奥氏体不锈钢的低温液体渗氮耐蚀强化工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
奥氏体不锈钢有着出色的耐腐蚀性能,在化工、海洋、石油、仪表制造、食品生物、医学等行业中得到广泛的应用。它的使用量约占整个不锈钢产量的65%~70%。
     奥氏体不锈钢存在表面硬度低(250~300HV)、耐磨性和抗疲劳性能差。传统渗氮处理能有效提高奥氏体不锈钢的表面硬度,但同时出现Cr的偏析与CrN化合物生成,导致奥氏体不锈钢失去耐蚀属性。低温渗氮处理能够有效抑制CrN的析出,形成传统渗氮层相当硬度的S相,使奥氏体不锈钢的耐蚀性不降低。目前国内外针对奥氏体不锈钢低温渗氮处理工艺的研究主要靠离子法和气体法实现,液体法只有日本进行过研究。
     为开展奥氏体不锈钢低温液体渗氮工艺研究,本课题利用两种思路研制出可以在450℃以下使用的低温渗氮盐,均取得良好的效果。这两种盐CNO-浓度均超过了47%。
     使用自行研制出的低温渗氮盐,本文考察了液体渗氮温度对渗层的成分、组织、结构和性能的影响;430℃和440℃温度下液体渗氮时间对层深的影响;氢氟酸和电镀除钝预处理对层深的影响。比较了低温离子渗氮和液体渗氮的组织与结构的不同。对一些试验结果进行了更深入的探讨。
     在430℃对奥氏体不锈钢进行低温液体渗氮,相比传统液体渗氮,没有发生CrN的析出;渗层生长随着时间增长,8h后速度越来越慢;在3%NaCl溶液中,低温液体渗氮具有更高的维钝电流,但点蚀电位更高,抗点蚀能力增强;5%盐酸溶液浸泡试验表明低温液体渗氮试样耐蚀性与未处理试样相当,但是在6%FeCl3+0.05mol/LHCl溶液中耐蚀性要弱于未处理试样;环块磨损试验表明,低温液体渗氮试样和传统渗氮磨痕相似,摩擦系数低于未处理试样,磨损失重大大降低;低温液体渗氮层和低温离子渗氮层表面具有相似的结构,截面金相表明前者多了一层未知相,可能是碳原子固溶导致的。
Austenitic stainless steels have excellent corrosion resistance, are widely used in the chemical, marine, petrochemical, instrumentation, manufacturing, food biotechnology, medicine and other industries. The use accounts for about 65-70% of stainless steels production.
     Common austenitic stainless steels have the properties of low surface hardness、poor wear resistance and fatigue resistance. Conventional nitriding treatment can effectively improve the surface hardness of austenitic stainless steel, but the generated segregation of Cr and CrN results in loss of corrosion properties of austenitic stainless steels. Low-temperature nitriding treatment can inhibit the precipitation of CrN to form S phase with fairly hardness of conventional nitrided layer, so that the corrosion resistance of austenitic stainless steels will not reduce. At home and abroad, low-temperature nitriding of austenitic stainless steels is being studied with the process of gas or plasma, however, the liquid method has only been studied in Japan.
     To carry out liquid nitriding austenitic stainless steels study, the paper with two kinds of ideas develops low temperature nitriding salts,which can be used below 450℃, and has achieved good results. CNO-concentrations of both salts are more than 47%.
     Using self-developed low-temperature nitriding salt, the paper examines some aspects as below:the liquid nitriding temperature on the diffusion layer compositions, morphologies, structure and properties; time on the impact of layer thickness at 430℃and 440℃temperature of liquid nitriding; hydrogen fluoride and plating methods for removing the passive film on the impact of layer thickness; comparison of low temperature plasma nitriding and liquid nitriding on different microstructures and phases; more discussions in-depth on some test results.
     Austenitic stainless steels at 430℃low temperature of liquid nitriding, have no precipitation of CrN; nitriding layer growth increases over time,but the speed gets slower after 12h; in 3% NaCl solution, liquid nitriding samples have higher passive current, but higher pitting potential, and get pitting corrosion resistance enhanced; 5% hydrochloric acid solution immersion tests show that samples liquid-nitrided at low temperature and untreated samples have fairly corrosion resistance, but corrosion resistance of the former in 6%FeCl3+0.05mol/LHCl solution is weaker than untreated sample; ring-block wear test shows that the low temperature samples liquid-nitrided and conventional nitrided samples have similar wear scars,and both coefficients of friction are lower than the untreated sample, thus may reduce the wear weight loss greatly; low-temperature liquid and low temperature plasma nitrided surfaces have a similar structure of layer, cross-section metallographies show that the former gets one more layer of unknown phase, which probably results from carbon solution.
引文
[1]王正樵,吴幼林.不锈钢[M].北京:化学工业出版社,1991,1-10.
    [2]Sedriks,A.J.,不锈钢的腐蚀[M](吴剑译).北京:机械工业出版社,1986,4-7.
    [3]王泾文1Cr18Ni9Ti奥氏体不锈钢冷变形与再结晶组织及性能[J].热加工艺,2007,36(2):26-29.
    [4]T.S Byun, N Hashimoto, K Farrell. Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels[J]. Acta Materialia,2004, 52:3889~3899.
    [5]L. Peguet, B. Malki, B. Baroux. Effect of austenite stability on the pitting corrosion resistance of cold worked stainless steels[J]. Corrosion Science,2009,51:493~498.
    [6]黎桂江,彭倩,李聪,等.高压直流等离子氮化温度对316L不锈钢显微组织和磨损性能的影响[J].核动力工程,2007,28(5):54-57.
    [7]金属机械性能编写组.金属机械性能[M].北京:机械工业出版社,1978,附录一
    [8]石淑琴,李文英.合金化渗氮的组织性能与应用[J].新技术新工艺,1999.2:20-21.
    [9]C.X. Li, T. Bell. Corrosion properties of active screen plasma nitrided 316 austenitic stainless steel. Corrosion Science,2004,46:1527~1547.
    [10]赵程.离子渗碳温度对316L不锈钢渗层组织和性能的影响[J].材料热处理学报,2009,30(6):188-190.
    [11]材料导论(双语版)[EB/OL]. http://cmse.szu.edu.cn/jp/daolun/7.htm#e73,2010.10
    [12]韦习成.盐浴渗氮技术的现状和发展[J].热处理,2005,20(2):16-19.
    [13]刘如伟,孙希泰,赵蕾.盐浴渗氮发展概况[J].热加工工艺,1991,3:45-47.
    [14]Sharma M K, Saikia B K, Phukan A,et al. Plasma nitriding of austenitic stainless steel in N2 and N2-H2 dc pulsed discharge[J]. Surface & Coatings Technology, 2006,201:2407~2413
    [15]Jolanta Baranowska. Plasma Nitriding and Plasma immersion ion implantation[C]. Plasma Physics in Science and Technology Koszalin,2008
    [16]竹内栄一,藤木栄,高彩桥.渗氮层的耐磨性[J].热处理技术与装备,1981,06
    [17]武汉等离子技术研究所.离子渗氮技术培训教材.2000,11
    [18]王俊.08A1钢的QPQ盐浴复合处理技术的抗蚀性研究.[硕士学位论文].武汉:武汉理工大学,2007
    [19]包迪斯,皮利泽尔,福兰克http://wenku.baidu.com/view/26de43c69ec3d5bbfd0a 74d9.html,2011,5.
    [20]周鼎华.盐浴铁素体氮碳共渗的工艺控制[J].热处理,2008,01:54-57.
    [21]James R.Easterday, RE.http://www.finishing.com/kolene/qpq/,2011,5.
    [22]盐浴渗氮展示[OL].http://www.rimp.com.cn/main.asp?class=72,2011,5.
    [23]黎桂江,彭倩.316L奥氏体不锈钢QPQ盐浴复合处理后的显微组织分析[J].金属热处理,2007,32(10):23-25
    [24]任学敏1Cr18Ni9Ti不锈钢的化学热处理工艺与抗腐蚀性能研究[J].热力发电,2001,30(05):60-62.
    [25]Y. Cao, F. Ernst, G.M. Michal. Colossal carbon supersaturation in austenitic stainless steels carburized at low temperature[J]. Acta Materialia,2003,51:4171~ 4181.
    [26]T.Bell, C.X. Li.Low temperature nitriding and caburizing processes for stainless steel[J]. Advanced Materials & Processes,2002,6
    [27]C.X. Li, T. Bell. Corrosion properties of active screen plasma nitrided 316 austenitic stainless steel[J]. Corrosion Science,2004,46:1527~1547.
    [28]kolstering.http://www.ktech-ceramics.com/images/Kolster.pdf[EB/OL],2010,11.
    [29]张金芝.奥氏体不锈钢的一种新型表面硬化技术简介[J].国外金属热处理.2004,25(3):47.
    [30]段国炎.不降低耐蚀性的奥氏体及双相不锈钢的表面硬化技术[J].国外金属热处理.2001,22(6):13-15.
    [31]刘伟.奥氏体不锈钢低温离子渗碳表面硬化处理设备及工艺研究.[硕士学位论文].青岛:青岛科技大学,2006.
    [32]Kiyoshi Funatani. State of Japanese R & D in this field and recent Development results [J]. ASM HTS Symposium on Surface Hardening Of Corrosion Resistant Alloys,2010,6.
    [33]K. Ichii, K. Fujimura and T. Takase, Structure of the Ion-Nitrided Layer of 18-8 Stainless Steel. Technol. Rep. Kansas Univ,1986,27:135~144.
    [34]V.toshkov, R.Russev. On low temperature ion nitriding of austenitic stainless steel of 316[J]. Journal of Achievements in Materials and Manufacturing Engineering, 2007,7(25):71~74.
    [35]D.munter.Investigations on the corrosion behaviour and structural characterisitics of low temperature nitrided and caburised austenitic stainless steel[C],Transactions of materials and heat treatment proceedings of the 14th IFHTSE congress,2004,10.
    [36]C.Zhao, C.X. Li, H.Dong, T.Bell. Study on the active screen plasma nitriding and its nitriding mechanism. Surface & Coatings Technology,2006,201:2320~2325.
    [37]张国庆,沈丽如,金凡亚0Cr17Ni12Mo2奥氏体不锈钢低温等离子渗氮工艺研究[J].金属热处理,2008,33(8):138-141.
    [38]赵程.奥氏体不锈钢的低温离子氮碳共渗研究[J].中国表面工程,2003(5):23-26
    [39]扬州科创表面硬化处理有限公司[OL].http://www.kcbmyh.com/,2011.5.
    [40]周祎,龙发进,康光宇,李鑫鸿,马胜歌.低温离子渗氮时间对304不锈钢渗层的影响[J].金属热处理,2007,32(11):56-59.
    [41]赵程AISI316奥氏体不锈钢低温PC、PN和PC+PN表面硬化处理[J].青岛科技大学学报,2004,25(4):328-331.
    [42]贺芳,赵程,李艳,等.不锈钢离子渗碳后亮化处理方法对渗层形貌和性能的影响[J].材料保护,2009,42(5):63-64.
    [43]F.Ernst, Y.Cao, G.M. Michal, AH.Heuer.Carbide precipitation in austenitic stainless steel carburized at low temperature[J]. Acta Materialia,2007,55:1895~1906.
    [44]雷明凯,朱雪梅.奥氏体不锈钢表面改性层耐蚀性实验研究[J].金属学报,1999,35(10):1085-1089.
    [45]王亮,许晓磊,许彬,等.奥氏体不锈钢低温渗氮层的组织与耐磨性[J].摩擦学学报,2000,20(1):67-68
    [46]M. Tsujikawa, S. Noguchi, N.Yamauchi,et al. Effect of molybdenum on hardness of low-temperature plasma carburized austenitic stainless steel[J].Surface&Coatings Technology,2007,201:5102~5107.
    [47]K.H.Lo.Recent developments in stainless steels[J]. Materials Science and Engineering R,2009,65:39~104.
    [48]赵程.活性屏离子渗氮技术的研究[J].金属热处理,2004,29(3):1-3.
    [49]C.X. Li, T.Bell. Sliding wear properties of active screen plasma nitrided 316 austenitic stainless steel[J]. Wear,2004,256:1144~1152.
    [50]Low temperature surface carburizing of stainless steel.http://wwwl.eere.energy. gov/industry/imf/pdfs/project_presentations/11_Surfacepresentation.pdf[OL],2010,9
    [51]Carlos Eduardo Pinedo, Andre Paulo Tschiptschin. Low Temperature plasma Carburizing of AISI 316L austenitic stainless steel and AISI F51 duplex stainless steel[OL],http://www.nucleoinox.org.br/inox-2010/downloads/trabalhos/W8-Cement acaoPlasmaAust&Duplex(Heattech&PMT-USP).pdf.2011.
    [52]Abdel Salam Hamdy,Brian Marxb,Darryl Butt. Corrosion behavior of nitride layer obtained on AISI 316L stainless steel via simple direct nitridation route at low temperature[J]. Materials Chemistry and Physics,2011,126(3):507-514.
    [53]F.Borgioli,A.Fossati, G.Matassini,et al. Low temperature glow-discharge nitriding of a low nickel austenitic stainless steel[J]. Surface and Coatings Technology,2010,204 (21-22):3410~3417.
    [54]Drouet M,Stinville J C,Villechaise P. Surface evolution during low temperature plasma assisted nitriding of austenitic stainless steel[J].The European Physical Journal Applied Physics,2008,43:349~351.
    [55]A. Triwiyanto,S.Mridha,E.Haruman. Low Temperature Thermochemical Surface Treatment of Austenitic Stainless Steel for Improved Mechanical and Tribological[J]. Advanced Materials Research,2009:489.
    [56]Nagatsuka Kimiaki,Nishimoto Akio,西本明生,Low Temperature Plasma Nitriding of High Silicon Duplex Stainless Steel[C].PROCEEDINGS OF THE 17th IFHTSE CONGRESS,2009.
    [57]M.Kuczynska-Wydorska,J.Flis. Corrosion and passivation of low-temperature nitrided AISI 304L and 316L stainless steels in acidified sodium sulphate solution[J]. Corrosion Science,2008,50(2):523~533.
    [58]Akio Nishimoto,Katsuya Akamatsu. Effect of Pre-deforming on Low Temperature Plasma Nitriding of Austenitic Stainless Steel[C], Eleventh International Conference on Plasma Surface Engineering,2009.
    [59]Supply spring steel spring steel C67S C60S[OL]. http://mhgc0904.en.b2b168.com/ shop/supply/13966482.html,2010,11.
    [60]中华人民共和国国家技术监督局.GB/T 17897—1999不锈钢三氯化铁点腐蚀实验方法.北京:中国标准出版社,2010,5.
    [61]戴中兴.45、45CrNi钢硫氮碳共渗层组织特性的研究[J].湘潭大学自然科学学报,1993,2:102.
    [62]工业盐性质[OL]. http://cheman.chemnet.com/dict/zd.html
    [63]NaCl-KCl-LiCl三元共晶相图http://202.127.4.249:8080/page/showltem.vpage? id=cn.csdb.matsci.InorgNonmetMat.Pedtable/1730,2010,10.
    [64]Li2CO3-Na2CO3-K2CO3三元共晶相图http://202.127.4.249:8080/page/show Item.vpage?id=cn.csdb.matsci.InorgNonmetMat.Pedtable/1294,2010,10.
    [65]敖先权,王华,魏永刚.熔融碱金属碳酸盐特性及其在能源转换技术中的应用[J]化工进展,2007,26(10):1385.
    [66]汪明伟,邱世洵,吴海平.基盐软氮化渗层疏松的研究[C].安徽省科协年会机械分会,2008:240-244.
    [67]不锈钢系列知识[OL].http://wenku.baidu.com/view/3d39b3db6flaff00bed51e2e. html,2010,5.
    [68]Z.L.Zhang, T.Bell.Structure and corrosion resistance of plasma nitrided austenitic stainless steel[J]. surface engineering,1985,1(2):131~136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700