by microwave heating. The expanding experiment of 60 kg was investigated on the basis of small scale experiments. Experimental results showed that the parameters obtained were in consistent with those of small scale experiments, indicating that the reliability and stability of small scale experiments. The optimal conditions for ore milling separation were obtained through the ore milling separation experiments of reductive product by microwave heating. The kilogram-scale expanding experiment for ore milling separation was carried out using process parameters obtained through small scale experiments, the union process of ore milling separation was determined and obtained primary titanium-rich materials with 72.01% TiO_2 and two kinds of iron by-products. The leaching experiment was carried out using primary titanium-rich materials obtained as leaching materials and got the optimal process conditions. The research results showed that the index of titanium -rich material is as follow: titanium dioxide 92.73%; the contents of CaO and MgO 0.207%; the content of iron 0.8%; the content of MnO 0.13%. The time needed for ilmenite concentrate reduction by microwave heating was shorten 50% compared with that of conventional heating. The leaching time by microwave heating was shorten 94~96% compared to that of leaching by conventional heating. The leaching ratios of Fe and Mg by microwave heating were 1.82 and 57.8 times than those by conventional heating.
     The kinetics equations of primary titanium-rich materials by conventional and microwave leaching under the present experimental conditions were deduced.φ=K_0·r~(-1)·[HCl]~(0.4083)·exp(-55423.6/RT)(conventional leaching)φ=K_0·r~(-1)·[HCl]~(0.5056)·exp(-44381.8/RT)(microwave leaching)
     Kinetic experiments showed that the maximum leaching ratio of residual iron by conventional heatingg was 52.4%, while Ca and Mg could not be leached out. The maximum leaching ratios of residual iron, Mg and Ca by microwave heating were 95.8%, 89.12% and 52.2%, respectively. It was apparent that the leaching ratios of Fe, Ca and Mg were enhanced greatly, which meets the technological procedure of obtaining high quality titanium-rich materials from leaching slag, indicating the advantages of removing Ca and Mg by microwave heating.
     The reduction degree expression equation was deduced asR=4(16y+56x)(ΔW_Σ-f_(A-P)W-ΔW_(TiO_2)/7(16y+56x+112)×100% on the basis of reduction degreedefinition and weight loss determination. The study on carbothermal reduction catalytic kinetics of ilmenite concentrate was carried out using sodium silicate, sodium chloride, sodium boratio and their mixture as additives. The results showed that four additives reductive reaction processes were all controlled by iron grain nucleation and growth. It was found that sodium chloride and sodium boratio had concerted catalysis effect on the reduction of ilmenite concentrate.The activation energy obtained was 72.49 kJ/mol, and was 39.54 and 28.25 kJ/mol lower respectively than those of single catalysis reduction using sodium chloride and sodium boratio, respectively, showing the concerted catalysis effect of sodium chloride and sodium boratio. The reduction degree by concerted catalysis was enhanced 47.03% than that of using sodium silicate at the temperature of 1150℃. The early and late apparent activation energy catalyzed by sodium silicate were 36.45 andl35.14 kJ/mol, respectively. With the content of sodium silicate increased, the reduction degree increased. The reduction degree was 22.74% at 1150℃. The apparent activation energy catalyzed by sodium chloride was 112.03 kJ/mol, and was 23.11 kJ/mol lower than that of late apparent activation energy catalyzed by sodium silicate. The reduction degree catalyzed by sodium chloride was enhanced 41.22% compared with that of using sodium silicate at temperature of 1150℃. The apparent activation energy catalyzed by sodium boratio was 100.74 kJ/mol, and was 34.4 kJ/mol lower than that of late apparent activation energy catalyzed by sodium silicate. The reduction degree catalyzed by sodium boratio was enhanced 32.21% compared with that of using sodium silicate at the temperature of 1150℃.
     According to the kinetics model of titanium dioxide grain nucleation and growth in solution, the iron grain growth kinetics model of ilmenite concentrate by carbothermal reduction in microwave field was deduced. Itwas lnkλ/cosθ(β_t~2-β_0~2)~(1/2)=-E/16.628T+C. This model revealed the rules of irongrain nucleation and growth from the particle size, and got the activation energy of iron grain nucleation and growth at different period. Besides, this model possessed adaptability to the iron grain nucleation and growth of iron ore by conventional heating and microwave heating. The kinetics of iron grain nucleation and growth in the ilmenite concentrate reduction process in microwave filed showed that there was linearity between lnd_t and 1/T in the process of iron growth. The early and late activation energy of in period iron growth was 31.04 kJ/mol and 69 kJ/mol, respectively and were close to the apparent activation energy of synergistic catalysis. There was linearity between lnU and 1/T. The rules of iron growth described by microwave-absorbing characteristics parameter lnU was the same to that described by lnd_t; and the early activation energy was small, then enlargedin the late period.
     Mutation of microwave-absorbing characteristics of reduction products and ore milling separation products by conventional heating and microwave heating was characterized by using microwave-absorbing characteristics attenuation voltage parameters and the products was also characterized by XRD. It was found that the reason of causing microwave-absorbing characteristics mutation was the changes of the contents of components and new phase formations. The results showed that the reasons for microwave-absorbing characteristics mutation of ore milling seoaration products were the content changes of Fe、FeTi_2O_5 and TiO_2.The temperature of Fe phase formation in ilmenite concentrate reduction reaction by conventional heating was 900℃, while the temperature of Fe phase formation in ilmenite concentrate reduction reaction by microwave heating was 850℃. There was similarity between microwave-absorbing characteristics mutation temperature by conventional heating and microwave heating. The resaons for mutation were the formation of Fe and overlapping of microwave-absorbing characteristics caused by changing of the contents of FeTi_2O_5 and TiO_2., which provided a guidance for measurement of the formations of new matters and changing of contents with the analysis method of combination of microwave-absorbing characteristics and XRD.
     Generally,a novel process of making titanium-rich material from ilmenite concentrate with high CaO and MgO content by microwave heating was put forward in this thesis. The quality of titanium-rich material-titanium dioxide and the contents of other imurities produced by new process met the requirements for materials used in the production of TiO_2 by chlorinated boiling process. The new process broadened the present process route for producing high quality titanium-rich material from ilmenite concentrate with high CaO and MgO contents in Panzhihua, Sichuan province, having great significance for ehancing the utilization ratio of ilmenite concentratein Panzhihua. The methods of mearsurement of microwave-absorbing characteristics and XRD characterization used in thesis provided the application of microwave in metallurgical industry, especially in titanium metallurgy with theorical basis.
引文
[1]莫畏,邓国珠,罗方承.钛冶金[M].北京:冶金工业出版社,1998
    
    [2]孙康.钛提取冶金物理化学[M].北京:冶金工业出版社,2001
    
    [3]《有色金属提取冶金手册》编辑委员会.有色金属提取冶金手册[M].稀有高熔点金属,北京:冶金工业出版社,1999
    
    [4]段成龙.钛资源形势分析及评价[J].四川有色金属,2000,2:31-36
    
    [5]S. Bulatovic,D. M. Wyslouzil. Process development for treatment of complexperovskite, ilmenite and rutile ores[J]. Minerals Engineening,1999, 12 (12):1407-1417
    
    [6]Xiong D. Research and commercialization of treatment of fine ilmenite with SLonmagnetic separators[J]. Magnetic and Electrical Separation, 2000, 10: 121-125
    
    [7]余家华,刘洪贵.国内外钛矿和富钛料生产现状及发展趋势[J].世界有色金属,2003,6:4-8
    
    [8]邓国珠.世界钛资源及其开发利用现状[J].钛工业进展,2002,5:9-12
    
    [9]王立平,王镐,高颀等.我国钛资源分布和生产现状[J].稀有金属,2004,28 (1):265-267
    
    [10]王志,袁章福.中国钛资源综合利用技术现状与新进展[J].化工进展,2004,4(23):349-352
    
    [11]孟繁奎.承德钛资源利用现状及展望[J].钛工业进展,2001,5:11-14
    
    [12]王荣铠,邹建新.云南和四川攀枝花地区钛资源状况及开发利用前景[J].钛工业进展,2000,1:6-9
    
    [13]徐丹风.浅论广西钛资源的开发及利用[J].广西化工,1990,22:1-23
    
    [14]杨佳,李奎,汤爱涛等.钛铁矿资源综合利用现状与发展[J].材料导报,2003,17(8):44-46
    
    [15]孙康.碱金属添加剂在碳热还原过程中的催化行为[D].硕士学位论文,东北大学,2000
    
    [16]邓国珠.富钛料生产现状和今后的发展[J].钛工业进展,2000,4:1-5
    
    [17]赖高惠.钛铁矿的处理方法专利综述[J].稀有金属,1986,10(2):136-140
    
    [18]范晓慧,郭宇峰,邱冠周等.钛精矿制取富钛料新工艺[J].矿产综合利用,??2002,4:3-7
    
    [19]孙康.钛铁矿的富集方法[J].钒钛,1995,5:12-22
    
    [20]韩明堂.如何发展我国的富钛料生产[J].钛工业进展,2001,1:4-7
    
    [21]邱冠周,郭宇峰.钛铁矿富集方法评述[J].矿产综合利用,1998,5:29-33
    
    [22]叶匡吾.挪威采用链篦机—回转窑的钛铁矿还原工艺[J].烧结球团,1994,19(1):40-42
    
    [23]Folma.G,Rierson.D.W.挪威链篦机工艺钛铁矿直接还原的研究[J].国外钢铁,1993,8:58-60
    
    [24]Cassidy P W, Clements R J. Ellis B A. Production of Synthetic Rutile-The AMCProcess[C]. W-Ti-RE-Sb'88 Proceedings of the First International Conference on theMetallurgy and Materials Science of W、Ti、Be and Sb, 1988: 282-285
    
    [25]M. H. H. Mahmoud, A. A. I. Afifi, I. A. Ibrahim. Reductive leaching ofilmenite ore in hydrochloric acid for preparation of synthetic rutile[J] .Hydrometallurgy, 2004, 73: 99-109
    
    [26]Marshall R. Lanyon, Thaung Lwin, Richard R. Merritt. The dissolution of ironin the hydrochloric acid leach of an ilmenite concentratio[J]. Hydrometallurgy,1999, 51 (3): 299-323
    
    [27]邓国珠,黄北卫,王雪飞.制取人造金红石工艺技术的新进展[J].钢铁钒钛,2004,25(1):44-50
    
    [28]徐刚,刘松利.人造金红石生产路线的探讨[J].重庆工业高等专科学校学报,2004,19(2):12-14
    
    [29]刘子威,黄焯枢,王康海.攀枝花钛铁矿流态化盐酸浸出的动力学研究[J].矿冶工程,1991,11(2):48-52
    
    [30]余文华,邓君,龚红军.钛精矿火法富集及直接还原方法的评价[J].攀钢技术,2001,2:25-29
    
    [31]马勇.人造金红石生产路线的探讨[J].钛工业进展,2003,1:20-23
    
    [32]胡克俊,锡淦,姚娟等.还原-锈蚀法生产人造金红石技术现状及攀钢采用该工艺可行性分析[J].钛工业进展,2006,23(4):17-22
    
    [33]程洪斌,王达健,黄北卫等.钛铁矿盐酸法加压浸出中人造金红石粉化率的研究[J].有色金属,2004,56(4):82-85
    
    [34]蒙钧,韩明堂.高钛渣生产现状和今后发展的看法[J].钛工业进展,1998,1:??12-13
    
    [35]余伟.攀枝花钛精矿制取富钛料补充试验研究[J].钛工业进展,2003,2:28-31
    
    [36]戴云朵,郭兴敏,张家芸.H_2~+注入法研究钛铁矿还原微观机理[J].北京科技大学学报,2007,29(4):373-376
    
    [37]赵沛,郭培民.低温还原钛铁矿生产高钛渣的新工艺[J].钢铁钒钛,2005,26(2):1-4
    
    [38]吴一,邹正光,尹传强.钛铁矿碳热反应原位合成GT35钢结硬质合金的热力学分析[J].材料工程,2006,1:12-15
    
    [39]邹正光,陈寒元,麦立强.钛铁矿原位碳热还原合成TiC/Fe复合材料的研究[J].硅酸盐学报,2001,29(3):199-203
    
    [40]邹止光,陈寒元,麦立强.钛铁矿原位碳热还原合成TiC/Fe的热力学过程及合成条件研究[J].无机材料学报,2001,16(5):903-908
    
    [41]张雪轻,李春,梁斌.钛铁矿机械活化强化浸出的研究[J].钢铁钒钛,2005,26(2):11-15
    
    [42]李春,梁斌,梁小明.钛铁矿的机械活化及其浸出动力学[J].四川大学学报(工程科学版),2005,37(1):35-38
    
    [43]李春,陈胜平,吴子兵等.机械活化方式对攀枝花钛铁矿浸出强化作用[J].化工学报,2006,57(4):832-837
    
    [44]王海北,蒋开喜,施友富.加压浸出生产金红石及熔盐电解制备海绵钛新工艺探索[J].中国工程科学,2004,6(12):91-93
    
    [45]Meredith R J. Engineer's Handbook of Industrial Microwave Heating Roger Meredith[M]. London: Institute of Electrical Engineering, 1998: 3-9
    
    [46]Katsumi T, Fumiyasu K, Masashi K. Development of the Microwave Heated Catalyst System[J]. JSAE Review, 1999, 20(3): 431-434
    
    [47]A1-Harahsheh M, Kingman S W. Microwave-assisted Leaching-AReview[J]. Hydrometallurgy. 2004, 73 (3-4): 189-203
    
    [48]黄铭.微波与颗粒物质相互作用的机理及应用研究[D].博士学位论文,昆明理工大学,2003
    
    [49]Ford J D, Pei D C T. High Temperature Chemical Processing via MicrowaveAbsorption [J]. J. Microwave Power, 1967, 2 (2): 61-64
    
    [50]Clark D E, Folz D C, West J K. Processing Materials with Microwave Energy??[J]. Mat. Sci. Eng. A-Struct. , 2000, 287(2): 153-158
    
    [51]赵秦生.微波在黑钨精矿的苏打烧结中的利用[J].稀有金属与硬质合金,2003,31(1):51-52
    
    [52]Pickles C A. Microwave Heating Behaviour of Nickeliferous Limonitic Laterite Ores[J]. Miner. Eng, 2004, 17 (6): 775-784
    
    [53]Standish N, Worner H K, Obuchowski D Y. Particle Size Effect in Microwave Heating of Granular-materials[J]. Powder Technol., 1991, 66(3): 225-230
    
    [54]Huang J H, Rowson N A. Hydrometallurgical Decomposition of Pyrite and Marcasite in a Microwave Field[J]. Hydrometallurgy, 2002, 64 (3): 69-79
    
    [55]苏永庆,刘纯鹏.微波加热下硫酸浸溶黄铜矿动力学[J].有色金属,2000,52(1):62-64
    
    [56]金钦汉.微波化学[M].北京:科学出版社,1999:17-30
    
    [57]Metaxas A C, Meredith RJ. Industrial Microwave Heating[M]. London:Peter Peregrinus, 1983: 440-467
    
    [58]Kingman S W, Vorster W, Rowson N A. The Influence of Mineralogy on Microwave Assisted Grinding[J]. Miner. Eng, 2000, 13 (3) : 313-327
    
    [59]彭金辉,郭胜惠,张世敏等.微波加热干燥钛精矿研究[J].昆明理工大学学报(理工版),2004,29(4):5-9
    
    [60]Kingman S W, Rowson N A. The Effect of Microwave Radiation on the Magnetic Properties of Minerals[J]. Microwave Power Electromagn Energy, 2003, 35 (2) : 141-150
    
    [61]刘全军,唐荣.微波预处理含碳超细粒金矿石的试验研究[J].国外黄金参考,1998,(3-4):136-141
    
    [62]刘全军,熊燕琴.微波在铁矿石选择性磨细中的应用机理研究[J].云南冶金,1997,26(3):25-28
    
    [63]Kingman S W, Rowoson N A. The Effect of Microwave Radiation on theMagnetic Properties of Minerals[J]. Microwave Power and Electromagnetic Energy,2000, 359 (2):141-150
    
    [64]Kingman S W, Rowoson N A. The Influence of Mineralogy on MicrowaveAssisted Grinding[J]. Miner. Eng, 2000, 13 (3) : 313-327
    
    [65]Amankwah R K, Khan A U, Pickles C A, et al.Improved Grindability and Gold??Liberation by Microwave Pre-treatment of a Free-milling Gold Ore[J]. Mineral Processing and Extractive Metallurgy, 2005, 114: 30-36
    
    [66]魏明安,张锐敏.微波处理难浸微细粒包裹金的试验研究[J].矿冶,2001,1:74-77
    
    [67]谷晋川,刘亚川.难选冶金矿微波顶处理研究[J].有色金属,2003,55(2):54-57
    
    [68]KruesiW H, Kruesi P R. Microwaves in laterite processing[C]. Extraction andRefimngof Nickel, 1986, 8(1): 17-20
    
    [69]Tao Dongping, Liu Chunpeng. Kinetics of oxidative dear senication of niccoliteore with microwave radiation[J]. China J. Met Sci Technol., 1992, 8(2): 115-117
    
    [70]Whittles D, Kingman S W, Reddish D. Application of Numerical Modelling forPrediction of the Influence of Power Density on Microwave-assisted Breakage[J].Int. J. Miner. Process, 2003, 68 (1-4): 71-91
    
    [71]Kingman S W, Vorster W, Rowson N A. The Influence of Mineralogy onMicrowave Assisted Grinding[J]. Miner. Eng,2000, 13 (3): 313-327
    
    [72]Standish, N, worner, H. Microwave application in the reduction of metal oxideswith carbon[J]. Iron and steel Maker, 1991, 18 (5): 59-61
    
    [73]酒井均.利用微波能碳热还原各种氧化矿和碳酸盐矿[J].西北大学学报(自然科学),1995,25(3):274-276
    
    [74]Standish N, Womer H. Microwave application in thereduction of metal oxideswith carben[J]. MicrowavePower and Electromagnetic Energy, 1990, 25 (3) :177-179
    
    [75]Hua Yixin, Liu Chunpeng. Microwave assisted carbothermic reduction ofilmenite. Acta Metallurgica Sinica (English Letter), 1996, 9 (3): 164-165
    
    [76]李钒,张梅,王习东.微波在冶金过程中应用的现状与前景[J].过程工程学报,2007,7(1):186-193
    
    [77]Standish N, Worner H K. Microwave Application in the Reduction of Metal Oxide with Carbon[J]. Iron and Steelmaker, 1991, 18 (5) : 59-61
    
    [78]Gomez I, Aguilar J A. Microwave for Reduction of Iron Ore Pellet by Carbon[J]. Mater. Res. Soc.Proc,1995, 366: 347-352
    
    [79]Wong W L E, Karthik S, Gupta M. Development of Hybrid Mg/Al_2O_3 Composites??with Improved Properties Using MicrowaveAssisted Rapid Sintering Route[J]. J.Mater. Sci, 2005, 40: 3395-3402
    
    [80]Standish N, Worner H K, Gupta G. Temperature Distribution in MicrowaveHeated Iron Ore-Carbon Composites[J]. Microwave Power and ElectromagneticEnergy, 1990, 25 (2) : 75-80
    
    [81]Yu A B. Reduction of stannic oxide with carbon by microwave heating[C]. 6thAus IMM Extractive Metallurgy Conference Metal, 1994: 225-232
    
    [82]Hassine M A. Synthesis of refractory metal carbide powders via microwavecarbonthermal reduction[J]. Int J Refract Met Hard Mater, 1995, 6: 353-358
    
    [83]Harton B n. Microwave treatment of ferrous slags[C]. Steelmaking Conf Proc,1994: 435-442
    
    [84]戴长虹,杨静漪,蔺玉胜.微波法合成SiC纳米微粉[J].青岛化工学院学报,1999,20(1):39-43
    
    [85]梁波,宁平,马晓利.微波辐照解毒铬渣的稳定性研究[J].有色金属,2003,55(3):95-98
    
    [86]樊希安,彭金辉,秦文峰等.微波辐射在提金活性炭技术中的应用[J].黄金,2003,24(5):33-35
    
    [87]彭金辉,刘纯鹏.微波辐射下PbS和PbO的升温速率及其反应动力学[J].中国有色金属学报,1993,3(1):25-27
    
    [88]丁伟安.微波辐射加热在湿法冶金中的应用[J].有色金属(冶炼部分),1997,3:43-44
    
    [89]彭金辉,刘纯鹏.微波场FeCl_3溶液浸出闪锌矿动力学[J].中国有色金属学报,1992,2(1):46
    
    [90]Peng Jinhui, Liu Chunpeng. The kinetics of ferric chloride leaching of sphalerite in the microwave fileld[J]. Trans.Nonferrous Met.Soc.China, 1992, 2(1): 46-49
    
    [91]彭金辉,刘纯鹏.微波辐照下硫化铅矿常压溶解动力学[J].中国有色金属学报,1993,45(1):68-71
    
    [92]Peng Jinhui, Liu Chunpeng. Kinetics of leaching sphalerite with pyrolusite simultaneously by microwave irradition[J]. Trans.Nonferrous Met.Soc.China, 1997, 7(3): 152-154
    
    [93]Ding W A. Leaching Behaviour of Complex Sulphide Concentratio with Ferric Chloride by Microwave Irradiation[J]. Rare Metals, 1997, 16(2) : 153-155
    
    [94]佟志芳,毕诗文,杨毅宏.微波加热在冶金领域中应用研究现状[J].材料与冶金学报,2004,3(2):117-120
    
    [95]Jianyang huang, Shangzhao Shi, Zhiyong Xu, et al. Oxygenate leaching ofcopper sulfide mineral under microwave-hydrothermal conditions[J]. Journal ofminerals & materials characterization & engineering, 2002, 1 (2): 111-119
    
    [96]J.H.Huang, N.A.Rowson. Hydrometallurgical decomposition of pyrite andmarcasite in a microwave field[J]. Hydrometallurgy, 2002, 64: 169-179
    
    [97]M.A1-Harahshe, S.W.Kingman. Microwave-assisted leaching-a review[J] .Hydrometallurgy, 2004, 73: 189-193
    
    [98]Hua Y, Lin Z, Yan Z. Application of Microwave Irradiation to Quick Leachingof Zinc Silicate Ore[J]. Miner. Eng,2002, 15 (6) : 451-456
    
    [99]林柞彦,华一新.高硅氧化锌矿硫酸浸出的工艺及机理研究[J].有色金属(冶炼部分),2003,5:9-11
    
    [100]华一新,谭春娥,谢爱军.微波加热低品位氧化镍矿石的FeCl_3氯化[J].有色金属,2000,52(1):59-61
    
    [101]D.Jafarifar, M.R.Daryanavard, S.Sheibani. Ultra fast microwave-assisted leaching for recovery of platinum from spent catalyst[J]. Hydrometallurgy, 2005, 78: 166-171
    
    [102]郭先健.微波作用下一水硬铝石塑铝土矿溶出[J].有色金属(季刊),1995,4:344-347
    
    [103]Yianatos J B.用微波激活铜硫酸盐化浸出辉铝精矿[J].Minerals Engineering,2001,14(11):209-211
    
    [104]Xia D K, Pickles C A. Microwave caustic leaching of eleertic arc furnace dust[J]. Minerals Engineering, 2000, 13 (1) : 79-94
    
    [105]Kingman S W, Rowson N A. Microwave Treatment of Minerals-a Review[J] .Miner. Eng, 1998, 11 (11) : 1083-1086
    
    [106]王力军,刘春谦.难处理金矿石预处理技术综述[J].黄金,2000,21(1):38-45
    
    [107]郑英,牛玉清,牛学军等.粘土矿物在微波辐射下的酸溶性试验[J].铀矿冶,2001,20(3):209-211
    
    [108]孙康.钛提取冶金物理化学[M].北京:冶金工业出版社,2001:45-80
    
    [109]彭金辉,杨显万.微波能技术新应用[M].云南科技出版社,1997:77-79
    
    [110]Campbell C K. Free space permittivity measurements on dielectric materials atmillimeter wavelengths[J]. IEEE Trans. Instrum. Meas, 1978, 7: 54-62
    
    [111]Jenkins S, Hodgetts T E, Clarke R N, et al. Dielectric measurements on ferenceliquids using automatic network analysers and calculable geometries[J]. Meas. Sci.Technol, 1990, 1: 691-702
    
    [112]Metaxas A C, Meredith R J. Industrial microwave heating[M]. Lundon: PeterPeregrinus Ltd. , 1983: 32-38
    
    [113]Julien A, Guillon P. Electromagnetic analysis of spherical dielectric shieldedresonators[J]. IEEE Transactions on microwave theory and technology, 1986, 34:723-729
    
    [114]Kobayashi Y, Fukuoka N, Yoshida S. Resonant modes for a shielded dielectricrod resonator[C]. Electron.commun. Japan, 1981, 64-B: 44-51
    
    [115]Krupka J, Milewski A. Accuratio method of the measurement of complexpermittivityof semiconductors in H(?) cylindrical cavity[J]. Electron. Technol.,1978, 11: 11-31
    
    [116]Ming Huang, Jinhui Peng, Jingjing Yang, et al. Microwave cavity perturbation technique for measuring the moisture content of sulphide minerals concentratios[J]. Minerals Engineering, 2007, 1(1): 92-94
    
    [117]Carter R G. Accuracy of microwave cavity perturbation measurements[J]. Microwave theory and techniques, IEEE Trans, 2001, 49 (5): 918-923
    
    [118]焦明春,李国栋.纳米镍铜铁氧体粒子的制备与微波吸收特性研究[J].功能材料,2005,33(2):295-297
    
    [119]黄孟阳,彭金辉,张世敏等.高钙镁钛精矿制取高品质富钛料新工艺研究[J].钢铁钒钛,2005,26(3):27-29
    
    [120]章小飞,胡波.粒度对陶瓷粉体介电损耗及微波加热性能的影响[J].江苏陶瓷,2005,38(3):7-9
    
    [121]Hua Yi-xin, Liu Chun-peng. Microwave-assisted carbotheermic reduction of ilmenite[J]. Acta Metallurgica Sinica (English Letter),1996, 9 (3) : 164
    
    [122]J Johnson, H Aral, J Douglas. Chlorination of Titaniferous Feedstocks[C]. MINPREX International Congress on Mineral Processing and Extractive Metallurgy??,2000: 189-194
    
    [123]D V Baubande, P R Menon, J M Juneja. Studies on the upgrading of Indianilmenites to synthetic rutile[J] . Indian journal of engineering and materialssciences, 2002: 275-281
    
    [124]Nathaniel ANACLETO, Oleg OSTROVSKI, S. GANGULY. Reduction ofManganese Ores by Methane-containing Gas[J]. ISIJ international, 2004, 44(10):74-81
    
    [125]孙康,马跃宇,白魁昌等.预氧化钛铁矿的还原反应历程[J].中国有色金属学报,1998,8(2):390-393
    
    [126]周兰花.钛精矿流态化预氧化工艺研究[D].硕士论文,重庆大学
    
    [127]周兰花.钛铁矿流态化氧化机理研究[J].有色金属(冶炼部分),2003,4:12-14
    
    [128]范晓慧,郭宇峰,邱冠周等.钛精矿制取富钛料新工艺[J].矿产综合利用,2002,4:3-7
    
    [129]张世敏,彭金辉,黄孟阳等.微波加热钛精矿含碳球团制取初级富钛料的研究[J].稀有金属,2006,30(1):78-81
    
    [130]兰尧中,刘纯鹏.催化还原碳钛磁铁矿反应动力学[J].金属学报,1996,32 (5):502-503
    
    [131]张永键,吴阳红,王厚忠等.碱金属碳酸盐对假板钛矿碳热还原反应的催化研究[J].有色矿冶,2001,17(4):22-24
    
    [132]吴剑辉,孙康,李伟等.碱金属氯化物对预氧化钛精矿碳热还原反应的协同催化作用[J].广东有色金属学报,2000,10(1):25-29
    
    [133]兰尧中.钛磁铁矿还原动力学及钛铁矿等离子熔炼新工艺研究[D].博士学位论文,昆明理工大学,1990
    
    [134]Folmo.G,叶匡吾。挪威采用链篦机-回转窑的钛精矿还原工艺[J].烧结球团,1994,19(1):40-44
    
    [135]马勇.钛精矿回转窑直接还原过程结圈可能性的探讨[J].湖南冶金,2003,31(1):21-24
    
    [136]郭光新.有关直接还原回转窑结圈的机理及其防止的论述[J].四川冶金,1989,2:151
    
    [137]徐刚,刘松利.钛精矿回转窑直接还原过程结圈问题的讨论[J].重庆工业高??等专科学校学报,2004,19(1):4-6
    
    [138]孙康.钛提取冶金物理化学[M].北京:化学工业出版社,2001
    
    [139]莫畏,邓国珠,罗方承.钛冶金[M].冶金工业出版社,北京:2001
    
    [140]孙康.碱金属添加剂在碳热还原过程中的催化行为[D].硕士学位论文,东北大学,2000
    
    [141]蒋武锋,刘玉全.粘结剂对含碳球团还原的影响[J].钢铁研究学报,2000,12(4):1-4
    
    [142]余文华,邓君,龚红军.钛精矿火法富集及直接还原方法的评价[J].攀钢技术,2001,2:25-29
    
    [143]叶匡吾.挪威采用链篦机-回转窑的钛铁矿还原工艺[J].烧结球团,1994,19(1):40-43
    
    [144]Folma.G,Rierson.D.W.挪威链篦机工艺钛铁矿直接还原的研究[J].国外钢铁,1993,8:58-60
    
    [145]胡克俊,锡淦,姚娟等.还原-锈蚀法生产人造金红石技术现状及攀钢采用该工艺可行性分析[J].钛工业进展,2006,23(4):17-22
    
    [146]邱冠周,郭宇峰.钛精矿富集方法评述[J].矿产综合利用,1998,5:29-33
    
    [147]Welham N J, Llewellyn D J. Mechanical enhancement ofthe dissolution of ilmenite[J]. Minerals Engeering, 1998, 11(9):827-841
    
    [148]J Chen Y, Williams J S, Campbell S J, et al. Increased dissoluticta oil-mteinduced by high-energy ball mining[J]. Materials Science and Engeering A, 1999, 2 (71): 485-490
    
    [149]邹俭鹏,尹周澜,陈启元等.机械活化黄铁矿的活性与失效性[J].中国有色金属学报,2002,12(1):201-204
    
    [150]李春,梁斌,石慧.钛铁矿的机械活化与失活[J].矿冶工程,2005,25(1):37-39
    
    [151]D.I.霍耶.Hicom磨机用于擦洗钛铁矿砂表面上的氧化铝和二氧化硅包覆层[J].国外金属矿选矿,2001,1:22-25
    
    [152]王春秀,戴惠新.微细粒嵌布金红石矿磨矿工艺的研究[J].广东有色金属学报,2001,11(2):88-91
    
    [153]戴惠新.细粒钛铁矿选矿工艺研究[J].国外金属矿选矿,1998,5:23
    
    [154]蒋朝谰.磁选理论及工艺[M].北京:冶金工业出版社,1994,9:54-56
    
    [155]文书明,张文彬.攀枝花钛磁铁矿颗粒在磁选机中的受力分析[J].金属矿山,2004,4:35-37
    
    [156]许新邦,磁.浮选流程回收攀钢微细粒钛铁矿的试验研究[J].矿冶工程,2001,21(2):37-40
    
    [157]北京矿冶研究总院分析室.矿石及有色金属分析手册[M].北京:冶金工业出版社,1990
    
    [158]《浸矿技术》编委会.浸矿技术[M].北京:原子能出版社,1994
    
    [159]Jacobus P. van Dyk, Nanne M. et al. Kinetics of ilmenite dissolution inhydrochloric acid[J].Hydrometallurgy.2002, 65: 31-36
    
    [160]van't Hoff J H. etudes de dynamique[J], Amsterdam: muller, 1884
    
    [161]滕大为,赵文.盐酸直接浸取钛铁矿的动力学研究[J].青岛化工学院学报:自然科学版,1995,16(1):38-42
    
    [162]徐舜,黄焯枢.硫酸浸取钛铁矿的动力学研究[J].矿冶工程,1993,13(1):44-48
    
    [163]Jackson, J. S, Wadsworth, M. E. A kinetic study of the dissolution of Allard Lake ilmenite in hydrochloric acid[J].Light Metals, 1976, 1: 481-540
    
    [164]戴朝嘉,陈洲溪,刘茂盛.用稀盐酸酸洗富钛料制取人造金红石的试验研究[J].钒钛,1994(2):31-35
    
    [165]金钦汉,张寒琦.微波技术在分析样品预处理中的应用[J].岩矿测试,1992,11(1-2):87-94
    
    [166]Olanipekun, E. O. A kinetic study of the leaching of a Nigerian ilmenite oreby hydrochloric acid[J]. Hydrometallurgy, 1999, 53: 1-10
    
    [167]Duncan J. F, Metson J. B. Acid attack on New Zealand ilmenite: The mechanismof dissolution[J]. New Zealand Journal of Science, 1982, 25: 103-109
    
    [168]Hisashi T. Bull. Chem. Soc.Jpn. 1982, 55: 1934-1938
    
    [169]JuddB, Palmer F R. Proc.Aust. Inst. Min. Metall. 1973, 24(7): 23-33
    
    [170]Imahashi M, Takamatsu N. The Dissolution of Titanium Minerals inHydrochloric and Sulfuric Acids[J]. Bull. chem. soc. Jpn, 1976, 49: 1549-1553
    
    [171]Barton A F M, Mcconnel S R. Rotating Disc Dissolution Ratios of IonicSolids[J]. J chem. soc. Faraday Trans I. 1979, 75: 971-983
    
    [172]王明华,都兴红,隋智通.H_2SO_4分解富钛精矿的反应动力学[J].中国有色??金属学报,2001,11(1):131-134
    
    [173]汪礼敏,马杰,李惠嫒.硫酸钛液热水解机理及动力学研究[J].稀有金属,1991,15(2):95-98
    
    [174]刘子威,黄焯枢,王康海.攀枝花钛铁矿流态化盐酸浸出的动力学研究[J].矿冶工程,1991,11(2):48-52
    
    [175]孙长圣.HCl非选择性浸出钛铁矿及计算机计算[J].稀有金属,1989,13 (6):456-459
    
    [176]张成刚,郑少华,杜长山等.钛铁矿硫酸浸出动力学研究[J].化学反应工程与工艺,2000,16(4):319-325
    
    [177]Han K. N, Rubcumintara T. Fuerstenau M C. Leaching Bchabiour of Ilimenite with Sulfuric Acid[J]. Metallurgical Transactions B, 1987, 68B: 325-330
    
    [178]Cservenyak. I. . Kelsall, G. H. , Wang, W. Reduction of TiIV species in aqueous sulfuric and hydrochloric acids ITitanium peciation[J]. Electrochimica Acta, 1996, 41 (4): 563-572
    
    [179]梁英教.物理化学[M].北京:冶金工业出版社,1983,255-257
    
    [180]Borowiec.Krzysztof Method to upgrade titania slag and resultingproduct[P].United States Patent,5830420,1998-11-03
    
    [181]杜挺.钢铁冶炼新工艺[M].北京:北京大学出版社,1994
    
    [182]Dutta S K.ISIJ Interanational[J].1993,10:372
    
    [183]汪琦著.铁矿石含碳球团技术[M].北京:冶金工业出版社,2006
    
    [184]Sohn H Y.化学冶金进展评论[M].北京:冶金工业出版社,1985
    
    [185]蒋武锋,李运刚,赵利国等.粘结剂对含碳球团还原的影响[J].钢铁研究学报,2000,12(4):1-4
    
    [186]高蓉杰,史可信,王之昌.金红石型二氧化钛粒子成长及动力学[J].无机材料学报,1998,13(5):729-732
    
    [187]徐如人,庞文琴.无机合成与制备化学[M].北京:高等教育出版社,2002,580-590
    
    [188]李海霞,纳米铜锰复合氧化物前驱物晶粒生长动力学研究[J].河北化工,2007,30(3):26-27
    
    [189]严军,纳米铁电PZT膜晶粒粗化动力学研究[J].黄石理工学院学报,2007,23(3):42-45
    
    [190]KingeryW D, Brown H K, Uhlmann D R. Introduction to Ceramics[M]. Academic Press, 1976: 137-139
    
    [191]shikawa K, Okada N, Takada K, et al. Nitial-stage of growth-process of lead titante fine particles[J]. JPN J Applphys, 1994, 133(98): 5412-5415
    
    [192]梅贤恭,袁明亮,左文亮等.高铁赤泥煤基直接还原中铁晶里成核及晶核长大动力学[J].中南工业大学学报,1996,27(2):159-163
    
    [193]梅贤恭,袁明亮,左文亮等.高铁赤泥煤基直接还原中铁晶里成核及晶核长大特性[J].中南矿冶学院学报,1994,25(6):696
    
    [194]Sakar S B, Ray H S. Nucleation and grain growth model for reduction of hematite to magnetite[J]. Trans ISIJ, 1988, 28: 1006-1010
    
    [195]Binder K. Monte Carlo Method in Statistical Phys[M]. Oxford, Clarenden Press, 1979: 261-264
    
    [196]闵乃本.晶体生长物理基础[M].上海:科技出版社,1982:332-350

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700