微/纳米尺度晶态铁氧体的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁氧体是世界上应用最早的磁性材料,因具有软磁、硬磁、矩磁、压磁等多种磁性能被广泛应用于磁记录材料、通讯、传感、军事等领域。本文对利用纳米铸塑法(又称硬模板法)和水热-熔盐法制备晶态钴铁氧体进行了探索,主要做了如下工作:
     (一)、基于纳米铸塑理论,以自制的两种介孔氧化硅SBA-15和KIT-6为硬模板,不添加任何络合剂,使低熔点的硝酸钴和硝酸铁在模板孔内分解,制备出介孔复合金属氧化物CoFe2O4。探究了浸渍方法及次数、模板与前驱体的配比等对产物结构的影响;优化实验条件,按金属前驱物与模板质量比为X=3经两步溶液浸渍制备出了大比表面积(以SBA-15为模板, 155.7 m2/g)、高结晶度的介孔钴铁氧体;并通过TG-DTA等分析,探究了氧化硅模板在钴铁氧体成相中的关键作用;测试结果表明样品具有良好的软磁性,矫顽力低至106.5Oe (以SBA-15为模板)。
     (二)、采用熔盐法晶体生长技术,以水热法制备的钴铁氧体纳米颗粒为前驱体制备出了大尺寸(0.5~1.5μm)、正八面体形貌的钴铁氧体晶体,探索了前驱体、反应温度、保温时间、熔盐种类及用量等因素对产物形貌的影响。实验得出:在NaCl/KCl体系中,以水热反应24样品为前驱体,当反应温度为1000oC、保温时间为5h、熔盐与前驱体质量比R=5,八面体形貌晶体产率较高,粒径较均匀;磁性、吸波性能分析表明产物的矫顽力、吸波性能较前驱体有所降低。
Ferrites is a conventional magnetic materials, which has been widely used in many areas, such as message recording, communication, magnetc sensor, aviation etc. In this paper, two kinds of method have been used to prepare cobalt ferrite, the main work been done is as follows:
     Firstly, based on the nanocasting approach, large specific surface area, highly crystallined mesoporous CoFe2O4 were synthesized through the pyrolysis of hybrid metal nitrates within the pores of two kinds of mesoporous silica, SBA-15 and KIT-6, respectively. Impregnation process, mixture ratio of templates and precursors and other factors that may affect the structure of the product were investigated; samples with a large specific surface area (as high as 155.7 m2/g for the sample templated by SBA-15) and high crystallinity were obtained under optimized conditions, via two times of impregnation according to the mass ratio of precursors/templates X=3; TG-DTA and other characterization method revealed the important part that the silica templates played in the formation of cobalt ferrite phase; magnetic test revealed good magnetic properties of the mesoporous ferrite samples with a rather low coercitivity due to the presence of a prominent proportion of superparamagnetic particles.
     Secondly, molten salt has been reported to be an excellent media to prepare large crystals with special morphology. Via the molten salt synthesis (MSS) route, well defined octahedral CoFe2O4 crystals with the side length of about 0.5~1.5μm were obtained in a series of molten salt systems, using CoFe2O4 nano particles pre-synthesized through the hydrothermal process as the precursor. It was found that keeping the reaction temperature at 1000 oC for 5h and with a mass ratio of R=5 were the optimal conditions to prepare uniform octahedral ferrite crystals in NaCl/KCl system; furthermore, there were great changes in magnetic and wave-absorbing properties of the samples after molten salt growth, comparing with the precursor.
引文
[1]李茹民.掺杂纳米铁氧体的合成与磁性能研究[D].哈尔滨:哈尔滨工程大学, 2007.
    [2]周志刚.铁氧体磁性材料[M].北京:科学技术出版社, 1981, 33-36,
    [3]周永洽等(译).现代磁性材料和应用[M].北京:化学工业出版社, 2002, 194~198.
    [4]都有为.铁氧体[M].南京:江苏科学技术出版社, 1996, 11.
    [5]严东生,冯端.材料新星-纳米材料科学[M].湖南科学技术出版社, 1997.
    [6]张立德,牟季美.纳米材料和纳米结构[M].科学出版社, 2001.
    [7]张立德,牟季美.纳米材料学[M].辽宁科技出版社, 1994.
    [8]陈改荣.纳米材料的特性及进展[J].平原大学学报, 2000, 17(4): 41.
    [9]马昌贵.纳米磁性材料及器件的进展[J].磁性材料及器件, 2002, 33(5): 36~40.
    [10]刘献明,吉保明.纳米结构铁氧体磁性材料的制备和应用[J].应用化工, 2008, 37(6):685~687.
    [11] Ayyappan S. Effect of digestion time on size and magnetic properties of spinel CoFe2O4 nanoparticles[J]. J. Phys. Chem. C, 2009, 113(2): 590~596.
    [12] Zhang H. Cobalt ferrite nanorings: Ostwald ripening dictated synthesis and magnetic properties[J]. Chem. Commun., 2008, 13(43): 5648~5650.
    [13] Ersen O. Microstructural investigation of magnetic CoFe2O4 nanowires inside carbon nanotubes by electron tomography[J]. Nano. Lett., 2008, 8(4): 1033~1040.
    [14] Yan L. Nanogrowth twins and abnormal magnetic behavior in CoFe2O4 epitaxial thin films[J]. J. Appl. Phys., 2008, 104(12): No. 123910.
    [15] Wang Z L. Preparation of ferrite MFe2O4 (M = Co, Ni) ribbons with nanoporous structure and their magnetic properties[J]. J. Phys. Chem. B, 2008, 112(36): 11292~11297.
    [16]王琦,岳云龙,李晓枫.复相铁氧体空心球的制备[J].硅酸盐通报, 2007, 26(6) : 1073~1077.
    [17] Cannas C, Ardu A, Musinu A, et al. Spherical Nanoporous Assemblies of Iso-Oriented Cobalt Ferrite Nanoparticles : Synthesis, Microstructure, and Magnetic Properties [J]. Chem. Mater., 2008, 20(20): 6364~6371.
    [18] Gu M, Yue B, Bao R L, et al. Template synthesis of magnetic one-dimensional nanostructured spinel MFe2O4 (M=Ni, Mg, Co) [J]. Mater. Res. Bull., 2009, 44(6): 1422~1427.
    [19] Wang Z L, Liu X J, Lv M F, et al. Preparation of Ferrite MFe2O4 (M = Co, Ni) Ribbons with Nanoporous Structure and their Magnetic Properties[J]. J. Phys. Chem. B., 2008, 112(36): 11292~11297.
    [20]王志良,王步云.钡铁氧体磁记录材料发展概况[J].信息记录材料, 2003, 4 (4): 53~57.
    [21]李德才.磁性液体理论及应用[M ].北京:科学出版社, 2003: 280.
    [22] Tartaj P, Morales M P, Verdaguer S, et al. The preparation of magnetic nanoparticles for applications in biomedicine[J]. J. Phys. D: Appl. Phys., 2003, 36 (13): 182~197.
    [23] Inui T, Konishi K, Oda K. Fabrications of broad-band RF-absorber composed of planar hexagonal ferrites[J]. IEEE Trans. Magn., 1999, 35 (5): 3148~3150.
    [24]苗继斌.模板法制备介孔材料及其表征[D].合肥:安徽大学, 2007.
    [25] Wang Y Q, Zhang Z J, Zhu Y, et al. Nanostructured VO2 photocatalysts for hydrogen production [J]. ACS Nano., 2008, 2(7): 1492~1496.
    [26] Williams G, Seger B, Kamat P V. TiO2-Graphene Nanocomposites. UV assisted photocatalytic reduction of graphene oxide[J]. ACS Nano., 2008, 2(7): 1487~1491.
    [27] Jose R, Thavasi V, Ramakrishna S. Metal oxides for dye-sensitized solar cells[J]. J. Am. Ceram. Soc., 2009, 92(2): 289~301.
    [28] Hu J S, Zhong L S, Song W G, et al. Synthesis of Hierarchically Structured Metal Oxides and their Application in Heavy Metal Ion Removal[J]. Adv. Mater., 2008, 20(15): 2977~2982.
    [29] Sm?tt J H, Schüwer N, J?rn M ,et al. Synthesis of Micrometer Sized Mesoporous Metal Oxide Spheres By Nanocasting[J]. Microporous Mesoporous Mater., 2008, 112(1~3): 308~318.
    [30] Tricoli A, Graf M, Pratsinis S E. Optimal Doping for Enhanced SnO2 Sensitivity and Thermal Stability [J]. Adv. Funct. Mater., 2008, 18(13): 1969~1976.
    [31] Huang Z. Supercritical fluid extraction of the organic template from synthesized porous materials: effect of pore size[J]. J. Supercrit. Fluids, 2005, 35(1): 40~48.
    [32] Yang L M. Simultaneous removal of copolymer template from SBA-15 in the crystallization process[J]. Microporous Mesoporous Mater., 2005, 81(1~3): 107~114.
    [33] Jiao F, Bruce P G. Two- and three-dimensional mesoporous iron oxides with microporous walls [J]. Angew. Chem. Int. Ed, 2004, 43(44): 5958~5961.
    [34] Martin C R. Nanomaterials: A membrane-based synthetic approach[J]. Science, 1994, 266(5193): 1961~1966.
    [35] Ryoo R, Joo S H, Jun S, et al. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation [J]. J. Phys. Chem. B, 1999, 103(37): 7743~7746.
    [36]何新华,廖石勇,孙洋,萧伟航.锌铁氧体与二氧化硅复合材料溶胶-凝胶法制备工艺优化研究[J].中国陶瓷, 2001, 37(5):16~19.
    [37]熊钢,杨绪杰. X型六角晶系钡铁氧体纳米晶的制备和表征[J].高等学校化学报, 1998, 19(9):1467~1470.
    [38]李春,何良惠,李升章.镍锌铁氧体粉体合成新方法[J].四川有色金属, 2000, 2: 49~52.
    [39] Radwan M, Rashad M M, Hessien M M. Synihesis and characterization of barium hexafetrite nanopartieles[J]. J. Mater. Process. Technol., 2007, 181(l~3): 106~109.
    [40] Verma S, Joy P A, Khollam Y B, et al. Synthesis of nanosized MgFe2O4 powders by microwave hydrothermal method[J]. Mater. Lett., 2004, 58(6):1092~1095.
    [41] Yu S H, Fujino T, Yoshimura M. Hydrothermal synthesis of ZnFe2O4 ultrafine particles with high magnetization[J]. J. Magn. Magn. Mater., 2003, 256(1): 420~424.
    [42]赵九蓬,李垚,赫晓东等.自蔓廷高温合成Ni-Zn铁氧体反应机制的研究[J].硅酸盐学报, 2002, 30(1): 9~13.
    [43]岳振星.柠檬酸盐凝胶的自燃烧与铁氧体纳米粉合成[J].硅酸盐学报, 1999, 27(4): 466~470.
    [44] Sun S, Zeng H. Monodisperse MFe_2O_4 (M=Fe, Co, Mn) nanoparticles[J]. J. Am. Chem. Soc, 2004, 126(1): 273~279.
    [45]肖旭贤,黄可龙,卢凌彬等.微乳液法制备纳米CoFe2O4[J].中南大学学报:自然科学版, 2005, 36(1): 65~68.
    [46] Yoon K H, Chop Y S, Lee D H, et al. Powder characteristics of Pb(Mg_(1/3)Nb_(2/3))O)3 prepared by molten salt synthesis [J]. J. Am. Ceram. Soc., 1993, 7(6): 1373~1376.
    [47] Nagata K, Okazaki K. One-directional grain-oriented lead metaniobate ceramics[J]. J. Appl. Phys., 1985, 24(4): 812~814.
    [48]蔡君威,王聪秀.熔盐合成法制备铌铁酸铅粉末[J].化学世界, 1993, 34: 616~618.
    [49]曹健,谢嘉宁,张业凤.熔盐法合成BaFeCo_(0.5)Ti_(0.5)O_9磁性粉体及其性能分析[J].功能材料, 1996, 27(5): 446~448.
    [50] Chin C C, Li C C, Desu S B. Molten salt synthesis of a complex perovskite Pb(F_(0.5)Nb_(0.5))O_5[J]. J. Am. Ceram. Soc., 1991, 74(1): 38~41.
    [51] Ji G B, Tang S L, Xu B, et al. Synthesis of CoFe2O4 nanowire arrays using sol-gel method [J]. Chem. Phys. Lett., 2003, 379 (5~6): 484~489.
    [52] Gu M, Yue B, Bao R L, et al. Template synthesis of magnetic one-dimensional nanostructured spinel MFe2O4 (M=Ni, Mg, Co)[J]. Mater. Res. Bull., 2009, 44(6): 1422~1427.
    [53] Yang H F, Zhao D Y. Synthesis of replica mesostructures by the nanocasting strategy[J]. J. Mater. Chem., 2005, 15(12): 1217~1231.
    [54] Wan Y, Yang H F, Zhao D Y.“Host?guest”chemistry in the synthesis of ordered Nonsiliceous mesoporous materials[J]. Acc. Chem. Res., 2006, 39(7): 423~432.
    [55] Rumplecker A, Kleitz F, Salabas E L, et al. Hard templating pathways for the synthesis of nanostructured porous Co_3O_4[J]. Chem. Mater., 2007, 19(3): 485~496.
    [56] Jiao F, Bao J L, Hill A H, Bruce P G. Synthesis of ordered mesoporous Li-Mn-O spinel as a positive electrode for rechargeable lithium batteries[J]. Angew. Chem. Int. Ed., 2008, 47(50): 9711~9716.
    [57] Tüysüz H, Lehmann C W, Bongard H, et al. Direct imaging of surface topology and pore system of ordered mesoporous silica (MCM-41, SBA-15, and KIT-6) and nanocast metal oxides by high resolution scanning electron microscopy[J]. J. Am. Chem. Soc., 2008, 130(34): 11510~11517.
    [58] Zhao D Y, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998, 279(5350): 548~552.
    [59] Kim T W, Kleitz F, Paul B, Ryoo R. MCM-48-like large mesoporous silicas with tailored pore structure: facile synthesis domain in a ternary triblock copolymer-butanol-water system[J]. J. Am. Chem. Soc., 2005, 127(20): 7601~7610.
    [60] Tüysüz H, Salabas E L, Weidenthaler C, Schüth F. Synthesis and magnetic investigation of ordered mesoporous two-line ferrihydrite[J]. J. Am. Chem. Soc., 2008, 130(1): 280~287.
    [61] Hu J L, Lee W, Cai W P, et al. Evolution of the optical spectra of an Ag/mesoporous SiO2 nanostructure heat-treated in air and H2 atmospheres[J]. Nanotechnology, 2007, 18(18): 185710.
    [62] Li H X, Bian Z F, Zhu J, et al. Mesoporous Au/TiO_2 nanocomposites with enhanced photocatalytic activity[J]. J. Am. Chem. Soc., 2007, 129(15): 4538~4539.
    [63] Nistor L C, Mateescu C D, Birjega R, et al. Synthesis and characterization of mesoporous ZnS with narrow size distribution of small pores[J]. Appl. Phys. A, 2008, 92(2): 295~301.
    [64] Yamauchi Y, Takai A, Komatsu M, et al. Vapor infiltration of a reducing agent for facile synthesis of mesoporous Pt and Pt-based alloys and its application for the preparation of mesoporous Pt microrods in anodic porous membranes[J]. Chem. Mater., 2008, 20(3): 1004~1011.
    [65] Yuan Q, Yin A X, Luo C, et al. Facile synthesis for ordered mesoporousγ-aluminas with high thermal stability[J]. J. Am. Chem. Soc., 2008, 130(11): 3465-3472.
    [66] Tung L D, Kolesnichenko V, Caruntu D, et al. Magnetic properties of ultrafine cobalt ferrite particles[J]. J. Appl. Phys., 2003, 93(10): 7486~7488.
    [67] Rondinone A J, Samia A C, Zhang Z J. Superparamagnetic relaxation and magnetic anisotropy energy distribution in CoFe2O4 spinel ferrite nanocrystallites[J]. J. Phys. Chem. B, 1999, 103(33): 6876~6880.
    [68] Vestal C R, Song Q, Zhang J. Effects of interparticle interactions upon the magnetic properties of CoFe2O4 and MnFe2O4 nanocrystals[J]. J. Phys. Chem. B, 2004, 108(47): 18222~18227.
    [69] Carta D, Casula M F, Falqui A, et al. A structural and magnetic investigation of the inversion degree in ferrite nanocrystals MFe2O4 (M=Mn, Co, Ni)[J]. J. Phys. Chem. C, 2009, 113(20): 8606~8615.
    [70] Berkowitz A E, Schuele W J. Magnetic properties of some ferrite micropowders[J]. J. Appl. Phys., 1959, 30(4): S134~S134.
    [71] Moumen N, Bonville P, Pileni M P. Control of the size of cobalt ferrite magnetic fluids: m?ssbauer spectroscopy[J]. J. Phys. Chem., 1996, 100(34): 14410~14416.
    [72] Dunlop D J. Hysteretic properties of synthetic and natural monodomain grains[J]. Phil. Mag., 1969, 19(158): 329~338.
    [73] Rajendran M, Pullar R C, Bhattacharya A K, et al. Magnetic properties of nanocrystalline CoFe2O4 powders prepared at room temperature: variation with crystallite size[J]. J. Magn. Magn. Mater., 2001, 232(1~2): 71~83.
    [74]阮颖铮.雷达截面与隐身技术[M].北京:国防工业出版社, 1998, 269~284.
    [75]仲维卓.人工晶体[M]. 2nd,北京:科学出版社, 1994, 515.
    [76]余江应.功能氧化物一维纳米结构的熔盐法生长及其磁性[D].南京:南京大学, 2009.
    [77] Hayashi Y, Kimura T, Yamaguchi T. Preparation of rod-shaped BaTiO3 powder[J]. J. Mater. Sci., 1986, 21(3): 757~762.
    [78] Zboril R, Mashlan M, Petridis D. Iron (III) oxides from thermal processes synthesis, structural and magnetic properties, m?ssbauer spectroscopy characterization, and applications[J]. Chem. Mater., 2002, 14(3): 969~982.
    [79] Yoon K H, Cho Y S, Kang D H. Molten salt synthesis of lead-based relaxors[J]. J. Mater. Sci., 1998, 33(12): 2977~2984.
    [80]郭丽.基于熔盐法的钴铁氧体晶体的生长研究[D].南京:南京航空航天大学, 2009.
    [81] Xu T, Zhou X, Jiang Z Y, et al. Syntheses of nano/submicrostructured metal oxides with all polar surfaces exposed via a molten salt route[J]. Cryst. Growth Des., 2009, 9(1): 192~196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700