铝在KOH甲醇—水溶液中的腐蚀与电化学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝是一种性能优良的电化学能源体系的阳极材料。它电化学当量高,电极电位负,对环境友好,价格低廉,具有广阔的发展前景。在强碱性溶液中,铝具有良好的阳极溶解性能(放电性能),但其自腐蚀严重,释放出大量氢气,严重降低了铝阳极的库仑效率和材料利用率,并引发了安全问题。因此,如何在保持碱性铝阳极电化学活性的同时,有效地抑制其自腐蚀,已成为碱性铝电池进一步发展的关键。本文主要研究了表面处理和添加剂对铝在KOH甲醇-水溶液中腐蚀和电化学行为的影响。
     第一章中,主要概述了铝作为阳极材料的历史发展及各种铝电池,简要阐述了铝在碱性溶液中的电化学行为机理以及合金元素和缓蚀剂对铝阳极行为的影响。
     第二章中,简单介绍了整个工作的总体思路和研究方案。
     第三章中,首先研究了表面处理对铝在KOH甲醇-水溶液中的腐蚀和电化学行为的影响。实验表明:在含0.1 mol·L~(-1) NaOH,0.02 mol·L~(-1) Na_2SnO_3·4H_2O,0.015mol·L~(-1) CH_3COONa和0.02 mol·L~(-1) Na_4P_2O_7·10H_2O的混合溶液浸泡30 min后,铝电极的电化学性能有了很大改进。在含水量30%的4 mol·L~(-1 )KOH甲醇-水溶液中,表面处理过的铝电极的析氢腐蚀电流密度为1.12 mA·cm~(-2),远小于纯铝电极5.01 mA·cm~(-2)的腐蚀电流密度。在20 mA·cm~(-2)电流密度下,表面处理后的铝电极放电时间长达70 min,而纯铝电极却只有15 s。在前述研究的基础上,进一步研究了锡酸钠作为电解液添加剂对表面处理铝电极性能的影响。具有高析氢过电位的金属锡,通过在铝电极表面的沉积,可以减缓铝阳极在电解液中的腐蚀,同时能够有效地抑制铝阳极表面形成致密的钝化膜,从而提高其阳极活性。在电解液中加入0.0015 mol·L~(-1) Na_2SnO_3·4H_2O后,在50 mA·cm~(-2)电流密度下,表面处理电极的放电时间可达25 h,放电电压保持在.1400 mV左右,腐蚀电流密度为0.823mA·cm~(-2)。
     第四章中,主要研究了在不同温度下热处理对表面处理过的铝电极在碱性溶液中的电化学行为的影响。研究发现,经300℃热处理的铝电极显示了明显改进的放电性能。在含0.005 mol·L~(-1) Na_2SnO_3·4H_2O的含水量30%的4.0 mol·L~(-1)KOH甲醇-水溶液中,300℃热处理后的铝电极的腐蚀电流密度为1.20 mA·cm~(-2),尽管比未热处理前(1.02 mA·cm~(-2))稍微有所增大,但是在50 mA·cm~(-2)电流密度下,它的放电时间长达50 h,是未热处理前(25 h)的2倍。在热处理过程中,表面锡处理的铝电极的表面结构的改变可能是其显示良好恒流放电性能的原因。
Aluminum is a very attractive anode material for energy storage and conversion. Aluminum has promising development prospects because of its high electrochemical equivalent,negative electrode potential,environmentally friendly and low price. However,in air or aqueous solution aluminum is prone to passivation,and in strongly alkaline solution it corrodes severely with the production of large amount of hydrogen gases.This wasteful self-corrosion results in unacceptably high-energy loss during standby and the safe problem for the use of batteries.A successful electrode system should keep aluminum electrochemically active whilst reducing its corrosion rate to a low level.This paper mainly investigates the effects of surface treatment and stannate as an electrolyte additive on the corrosion and electrochemical performances of pure aluminum in alkaline methanol-water solutions.
     The first chapter reviewed the history of the usage of aluminum in electrochemical batteries as well as the development situation of various kinds of aluminum batteries.Then,the author briefly introduced the research development on the corrosion electrochemistry of pure aluminum and aluminum alloy,including corrosion methanism and inhitors,etc.
     In the second chapter,the general research ideas and experimental details of this dissertation were described.
     In the third chapter,the effects of surface treatment with stannate on the corrosion and electrochemical behaviors of pure aluminum in alkaline methanol-water solutions have been investigated.In our experimental range the aluminum electrode treated in the solution with 0.1 mol·L~(-1) NaOH,0.02 mol·L~(-1) Na_2SnO_3·4H_2O,0.015 mol·L~(-1) CH_3COONa and 0.02 mol·L~(-1) Na_4P_2O_7·10H_2O for 30 min showed relatively low corrosion rate and better discharge performance.In the 4.0 mol·L~(-1) KOH methanol-water mixed solutions with 30%water,the treated aluminum electrode presented much low corrosion rate(1.12 mA·cm~(-2)),compared with the untreated aluminum electrode(5.01 mA·cm~(-2));the discharge time of the treated aluminum electrode at the current density of 20 mA·cm~(-2) reached 70 min,while the discharge duration of the untreated aluminum electrode was only 15 s.Based on these,the electrochemical performances of the surface-modified aluminum anode in the stannate-containing 4.0 mol·L~(-1) KOH solutions with 30%water were further explored. The addition of Na_2SnO_3 in the electrolytes slightly inhibited the corrosion of the modified aluminum electrodes,resulting from the further deposition of metallic tin in the aluminum surfaces.The existence of elemental tin might facilitate the formation of the porous discharge product film on the discharged aluminum surface,notably enhancing the discharge performance of the modified aluminum anode in the stannate-containing electrolyte.In the 4.0 mol·L~(-1) KOH methanol-water solution containing 30%water and 0.0015 mol·L~(-1) Na_2SnO_3,the discharge time of the treated aluminum electrode at the current density of 50 mA·cm~(-2) reached 25 h,maintaining the discharge voltage below -1400 mV.
     In the fourth chapter,the effects of the heat treatment at various temperatures on the electrochemical behaviors of the surface-modified aluminum electrode in the alkaline solutions were investigated.In the 4.0 mol·L~(-1) KOH methanol-water solution containing 30%water and 0.005 mol·L~(-1) Na_2SnO_3,the surface-modified aluminum electrode heat-treated at 300℃presented much longer discharge time(50 h) than the corresponding electrode without heat treatment at the current density of 50 mA·cm~(-2), although its corrosion current density(1.20 mA·cm~(-2)) was slightly larger than that of the corresponding electrode without heat treatment.The obviously enhanced discharge performance of the surface-modified aluminum electrode heat-treated at 300℃might result from the change of its surface structure due to the heat treatment.
引文
[1]夏熙.电池工业与可持续发展战略.电池,1997,27(1):5-6.
    [2]任学佑.有色金属在电池工业中的应用前景.电池,1997,27(2):85-89.
    [3]蔡年生.电池用铝合金的开发应用.铝加工,1996,19(4):44-46.
    [4]G.W.Heise,E.A.Schumacher,N.C.Cahoon.The air-depolarized primary cell with caustic alkali electrolyte.Journal of The Electrochemical Society,94(1948):99.
    [5]S.Zaromb.The use and behavior of aluminum anodes in alkaline primary batteries.Journal of The Electrochemical Society,1962,109:1125-1130.
    [6]D.Linden(Ed.).Handbook of Batteries and Fuel Cells,McGrow-Hill,New York,1995.
    [7]Q.Hsavold,K.H.Johansen.The alkaline aluminum/hydrogen peroxide power source in the Hugin unmanned underwater vehicle.Journal of Power Sources,1999,80:254.
    [8]K.C.Emreg(u|¨)l,A.Abbas Aks(u|¨)t.The behavior of aluminum in alkaline media.Corrosion Science,2000(42):2051-2067.
    [9]王俊波.铝在碱性介质中的腐蚀及电化学行为:博士学位论文.杭州:浙江大学,2009.
    [10]Z.D.Wei,W.Z.Huang,S.T.Zhang.Carbon-based air electrode carrying MnO_2 in zinc-air batteries.Journal of Power Sources,2000(91):82.
    [11]S.Muller,K.Striebel,O.Haas.La_(0.6)Ca_(0.4)CoO_3:a stable and powerful catalyst for bifunctional air electrodes.Electrochimica Acta,1994(39):1661.
    [12]S.Licht.Chemistry of the aluminum/permanganate battery.The Electrochemical Society Inc.,1997:17.
    [13]S.Licht.Anovel aqueous aluminum/permanganate fuel cell.Electrochemistry Communications,1999(1):33-36.
    [14]S.Zaromb,in:Proceedings of the 4th Intersociety Energy Conversion Engineering Conference,1969,904-906.
    [15]G.D.Deuchars,J.R.Hill,J.H.Srannard,D.C.Stockburger.Oceans93,Engineering in Harmony with Ocean Proceedings,1993(2),158.
    [16]O.Hasvold,K.H.Johnsen,O.Mollestad.Battery system.Journal of Power Sources,1990,80:254.
    [17]B.M.L.Rao,S.A.Shah,J.Zekrewski,R.P.Hamlen.Proceedings of the Symposium on Autonomous Underwater Vehicle Technology,AUV90,1990:109.
    [18]S.Licht,C.Marsh.A novel aqueous dual-channel aluminum-hydrogen peroxide battery.Journal of The Electrochemical Society,1994,141:L61-L63.
    [19]蔡年生.现代鱼雷动力电池技术.舰船科学技术,2003,25(1):58-62.
    [20]奚碚华,夏天.鱼雷动力电池研究进展.鱼雷技术,2005,13(2):7-13.
    [21]S.Richt.Aluminum and sulfur electrochemical batteries and cells.US Pat:5431881.1995.
    [22]S.Licht,D.Peramunage.Novel aqueous aluminum/sulfur batteries.Journal of The Electrochemical Society,1993,140:L4-L6.
    [23]D.Peramunage,R.Dillon,S.Richt.Investigation of a novel aqueous aluminum/sulfur battery.Journal of Power Sources,1993,3(45):311-323.
    [24]S.Litch,C.Marsh.A novel aqueous aluminum ferricyanide battery.Journal of The Electrochemical Society,1992,139(12):L109-L111.
    [25]S.Litch,N.Myung.A high-energy and power novel aluminum/nickel battery.Journal of The Electrochemical Society,1995,142(10):L179- L182.
    [26]B.R.Boston,in:J.Braunstein,G,Mamantov,G.P.Smith(Eds.).Advances in Molten Salt Chemistry,Vol.1,Plenum Press,New York,1971:129.
    [27]K.W.Fung,G.Mamantov,in:J.Braunstein,G.Mamantov,G.P.Smith(Eds.).Advances in Molten Salt Chemistry,Vol.2,Plenum Press,New York,1973,199.
    [28]J.A.Plambeck,in:A.J.Bard(Ed.).Encyclopedia of Electrochemistry of the Elements,Vol.10,Marcel Dekker,New York,1976.233-255.
    [29]G.L.Holleck.The reduction of chlorine on carbon in AlCl_3-KCl-NaCl melts.Journal of The Electrochemical Society,1972,119:1158-1161.
    [30]J.S.Weaving,S.W.Orchard.Experimental studies of transition metal chloride electrodes in undivided cells using molten NaAlCl_4 electrolyte.Journal of Power Sources,1991,36:537-546.
    [31]H.A.Hjuler,S.Winbush,R.W.Berg,N.J.Bjerrum.A novel inorganic low melting electrolyte for secondary aluminum-nickel sulfide batteries.Journal of The Electrochemical Society,1989,136:901-906.
    [32]R.J.Gale,R.Osteryoung.Potentiometric investigation of dialuminum heptachloride formation in aluminum chloride-1-butylpyridinium chloride mixtures.Inorganic Chemistry,1979,18:1603-1605.
    [33] J. S. Wilkes, J. A. Levisky, R. A. Wilson, C. L. Hussey. Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorganic Chemistry, 1982, 21: 1263-1264.
    [34] G. F. Reynolds, C. J. Dymek. Primary and secondary room temperature molten salt electrochemical cells. Journal of Power Sources, 1985, 15: 109-118.
    [35] B. Vestergaard, N. J. Bjerrum, I. Petrushina, H. A. Hjuler, R. W. Berg, M. Begtrup. Molten triazolium chloride systems as new aluminum battery electrolytes. Journal of The Electrochemical Society, 1993, 140: 3108-3113.
    [36] J. J. Auborn, Y. L. Barberio. An ambient temperature secondary aluminum electrode: its cycling rates and its cycling efficiencies. Journal of The Electrochemical Society, 1985, 132: 598-601.
    [37] P. R. Gifford, J. B. Palmisano. A substituted imidazolium chloroaluminate molten salt possessing an increased electrochemical window. Journal of The Electrochemical Society, 1987,134:610-614.
    [38] P. R. Gifford, J. B. Palmisano. An Aluminum/Chlorine Rechargeable Cell Employing a Room Temperature Molten Salt Electrolyte. Journal of The Electrochemical Society, 1988, 135: 650-654.
    [39] M. Donahue, S. E. Mancini, L. Simonsen. Secondary aluminium-iron (III) chloride batteries with a low temperature molten salt electrolyte. Journal of Applied Electrochemistry, 1992, 22: 230-234.
    [40] L. Legrand, A. Tranchant, R. Messina. Electrodeposition studies of aluminum on tungsten electrode from DMSO2 electrolytes. Journal of The Electrochemical Society, 1994, 141: 378-382.
    [41] L. Legrand, A. Tranchant, R. Messina. Behaviour of aluminium as anode in dimethylsulfone-based electrolytes. Electrochimica Acta, 1994, 39: 1427-1431.
    [42] H. B. Shao, J. M. Wang, X. Y. Wang, J. Q. Zhang, C. N. Cao. Anodic dissolution of aluminum in KOH ethanol solutions. Electrochemistry Communications, 2004, 6: 6-9.
    [43] J. B. Wang, J. M. Wang, H. B. Shao, J. Q. Zhang, C. N. Cao. The corrosion and electrochemical behaviour of pure aluminum in alkaline methanol solutions. Journal of Applied Electrochemistry, 2007, 37: 753-758.
    [44]D.D.Macdonald,S.Real,S.I.Smedley,M.Urquidi-Macdonald.Evaluation of alloy anodes for aluminum-air batteries..Journal of The Electrochemical Society,1988,135:2410-2414.
    [45]R.D.Armstrong,V.J.Braham.The mechanism of aluminium corrosion in alkaline solutions.Corrosion Science,1996,38:1463-1471.
    [46]S.M.Moon,Su.I.Pyun.The formation and dissolution of anodic oxide films on pure aluminium in alkaline solution.Electrochimica Acta,1999,44:2445-2454.
    [47]K.C.Emreg(u|¨)l,A.A.Aks(u|¨)t.The Behaviour of Aluninum in Alkaline Media.Corrosion Science,2000,42:2051-2067.
    [48]M.L.Doche,J.J.Rameau,R.Duranda,F.Novel-Cattin.Electrochemical behaviour of aluminium in concentrated NaOH solutions.Corrosion Science,1999,41:805-826.
    [49]夏小庆.铝在氢氧化钠溶液中的电化学行为研究.化学研究与应用,2002,14:51-52.
    [50]S.M.Moon,S.I.Pyun.The Corrosion of Pure Aluminum during Cathodic Polarization in Aqueous Solutions.Corrosion Science,1999,39(2):399-408.
    [51]马正青,黎文献,王日初,余琨,李学海,吕霖娜,曹军记.铝合金阳极在碱性介质中的电化学性能.电源技术,2002,26(5):365-368.
    [52]舒方霞,王兆文,高炳亮,于旭光,邱竹贤.Al-Mn-Mg系铝合金阳极在NaOH溶液中的电化学行为.轻合金加工技术,2004,32(10):39-42.
    [53]游文,林顺岩.新型铝合金阳极在NaOH碱性溶液中的腐蚀行为.铝加工,2006,3:15-18.
    [54]尹延西,李卿,江洪林,王力军,罗远辉.高性能铝合金阳极碱性介质中的电化学性能.稀有金属材料与工程,2009,38:76-79.
    [55]A.R.Despic.Electrochemical power conversion.Proc of the 29~(th) IUPAC congress Cologne.Federal Republic of Germany.
    [56]M.C.Reboul,P.H.Gimenez,I.J.Rameau.A proposed activation mechanism for Al anodes.Corrosion,1984,40(2):366-377.
    [57]C.D.S.Tuck,J.A.Huter,G.M.Samans.The electrochemical behavior of Al-Ga alloys in alkaline and neutral electrolytes.Journal of The Electrochemical Society,1987,27:235-244.
    [58]I.Gurrappa.The surface flee energy and anode efficiency of aluminum alloys.Corrosion Prevention & Control,1993,40(4):111.
    [59]A.M.Adam,N.Borrsa.Electrochemical corrosion of an Al-Mg-Cr-Mn alloy containing Fe and Si in inhibited alkaline solutions.Journal of Power Sources,1996,58(2):197-203.
    [60]P.F.Shi.Studies on the anodic behavior of aluminum electrodes in alkaline solution.Journal of Power Sources,1993,45:105-109.
    [61]张信义,火时中,王元玺.合金元素对Al-Zn-In-Ga合金牺牲阳极性能的影响.材料保护,1996.
    [62]E.G.Dow,R.R.Bessette G.L.Seeback.Enhanced electrochemical performance in the development of the aluminum/hydrogen peroxide semi-fuel cell.Journal of Power Sources,1997(65):207-212.
    [63]D.D.Macdonald,C.English.Development of anodes for aluminum/air batteries solution phase inhibition of corrosion.Journal of Applied Electrochemistry,1990,20(3):405-417.
    [64]Z.Q.Ma,L.Zuo,X.Pang,S.M.Zeng.Effects of electrolyte components on properties of Al alloy anode.Transactions of Nonferrous Metals Society of China,2009,19:160-165.
    [65]X.T.Chang,J.M.Wang,H.B.Shao,J.B.Wang,X.X.Zeng,J.Q.Zhang,C.N.Cao.Corrosion and anodic behabiors of pure aluminum in a novel alkaline electrolyte.Acta Physico-Chimica Sinica,2008,24(9):1620-1624.
    [66]Y.G.Tang,L.B.Lu,H.W.Roesky,L.W.Wang,B.Y.Huang.The effect of zinc on the aluminum anode of the aluminum-air battery.Journal of Power Sources,2004,138:313-318.
    [67]万伟华,唐有根,卢周广.碱性电解液中的添加剂对铝阳极行为的影响.电池,2008,38(1):40-42.
    [68]李振亚,易玲,刘稚蕙,杨林,苏景新.卤离子对Al-Sn-Ga合金阳极的活化作用.应用化学,2001,18(12):983-986.
    [69]余祖孝,郝世雄,龚敏.微量HgCl_2对铝阳极电化学行为的影响.电池,2005,35(5):368-370.
    [70]马正青,黎文献,肖丁德,余琨.新型铝合金阳极电化学性能与组织研究.材料保护,2002,35(5):10-12.
    [71]张燕,宋玉苏.邻氨基苯酚在Al-Ga-Sn-Mg/KOH环境中的抑氢作用.中国腐蚀与防护学报,2005,25(6):369-372.
    [72]M.A.Amin,S.S.A.EI-Rehim,E.E.F.El-Sherbini,O.A.Hazzazi,M.N.Abbas.Polyacrylic acid as a corrosion inhibitor for aluminum in weakly alkaline solutions.Part Ⅰ:Weight loss,polarization,impedance EFM and EDX studies.Corrosion Science,2009,51: 658-667.
    [73]A.S.Fouda,A.A.Al-Sarawy,F.Sh.Ahmed,H.M.El-Abbasy,Corrosion inhibition of aluminum 6063 using some pharmaceutical compounds.Corrosion Science,2009,51:485-492.
    [74]宋玉苏,张燕.锡酸钠与邻氨基苯酚对铝阳极的共同抑氢作用.电源技术,2005,29(10):655-658.
    [75]王晓燕.铝在碱性介质中的缓蚀与电化学行为研究.浙江大学硕士学位论文,2005.
    [76]H.B.Shao,J.M.Wang,J.Q.Zhang,C.N.Cao.The cooperative of calcium ions and tartrate ions on the corrosion inhibition of pure aluminum in an alkaline solution.Materials Chemistry and Physics,2002,77:305-309.
    [77]M.L.Doche,C.E.Novel,R.Durand.Characterization of different grades of aluminum anodes for aluminum/air batteries.Journal of Power Sources,1997,65(1-2):197-205.
    [78]J.B.Wang,J.M.Wang,H.B.Shao,X.T.Chang,L.Wang,J.Q.Zhang,C.N.Cao.The corrosion and electrochemical behavior of pure aluminum in additive-containing alkaline methanol-water mixed solutions.Materials and Corrosion,2009,60(4):269-273.
    [1] Q. F. Li, N. J. Bjerrum. Aluminum as anode for energy storage and conversion: a review. Journal of Power Sources, 2002, 110: 1-10.
    [2] J.S. Zhang, M. Klasky, B.C. Letellier. The aluminum chemistry and corrosion in alkaline solutions. Journal of Nuclear Materials, 2009,384: 175.
    [3] J. B. Wang, J. M. Wang, H. B. Shao, J. Q. Zhang, C. N. Cao. The corrosion and electrochemical behaviour of pure aluminum in alkaline methanol solutions. Journal of Applied Electrochemistry, 2007, 37: 753-758.
    [4] X. T. Chang, J. M. Wang, H. B. Shao, J. B. Wang, X. X. Zeng, J. Q. Zhang, C. N. Cao. Corrosion and anodic behabiors of pure aluminum in a novel alkaline electrolyte. Acta Physico-Chimica Sinica, 2008, 24(9): 1620-1624.
    [5] S. Z. E. Abedin, A. O. Saleh. Characterization of some aluminum alloys for application as anodes in alkaline batteries. Joumal of Applied Electrochemistry, 2004, 34: 331-335.
    [1]Q.F.Li,N.J.Bjerrum.Aluminum as anode for energy storage and conversion:a review.Journal of Power Sources,2002,110:1-10.
    [2]D.D.Macdonald,S.Real,S.I.Smedley,M.Urquidi-Macdonald.Evaluation of alloy anodes for aluminum-air batteries.Journal of The Electrochemical Society,1988,135:2410-2414.
    [3]S.Z.E.Abedin,A.O.Saleh.Characterization of some aluminum alloys for application as anodes in alkaline batteries.Journal of Applied Electrochemistry,2004,34:331-335.
    [4]王晓燕.铝在碱性介质中的缓蚀与电化学行为研究.浙江大学硕士学位论文,2005.
    [5]H.B.Shao,J.M.Wang,J.Q.Zhang,C.N.Cao.The cooperative of calcium ions and tartrate ions on the corrosion inhibition of pure aluminum in an alkaline solution.Materials Chemistry and Physics,2002,77:305-309.
    [6]J.B.Wang,J.M.Wang,H.B.Shao,X.T.Chang,L.Wang,J.Q.Zhang,C.N.Cao.The corrosion and electrochemical behavior of pure aluminum in additive-containing alkaline methanol-water mixed solutions.Materials and Corrosion,2009,60(4):269-273.
    [7]C.S.Lin,H.C.Lin,K.M.Lin,W.C.Lai.Formation and properties of stannate conversion coatings on AZ61 magnesium alloys.Corrosion Science,2006,48:93-109.
    [8]F.Zucchi,A.Frignani,V.Grassi,G.Trabanelli,C.Monticelli.Stannate and permanganate conversion coatings on AZ31 magnesium alloy.Corrosion Science,2007,49:4542-4552.
    [9]K.C.Emreg(u|¨)l,A.A.Aks(u|¨)t.The Behaviour of Aluninum in Alkaline Media.Corrosion Science,2000,42:2051-2067.
    [10]Y.G.Tang,L.B.Lu,H.W.Roesky,L.W.Wang,B.Y.Huang.The effect of zinc on the aluminum anode of the aluminum-air battery.Journal of Power Sources,2004,138:313-318.
    [11]O.R.Brown,J.S.Whitley.Electrochemical behaviour of aluminum in aqueous caustic solutions.Electrochimica Acta,1987,32(4):545-556.
    [12]M.L.Doche,J.J.Rameau,R.Duranda,F.Novel-Cattin.Electrochemical behaviour of aluminium in concentrated NaOH solutions.Corrosion Science,1999,41:805-826.
    [1] Q. F. Li, N. J. Bjerrum. Aluminum as anode for energy storage and conversion: a review. Journal of Power Sources, 2002, 110: 1-10.
    [2] J.S. Zhang, M. Klasky, B.C. Letellier. The aluminum chemistry and corrosion in alkaline solutions. Journal of Nuclear Materials, 2009,384: 175.
    [3] J. M. Wang, J. B. Wang, H. B. Shao, X. X. Zeng, J. Q. Zhang, C. N. Cao. Corrosion and electrochemical behaviors of pure aluminum in novel KOH-ionic liquid-water solutions, Materials and Corrosion, 2009, 60(12): 977-981.
    [4] J. M. Themlin, M. Chtaib, L. Henrard, P. Lambin, J. Darville. Characterization of tin oxides by x-ray-photoemission spectroscopy. Physics Review B, 1992(46): 2460.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700