缔合变阱宽方阱链流体分子热力学模型的建立及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用变阱宽方阱链流体(SWCF-VR)状态方程和一个基于二缔体的缔合模型建立了缔合变阱宽方阱链流体(ASWCF-VR)的分子热力学模型。应用此模型,研究了缔合流体的pVT关系、相平衡和热焓等性质,建立了同系物分子参数与分子量的函数关系。在此基础上,将ASWCF-VR方程与Butler模型耦合构建了一个基于状态方程的表面张力模型,并计算了混合物的表面张力和表面组成。
     通过拟合较宽温度范围内的pVT数据,ASWCF-VR被成功应用于78种常规纯缔合流体的饱和蒸汽压和液体摩尔体积的关联计算中,计算所得的总体平均偏差分别为0.76%和0.75%,并获得了这些流体的ASWCF-VR分子参数。采用优化的分子参数,预测了17种纯缔合流体的蒸发焓,其平均绝对偏差为3.84%,证实了方程的可靠性。分析表明,常规缔合流体同系物分子参数与其分子量存在明显的函数关系,特别是非缔合参数表现出与分子量的强线性关系,其相关系数的平方R2均大于0.98。利用这些关系,满意地预测了更高分子量同系物的pVT性质,这也为建立基团贡献型的ASWCF-VR方程提供了基础。利用范德华单流体混合规则和优化的分子参数,ASWCF-VR方程可应用于缔合混合系统热力学性质的计算。对低压下二元自缔合和交叉缔合流体以及高压下二元缔合流体,方程中只需引入一个温度无关的二元交互作用参数即可成功关联系统的汽液平衡数据。利用得到的二元交叉可调参数,ASWCF-VR能满意地预测多元缔合系统的汽液平衡。当ASWCF-VR方程计算C02-甲醇、C02-乙醇系统的气液平衡以及常规系统的液-液相平衡时,考虑到在较宽温度范围内拟合以及两相共存曲线的多样性,需采用温度相关的二元交互作用参数才能满意再现实验数据。
     ASWCF-VR方程被应用于离子液体系统时,其缔合参数根据烷醇的缔合分子参数直接给出,非缔合分子参数由关联密度的实验数据得到,44种离子液体的总体密度平均偏差仅有0.06%。研究证实,[Cnmim][NTf2]同系物的非缔合分子参数与分子量存在明显的线性关系,所有相关系数的平方(R2)均大于0.985,利用这些关系能可靠地预测其它同系物在不同温度压力下的密度。进一步,利用ASWCF-VR方程预测了几种[Cnmim][NTf2]离子液体的饱和蒸汽压、蒸发焓和常压沸点,结果发现,饱和蒸汽压预测值与实验数据处于同一数量级范围内,蒸发焓的预测结果也与实验值接近。采用一个与温度无关的二元交互作用参数和单流体混合规则,ASWCF-VR方程可用于描述含离子液体二元混合流体的汽液平衡,在所考察的系统中,压力计算的总体平均偏差为6.89%。而在关联气体在离子液体中的溶解度和离子液体混合物的液液平衡时,考虑二元交互作用参数的温度相关性,方程可成功描述这些相行为,特别是能满意关联高压下C02-离子液体系统等温相图中曲线斜率的突变行为。而ASWCF-VR方程在关联离子液体水溶液的液液平衡时,结果与实验值的偏差较大,原因可能是忽略了由离子液体电离引起的静电作用。
     结合ASWCF-VR状态方程和Butler模型,提出了一个基于状态方程的表面张力模型,并被应用于再现常规混合液体、醇胺水溶液、含离子液体二元系统、含聚合物二元系统及液态合金的表面性质。二元系统的计算中考虑了混合前后液体摩尔表面积的变化,但忽略了二元交互作用参数的温度相关性。分别预测和关联了这些系统的表面张力,而关联时又分别引入了组成无关和相关的二元交互作用参数。研究发现,对于大部分常规混合液体以及组分结构性质相近的混合液体,采用组成无关的二元参数即可令结果满意;而对于一些强极性系统和组分结构性质相差较大的混合液体,则需要引入组成相关的二元参数才能使计算结果和实验数据保持较高的一致性。采用优化得到的二元交互作用参数可成功地预测多元系统的表面张力。
In this paper, the associating square-well chain fluid equation of state with variable well-width range (ASWCF-VR EoS) was developed by coupling the SWCF-VR EoS with an association model for dimerization. The EoS was used to reproduce the thermodynamic properties of associating fluids such as pVT behavior, phase equilibria, enthalpy changes. In addition, the relationships between the molecular parameters and molar masses of some homologues were investigated. Subsequently, an EoS-based surface tension model was established with the combination of the ASWCF-VR EoS and Butler model.
     The molecular parameters of78pure associating fluids were obtained by correlating the saturated vapor pressures and liquid molar volumes. The overall average absolute deviations (AADs) between correlated and experimental data are0.76%for vapor pressures and0.75%for molar volumes. The optimized molecular parameters were employed to predict the vaporization enthalpies with an overall AAD of3.84%. The results substantiate the reliability of the ASWCF-VR EoS for pure associating fluids. It is observed that there are the functional relationships between the molecular parameters and molar masses of some homologues, especially the high linear relationships between non-associating parameters and molar masses validated by the high squares(R2>0.98) of their correlation coefficients. Through the relationships, the pVT properties of other homologue members of the homologues were satisfactorily predicted, which laid a solid foundation to develop the group-contribution ASWCF-VR EoS. With the introduction of the standard Lorentz-Berthelot rule and adjustable binary interaction parameters, the ASWCF-VR EoS was applied to fluid mixtures. The vapor-liquid equilibria of binary associating mixtures under both reduced and elevated pressures were successfully correlated with the temperature-independent binary parameters. By use of the binary parameters, the ASWCF-VR EoS can well predict the vapor-liquid equiliria of multicomponent mixtures. Due to the wide temperature ranges and complicated phase coexistence curves, the temperature dependency of the binary interaction parameters are required in calculating the gas-liquid equilibria of CO2+methanol and CO2+ethanol and liquid-liquid equilibria of conventional associating systems.
     In the ASWCF-VR EoS, ionic liquids (ILs) were treated as the square-well chain fluids with hydrogen-bonding. Their associating parameters were presented according to those of alkanols. while the non-associating parameters were obtained by fitting their experimental densities to the EoS. It is found that the overall AAD for44ILs is only0.06%. Moreover, the non-associating parameters of [Cnmim][NTf2] family vary with molar masses linearly and squares (R2) of the correlation coefficients are greater than0.985. With these expressions, the densities of other members can reliably be predicted over a wide temperature and pressure range. The saturated vapor pressures of several [Cnmim][NTf2] members estimated by ASWCF-VR EoS have the same order of magnitudes with experimental ones and their predicted vaporization of enthalpies are also close to experimental ones. By using the above molecular parameters and temperature-independent adjustable binary parameters, the ASWCF-VR EoS was successfully extended to binary systems containing ILs with an overall bubble pressure AAD of6.89%. The temperature-dependent parameters were employed to describe the solubilities of CO2in ILs and the liquid-liquid equilibria of binary systems containing ILs more accurately. The treatment can lead to the excellent representation of the abrupt slope changes of pressure-composition curves for CO2+IL systems. However, the big deviations between correlated and experimental results for an aqueous IL solution were obseved as a result of the ignorance of the electrostatic interaction.
     A surface tension model for liquid mixtures was proposed by integrating the ASWCF-VR EoS into the Butler model and applied to various liquid mixtures such as conventional liquid mixtures, aqueous alcohol-amine solution, binary IL-containing systems, binary polymer-containing systems and liquid alloys. In this model, the effect of mixing on molar surface areas were taken into account and the temperature-dependency of binary interaction parameters was neglected. Both the predictions and correlations of binary liquid mixtures were given for comparison and the correlated results were achieved with both composition-independent and composition-dependent binary parameters. The results show that the composition-independent binary parameters caused good agreement between correlated and experimental data for the most of conventional liquid mixtures and the systems with similar components, while the composition-dependency of binary parameters need to be considered for the successful description of the surface properties of the strongly polar systems and the liquid mixtures with distinct components. With the optimized adjustable parameters, the ASWCF-VR EoS satisfactorily captured the surface tensions of multicomponent systems.
引文
[1]Redlich O, Kwong J N S. On the thermodynamics of solutions. V[J]. Chem Rev,1949, 44(1):233-244.
    [2]Soave G. Equilibrium constants from a modified Redlich-Kwong equation of state[J]. Chem Eng Sci,1972,27(6):1197-1203.
    [3]Peng D-Y, Robinson D B. A new two-constant equation of state [J]. Ind Eng Chem Fundam,1976,15(1):59-64.
    [4]Patel N C, Teja A S. A new cubic equation of state for fluids and fluid mixtures[J]. Chem Eng Sci,1982,37(3):463-473.
    [5]Pitzer K S, Lippmann D Z, Curl Jr. R F, et al. The volumetric and thermodynamic properties of fluids. Ⅱ. Compressibility factor, vapor pressure and entropy of vaporization[J]. J Am Chem Soc,1955,77(13):3433-3440.
    [6]Lee B 1, Kesler M G. A generalized thermodynamic correlation based on three-parameter corresponding states[J]. AIChE J,1975,21(3):510-527.
    [7]Onnes H K. Expression of the equation of state of gases and liquids by means of series[J]. KNAW Proc,1901-1902,4:125-147.
    [8]Martin J J, Hou Y-C. Development of an equation of state for gases[J]. AIChE J,1955, 1(2):142-151.
    [9]Benedict M, Webb G B, Rubin L C. An empirical equation for thermodynamic properties of light hydrocarbons and their mixtures I. Methane, ethane, propane and n-butane[J]. J Chem Phys,1940,8(4):334-345.
    [10]Flory P J. Thermodynamic of high polymer solutions[J]. J Chem Phys,1942,10:51-61.
    [11]Huggins M L. Some properties of solutions of long-chain compounds[J]. J Phys Chem, 1942,46(1):151-158.
    [12]Beret S, Prausnitz J M. Perturbed hard-chain theory:an equation of state for fluids containing small or large molecules[J]. AIChE J,1975,21(6):1123-1132.
    [13]Vimalchand P, Donohue M D. Thermodynamics of quadrupolar molecules:the perturbed-anisotropic-chain theory[J]. Ind Eng Chem Fundam,1985,24(2):246-257
    [14]Vimalchand P, Celmins I, Donohue M D. VLE calculations for mixtures containing multipolar compounds using the perturbed anisotropic chain theory [J]. AIChE J,1986, 32(10):1735-1738.
    [15]Prigogine I. The molecular theory of solutions[M]. Amsterdam:North-Holland Publishing Company,1957.
    [16]Flory P J. Fifteenth Spiers Memorial Lecture. Thermodynamics of polymer solutions[J]. Discuss Faraday Soc,1969,49:7-29.
    [17]Barker J A, Henderson D. Perturbation theory and equation of state for fluids:the square-well potential[J]. J Chem Phys,1967,47(8):2856-2861.
    [18]Alder B J, Young D A, Mark M A. Studies in molecular dynamics. X. Corrections to the augmented van der Waals theory for the square well fluid[J]. J Chem Phys,1972,56(6): 3013-3029.
    [19]Carnahan N F, Starling K E. Equation of state for nonattracting rigid spheres[J]. J Chem Phys,1969,51(2):635-636.
    [20]Carnahan N F, Starling K E. Intermolecular repulsions and the equation of state for fluids[J]. AIChE J,1972,18(6):1184-1189.
    [21]Donohue M D, Prausnitz J M. Perturbed hard chain theory for fluid mixtures: thermodynamic properties for mixtures in natural gas and petroleum techno logy [J]. AIChE J,1978,24(5):849-860.
    [22]Kaul B K, Donohue M D, Prausnitz J M. Henry's contants and second virial coefficients from perturbed hard chain theory [J]. Fluid Phase Equilib,1980,4(3-4):171-184.
    [23]Liu D D, Prausnitz J M. Calculation of phase equilibria for mixtures of ethylene and low-density polyethylene at high pressures[J]. Ind Eng Chem Process Des Dev,1980 19(2):205-211.
    [24]Cotterman R L, Schwarz B J, Prausnitz J M. Molecular thermodynamics for fluids at low and high densities. Part I:pure fluids containing small or large molecules[J]. AIChE J,1986,32(11):1787-1798.
    [25]Cotterman R L, Prausnitz J M. Molecular thermodynamics for fluids at low and high densities. Part Ⅱ:phase equilibria for mixtures containing components with large differences in molecular size or potential energy[J]. AIChE J,1986,32(11):1799-1812.
    [26]Kim C-H, Vimalchand P, Donohue M D, et al. Local composition model for chainlike molecules:a new simplified version of the perturbed hard chain theory[J]. AIChE J, 1986,32(10):1726-1734.
    [27]Lee K-H, Lombardo M, Sandier S I. The generalized van der Waals partition function. II. Application to the square-well fluid[J]. Fluid Phase Equilib,1985,21(3):177-196.
    [28]van Pelt A, Peters C J, de Swaan Arons J. Calculation of critical lines in binary mixtures with the Simplified Perturbed Hard Chain Theory[J]. Fluid Phase Equilib,1993,84: 23-47.
    [29]Georgeton G K, Teja A S. A group contribution equation of state based on the simplified perturbed hard chain theory[J]. Ind Eng Chem Res,1988.27(4):657-664.
    [30]Gmehling J. Liu D D. Prausnitz J M. High-pressure vapor-liquid equilibria for mixtures containing one or more polar components:application of an equation of state which includes dimerization equilibria[J]. Chem Eng Sci.1979.34(7):951-958.
    [31]Sheng W, Lu B C-Y. A simplified perturbed hard chain theory equation of state for phase equilibrium calculations for polar fluid mixtures[J]. Fluid Phase Equilib,1990, 54:167-189.
    [32]Gubbins K E. Twu C H. Thermodynamics of polyatomic fluid mixtures—I theory [J]. Chem Eng Sci,1978.33(7):863-878.
    [33]Morris W O, Vimalchand P, Donohue M D. The perturbed-soft-chain theory:an equation of state based on the Lennard-Jones potential[J], Fluid Phase Equilib,1987, 32(2):103-115.
    [34]Jin G, Walsh J M, Donohue M D. A group-contribution correlation for predicting thermodynamic properties with the Perturbed-Soft-Chain Theory [J]. Fluid Phase Equilib,1986,31(2):123-146.
    [35]Wertheim M S. Fluids with highly directional attractive forces. I. Statistical thermodynamics[J]. JStatPhys,1984,35(1-2):19-34.
    [36]Wertheim M S. Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations[J]. JStatPhys,1984,35(1-2):35-47.
    [37]Wertheim M S. Fluids with highly directional attractive forces. III. Multiple attraction sites[J]. J Stat Phys,1986,42(3-4):459-476.
    [38]Wertheim M S. Fluids with highly directional attractive forces. IV. Equilibrium polymerization[J]. JStatPhys,1986,42(3-4):477-492.
    [39]Chapman W G, Gubbins K E, Jackson G, et al. New reference equation of state for associating liquids[J]. Ind Eng Chem Res,1990,29(8):1709-1721.
    [40]Huang S H, Radosz M. Equation of state for small, large, polydisperse, and associating molecules[J]. Ind Eng Chem Res,1990,29(11):2284-2294.
    [41]Mansoori G A, Carnahan N F, Starling K E, et al. Equilibrium thermodynamic properties of the mixture of hard spheres[J]. J Chem Phys,1971,54(4):1523-1525.
    [42]Gross J, Sadowski G. Perturbed-chain SAFT:an equation of state based on a perturbation theory for chain molecules[J]. Ind Eng Chem Res,2001,40(4):1244-1260.
    [43]Barker J A, Henderson D. Perturbation theory and equation of state for fluids. II. A successful theory of liquids[J]. J Chem Phys,1967,47(11):4714-4721.
    [44]Karakatsani E K, Economou I G. Perturbed chain-statistical associating fluid theory extended to dipolar and quadrupolar molecular fluids[J]. J Phys Chem B,2006,110(18): 9252-9261.
    [45]Tang X, Gross J. Modeling the phase equilibria of hydrogen sulfide and carbon dioxide in mixture with hydrocarbons and water using the PCP-SAFT equation of state[J]. Fluid Phase Equilib,2010,293(1):11-21.
    [46]Pamies J C. Bulk and interfacial properties of chain fluids. A molecular modelling approach[D]. Tarragona: Universitat Rovira i Virgili,2003.
    [47]Dias A M A, Carrier H, Daridon J L, et al. Vapor-liquid equilibrium of carbon dioxide-perfluoroalkane mixtures:experimental data and SAFT modeling[J]. Ind Eng Chem Res,2006,45(7):2341-2350.
    [48]Pedrosa N, Vega L F, Coutinho J A P, et al. Modeling the phase equilibria of poly(ethylene glycol) binary mixtures with soft-SAFT EoS[J]. Ind Eng Chem Res,2007, 46(13):4678-4685.
    [49]Andreu J S, Vega L F. Capturing the solubility behavior of CO2 in ionic liquids by a simple model[J]. J Phys Chem C,2007,111(43):16028-16034.
    [50]Andreu J S, Vega L F. Modeling the solubility behavior of CO2, H2, and Xe in [Cn-mim][Tf2N] ionic liquids[J]. J Phys Chem B,2008,112(48):15398-15406.
    [51]Llovell F, Valente E, Vilaseca O, et al. Modeling complex associating mixtures with [Cn-mim][Tf2N] ionic liquids:predictions from the soft-SAFT equation[J]. J Phys Chem B,2011,115(15):4387-4398.
    [52]Gil-Villegas A, Galindo A, Whitehead P J, et al. Statistical associating fluid theory for chain molecules with attractive potentials of variable range [J]. J Chem Phys,1997, 106(10): 4168-4186.
    [53]Tamouza S, Passarello J P, Tobaly P, et al. Group contribution method with SAFT EOS applied to vapor liquid equilibria of various hydrocarbon series[J]. Fluid Phase Equilib, 2004,222-223:67-76.
    [54]Tamouza S, Passarello J P, Tobaly P. et al. Application to binary mixtures of a group contribution SAFT EOS (GC-SAFT)[J]. Fluid Phase Equilib,2005,228-229:409-419.
    [55]Chiew Y C. Percus-Yevick integral-equation theory for athermal hard-sphere chains[J]. Mol Phys,1990,70(1):129-143.
    [56]Song Y, Lambert S M, Prausnitz J M. Equation of state for mixtures of hard-sphere chains including copolymers[J]. Macromolecules, 1994.27(2):441-448.
    [57]Song Y, Lambert S M, Prausnitz J M. A perturbed hard-sphere-chain equation of state for normal fluids and polymers[J]. Ind Eng Chem Res,1994,33(4):1047-1057.
    [58]Lee B-S, Kim K-C. Phase equilibria of associating fluid mixtures using the perturbed-hard-sphere-chain equation of state combined with the association model[J]. Korean J Chem Eng,2007,24(1):133-147.
    [59]Hu Y, Liu H, Prausnitz J M. Equation of state for fluids containing chainlike molecules[J]. J Chem Phys,1996,104(1): 396-404.
    [60]Li J, He H, Peng C, et al. A new development of equation of state for square-well chain-like molecules with variable width 1.1≤λ≤3[J]. Fluid Phase Equilib,2009,276(1): 57-68.
    [61]Banaszak M, Chen C K, Radosz M. Copolymer SAFT equation of state. Thermodynamic perturbation theory extended to heterobonded chains[J]. Macromolecules,1996,29(20):6481-6486.
    [62]Shukla K P, Chapman W G. SAFT equation of state for fluid mixtures of hard chain copolymers[J]. Mol Phys,1997,91(6):1075-1082.
    [63]Peng C-J, Liu H-L, Hu Y. Molecular thermodynamic model for associated polymers[J]. Chin J Chem,2001.19(12):1165-1171.
    [64]Peng C, Liu H, Hu Y. Modeling Comblike polymer solutions using an equation of state: application to vapor—liquid equilibria[J]. Ind Eng Chem Res,2002,41(4):862-870.
    [65]Peng C, Liu H, Hu Y. Liquid-liquid equilibria of copolymer mixtures based on an equation of state[J]. Fluid Phase Equilib,2002,201(1):19-35.
    [66]Heidemann R A, Prausnitz J M. A van der Waals-type equation of state for fluids with associating molecules[J]. Proc Natl Acad Sci USA,1976,73(6):1773-1776.
    [67]Hu Y, Azevedo E, Liidecke D, et al Thermodynamics of associated solutions:Henry's constants for nonpolar solutes in water[J]. Fluid Phase Equilib,1984,17(3):303-321.
    [68]Hong J, Hu Y. An equation of state for associated systems[J]. Fluid Phase Equilib,1989, 51:37-51.
    [69]Zhao J, Hu Y. Thermodynamics of associated solutions:excess properties of alcohol-alkane and alcohol-carboxylic acid mixtures[J]. Fluid Phase Equilib,1990, 57(1-2):89-104.
    [70]Ikonomou G D, Donohue M D. Thermodynamics of hydrogen-bonded molecules:The associated perturbed anisotropic chain theory[J]. AIChEJ,1986,32(10):1716-1725.
    [71]Ikonomou G D, Donohue M D. Extension of the associated perturbed anisotropic chain theory to mixtures with more than one associating component[J]. Fluid Phase Equilib, 1988,39(2):129-159.
    [72]Guggenheim E A. Statistical thermodynamics of mixtures with non-zero energies of mixing[J]. Proc. R. Soc. Lond. A,1944,183:213-227.
    [73]Wilson G M. Vapor-liquid equilibrium. XI. A new expression for the excess free energy of mixing[J]. J Am Chem Soc,1964,86(2):127-130.
    [74]Renon H, Prausnitz J M. Local compositions in thermodynamic excess functions for liquid mixtures[J].AICh J,1968,14(1):135-144.
    [75]Abrams D S, Prausnitz J M. Statistical thermodynamics of liquid mixtures:A new expression for the excess Gibbs energy of partly or completely miscible systems[J]. AIChE J,1975,21(1):116-128.
    [76]Fredenslund A, Jones R L, Prausnitz J M. Group-contribution estimation of activity coefficients in nonideal liquid mixtures[J]. AIChE J,1975,21(6):1086-1099.
    [77]Panayiotou C, Sanchez I C. Hydrogen bonding in fluids:an equation-of-state approach[J]. J Phys Chem,1991,95(24):10090-10097.
    [78]Sanchez I C, Lacombe R H. An elementary molecular theory of classical fluids. Pure fluids[J]. J Phys Chem,1976,80(21):2352-2362.
    [79]Lacombe R H, Sanchez I C. Statistical thermodynamics of fluid mixtures[J]. J Phys Chem,1976,80(23):2568-2580.
    [80]Wertheim M S. Fluids of dimerizing hard spheres, and fluid mixtures of hard spheres and dispheres[J]. J Chem Phys,1986,85(5):2929-2936.
    [81]Huang S H, Radosz M. Equation of state for small, large, polydisperse, and associating molecules:extension to fluid mixtures[J]. Ind Eng Chem Res,1991,30(8):1994-2005.
    [82]Llovell F, Vega L F. Global fluid phase equilibria and critical phenomena of selected mixtures using the crossover soft-SAFT equation[I]. J Phys Chem B, 2005,110(3): 1350-1362.
    [83]Gross J, Sadowski G. Application of the perturbed-chain SAFT equation of state to associating systems[J]. Ind Eng Chem Res,2002,41(22):5510-5515.
    [84]Kroon M C, Karakatsani E K, Economou I G, et al. Modeling of the carbon dioxide solubility in imidazolium-based ionic liquids with the tPC-PSAFT equation of state [J]. J Phys Chem B,2006,110(18):9262-9269.
    [85]Karakatsani E K, Economou I G, Kroon M C, et al. tPC-PSAFT modeling of gas solubility in imidazolium-based ionic liquids[J]. J Phys Chem C, 2007,111(43): 15487-15492.
    [86]MacDowell N, Llovell F, Adjiman C S. et al. Modeling the fluid phase behavior of carbon dioxide in aqueous solutions of monoethanolamine using transferable parameters with the SAFT-VR approach[J]. Ind Eng Chem Res, 2010,49(4): 1883-1889.
    [87]Kontogeorgis G M, Voutsas E C, Yakoumis I V, et al. An equation of state for associating fluids[J]. Ind Eng Chem Res,1996,35(11):4310-4318.
    [88]Derawi S O. Zeuthen J, Michelsen M L, et al. Application of the CPA equation of state to organic acids[J]. Fluid Phase Equilib,2004.225:107-113.
    [89]Stell G, Zhou Y. Chemical association in simple models of molecular and ionic fluids[J]. JChem Phys,1989,91(6): 3618-3623.
    [90]Zhou Y, Stell G. Chemical association in simple models of molecular and ionic fluids. II. Thermodynamic properties[J]. J Chem Phys,1992,96(2):1504-1506.
    [91]Liu H, Hu Y. Equation of state for systems containing chainlike molecules[J]. Ind Eng Chem Res,1998,37(8):3058-3066.
    [92]Liu H, Zhou H, Hu Y. Molecular thermosynamic model for fluids containing associated molecules[J]. Chin J Chem Eng,1997,5(3):208-218.
    [93]周浩,刘洪来,胡英.含自缔合流体混合物的分子热力学模型[J].化工学报,1998,49(1):1-10.
    [94]周浩,刘洪来,胡英.缔合流体混合物的分子热力学模型[J].华东理工大学学报,1998,24(2):209-215.
    [95]Ma J, Li J, Fan D, et al. Modeling VT properties and vapor-liquid equilibrium of ionic liquids using cubic-plus-association equation of state[J]. Chin J Chem Eng,2011,19(6): 1009-1016.
    [96]Ma J, Li J, He C, et al. Thermodynamic properties and vapor-liquid equilibria of associating fluids, Peng-Robinson equation of state coupled with shield-sticky model[J]. Fluid Phase Equilib, 2012,330:1-11.
    [97]马俊,李进龙,彭昌军,等.基于黏滞球模型的CPA状态方程应用于醇胺系统相平衡的计算[J].化工学报2010,61(7):1734-1739.
    [98]Li J, He H, Peng C, et al. Equation of state for square-well chain molecules with variable range. I:Application for pure substances[J]. Fluid Phase Equilib,2009,286(1): 8-16.
    [99]Li J, Tong M, Peng C, et al. Equation of state for square-well chain molecules with variable range Ⅱ. Extension to mixtures[J]. Fluid Phase Equilib, 2009,287(1):50-61.
    [100]Li J, He Q. He C, et al. Representation of phase behavior of ionic liquids using the equation of state for square-well chain fluids with variable range[J]. Chin J Chem Eng, 2009,17(6):983-989.
    [101]Li J, He C, Ma J, et al. Modeling of surface tension and viscosity for non-electrolyte systems by means of the equation of state for square-well chain fluids with variable interaction range [J]. Chin J Chem Eng, 2011,19(4):533-542.
    [102]Mansoori G A, Carnahan N F, Starling K E, et al. Equilibrium thermodynamic properties of the mixture of hard spheres[J]. J Chem Phys,1971,54(4):1523-1525.
    [103]Rowlinson J S, Swinton F L. Liquids and liquid mixtures[M]. London:Butterworth Scientific,1982.
    [104]Liu H, Zhou H, Hu Y. Molecular thermodynamic model for fluids containing associated molecules[J]. Chin J Chem Eng,1997,5(3):208-218.
    [105]Daubert T E, Danner R P. Physical and thermodynamic properties of pure chemicals[M]. New York: John Wiley & Sons,1989.
    [106]Smith B D, Srivastava R. Thermodynamic data for pure compounds[M]. Amsterdam: Elsevier,1986.
    [107]Daubert T E, Danner R P. Physical and thermodynamic properties of pure compounds: Data compilation[M]. New York: Hemisphere, 2003.
    [108]何清,李进龙,何昌春,等.状态方程模拟醇胺系统的密度和汽液相平衡[J].化工学报,2010,61(4):812-819.
    [109]http://webbook.nist.gov/chemistry/fluid/.
    [110]Al-Sahhaf T A, Jabbar N J. Vapor-liquid equilibrium of the acetone-water-salt system[J]. J Chem Eng Data, 1993,38(4):522-526.
    [111]Gmehling J, Onken U. Vapor-liquid equilibrium data collection, chemistry data series, vol. I, part 2a, organic hydroxy compounds:alcohols[M], Frankfurt:DECHEMA,1977.
    [112]Maczynski A, Bilinski A, Oracz P, et al. Thermodynamical data for technology, series A, verified vapor-liquid equilibrium data, Vol.6[M]. Warszawa:PWN-Polish Science Publishers,1982.
    [113]Hiaki T, Taniguchi A, Tsuji T, et al. Isobaric vapor-liquid equilibria of octane + 1-butanol,+2-butanol, and +2-methyl-2-propanol at 101.3 kPa[J]. J Chem Eng Data, 1996,41(5):1087-1090.
    [114]Bernatova S, Linek J, Wichterle I. Vapour-liquid equilibrium in the butyl alcohol-n-decane system at 85,100 and 115℃[J]. Fluid Phase Equilib,1992,74:127-132.
    [115]Machova I, Linek J, Wichterle I. Vapour—iquid equilibria in the heptane-1-pentanol and heptane-3-methyl-1-butanol systems at 75,85 and 95 ℃[J]. Fluid Phase Equilib, 1988,41(3):257-267.
    [116]Gmehling J, Onken U, Grenzheuser P. Vapor-liquid equilibrium data collection, chemistry data series, vol. I, parts 5, carboxylic acids, anhydrides, esters[M]. Frankfurt: DECHEMA,1982.
    [117]Christensen C, Gmehling J, Rasmussen P, et al. Heats of mixing data collection. Chemistry Data Series, Vol. Ⅲ, Partl[M]. Frankfurt:Dechema,1984.
    [118]Gmehling J, Onken U, Arlt W. Vapor-liquid equilibrium data collection, chemistry data series, vol. I, part la, supplement 1, aqueous-organic systems[M]. Frankfurt: DECHEMA,1981.
    [119]Knapp H, Doring R, Oellrich L. et al. Vapor-liquid equilibria for mixtures of low boiling substances, chemistry data series, vol. VI[M]. Frankfurt:DECHEMA,1982.
    [120]Wisniak J, Tamir A. Vapor-liquid equilibriums in the ternary systems water-formic acid-acetic acid and water-acetic acid-propionic acid[J]. J Chem Eng Data,1977,22(3): 253-260.
    [121]Coutinho J A P, Kontogeorgis G M, Stenby E H. Binary interaction parameters for nonpolar systems with cubic equations of state:a theoretical approach 1. CO2/hydrocarbons using SRK equation of state [J]. Fluid Phase Equilib, 1994,102(1): 31-60.
    [122]Kontogeorgis G M, Vlamos P M. An interpretation of the behavior of EoS/G(?) models for asymmetric systems[J]. Chem Eng Sci,2000,55(13):2351-2358.
    [123]Passarello J P, Benzaghou S, Tobaly P. Modeling mutual solubility of n-alkanes and CO2 using SAFT equation of state[J]. Ind Eng Chem Res,2000,39(7):2578-2585.
    [124]Garcia J, Lugo L, Fernandez J. Phase equilibria, PVT behavior, and critical phenomena in carbon dioxide+ n-alkane mixtures using the perturbed-chain statistical associating fluid theory approach[J]. Ind Eng Chem Res,2004,43(26):8345-8353.
    [125]Fu D, Liang L, Li X-S, et al. Investigation of vapor-liquid equilibria for supercritical carbon dioxide and hydrocarbon mixtures by perturbed-chain statistical associating fluid theory [J]. Ind Eng Chem Res.2006,45(12):4364-4370.
    [126]Grenner A, Kontogeorgis G M, von Solms N, et al. Modeling phase equilibria of alkanols with the simplified PC-SAFT equation of state and generalized pure compound parameters[J]. Fluid Phase Equilib.2007,258(1):83-94.
    [127]Galindo A, Blas F J. Theoretical examination of the global fluid phase behavior and critical phenomena in carbon dioxide + n-alkane binary mixtures[J]. J Phys Chem B, 2002,106(17):4503-4515.
    [128]Bias F J, Galindo A. Study of the high pressure phase behaviour of CO2+n-alkane mixtures using the SAFT-VR approach with transferable parameters[J]. Fluid Phase Equilib,2002,194-197:501-509.
    [129]Tochigi K, Namae T, Suga T. et al. Measurement and prediction of high-pressure vapor-liquid equilibria for binary mixtures of carbon dioxide + n-octane, methanol, ethanol, and perfluorohexane[J]. J Supercrit Fluids,2010.55(2):682-689.
    [130]Dias A M A. Carrier H. Daridon J L, et al. Vapor-liquid equilibrium of carbon dioxide-perfluoroalkane mixtures:experimental data and SAFT modeling[J]. Ind Eng Chem Res.2006.45(7):2341-2350.
    [131]Oliveira M B. Queimada A J, Kontogeorgis G M, et al. Evaluation of the CO2 behavior in binary mixtures with alkanes, alcohols, acids and esters using the Cubic-Plus-Association Equation of State [J]. J Supercrit Fluids,2011,55(3):876-892.
    [132]Tsivintzelis I, Kontogeorgis G M, Michelsen M L, et al. Modeling phase equilibria for acid gas mixtures using the CPA equation of state. Part Ⅱ:Binary mixtures with CO2[J]. Fluid Phase Equilib,2011,306(1):38-56.
    [133]Hong J H, Kobayashi R. Vapor-liquid equilibrium studies for the carbon dioxide-methanol system[J]. Fluid Phase Equilib,1988,41(3):269-276.
    [134]Leu A-D, Chung S Y-K, Robinson D B. The equilibrium phase properties of (carbon dioxide + methanol)[J]. J Chem Thermodyn,1991,23(10):979-985.
    [135]Chang C J, Day C-Y, Ko C-M, et al Densities and P-x-y diagrams for carbon dioxide dissolution in methanol, ethanol, and acetone mixtures[J]. Fluid Phase Equilib,1997, 131(1-2):243-258.
    [136]Yoon J H, Lee H S, Lee H. High-pressure vapor-liquid equilibria for carbon dioxide+ methanol, carbon dioxide+ethanol, and carbon dioxide + methanol + ethanol[J]. J Chem Eng Data,1993,38(1):53-55.
    [137]Sorensen J M, Arlt W. Liquid-liquid equilibrium data collection:binary systems, chemistry data series, vol. V, part 1[M]. Frankfurt: DECHEMA,1979.
    [138]Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis[J]. Chem Rev,1999,99(8):2071-2084.
    [139]Wasserscheid P, Keim W. Ionic liquids—ew "solutions" for transition metal catalysis[J]. Angew Chem, Int Ed,2000,39(21):3772-3789.
    [140]Davis Jr J H, Fox P A. From curiosities to commodities:ionic liquids begin the transition[J]. Chem Commun,2003:1209-1212.
    [141]Welton T. Ionic liquids in catalysis[J]. Coord Chem Rev,2004,248(21-24):2459-2477.
    [142]Forsyth S A, Pringle J M, MacFarlane D R. Ionic liquids—an overview[J]. Aust J Chem, 2004,57(2):113-119.
    [143]Earle M J, Esperanca J M S S, Gilea M A, et al. The distillation and volatility of ionic liquids[J]. Nature,2006,439:831-834.
    [144]Kulkarni P S, Branco L C, Crespo J G, et al. Comparison of physicochemical properties of new ionic liquids based on imidazolium, quaternary ammonium, and guanidinium cations[J]. Chem-Eur J,2007,13(30):8478-8488.
    [145]Olivier-Bourbigou H, Magna L. Ionic liquids:perspectives for organic and catalytic reactions[I]. J Mol Catal A:Chem,2002,182-183:419-437.
    [146]Mehnert C P, Cook R A, Dispenziere N C, et al. Supported ionic liquid catalysis - a new concept for homogeneous hydroformylation catalysis[J]. J Am Chem Soc,2002, 124(44):12932-12933.
    [147]Mehnert C P, Mozeleski E J, Cooka R A. Supported ionic liquid catalysis investigated for hydrogenation reactions [J]. Chem Commun,2002:3010-3011.
    [148]Valkenberg M H, deCastro C, Holderich W F. Immobilisation of ionic liquids on solid supports[I]. Green Chem,2002,4(2):88-93.
    [149]Bates E D, Mayton R D, Ntai I, et al. CO2 capture by a task-specific ionic liquid[J]. J Am Chem Soc,2002,124(6):926-927.
    [150]Arce A, Marchiaro A, Rodriguez O, et al. Essential oil terpenless by extraction using organic solvents or ionic liquids[J]. AiChE J.2006,52(6):2089-2097.
    [151]Dietz M L. Ionic liquids as extraction solvents:where do we stand?[J]. Sep Sci Technol, 2006,41(10):2047-2063.
    [152]Swatloski R P, Spear S K, Holbrey J D, et al. Dissolution of cellose with ionic liquids[J]. JAm Chem Soc,2002,124(18):4974-4975.
    [153]Seddon K R. Ionic liquids for clean technology[J]. J Chem Technol Biotechnol,1997, 68(4):351-356.
    [154]Adams C J, Earle M J, Seddon K R. Catalytic cracking reactions of polyethylene to light alkanes in ionic liquids[J]. Green Chem,2000,2(1):21-24.
    [155]Antonietti M, Kuang D, Smarsly B, et al. Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures[J]. Angew Chem, Int Ed, 2004,43(38):4988-4992.
    [156]Zhang Y, Shen Y, Yuan J. et al. Design and synthesis of multifunctional materials based on an ionic-liquid backbone [J]. Angew Chem, Int Ed,2006,45(35):5867-5870.
    [157]Ye C, Liu W, Chen Y, et al. Room-temperature ionic liquids:a novel versatile lubricant[J]. Chem Commun,2001:2244-2245.
    [158]Francois Y, Varenne A, Juillerat E, et al. Evaluation of chiral ionic liquids as additives to cyclodextrins for enantiomeric separations by capillary electrophoresis[J]. J Chromatogr A,2007,1155(2):134-141.
    [159]Shariati A, Peters C J. High-pressure phase behavior of systems with ionic liquids: measurements and modeling of the binary system fluoroform+1-ethyl-3-methylimidazolium hexafluorophosphate[J], J Supercrit Fluids,2003,25(2): 109-117.
    [160]Yokozeki A. Shiflett M B. Global phase behaviors of trifluoromethane in ionic liquid [bmim][PF6][J]. AIChE J,2006,52(11):3952-3957.
    [161]Shiflett M B, Yokozeki A. Solubility of CO2 in room temperature ionic liquid [hmim][Tf2N][J]. JPhys Chem B,2007,111(8):2070-2074.
    [162]Shiflett M B, Yokozeki A. Solubilities and diffusivities of carbon dioxide in ionic liquids:[bmim][PF6] and [bmim][BF4][J]. Ind Eng Chem Res,2005,44(12): 4453-4464.
    [163]Wang T, Peng C, Liu H, et al. Description of the pVT behavior of ionic liquids and the solubility of gases in ionic liquids using an equation of state [J]. Fluid Phase Equilib, 2006.250(1-2):150-157.
    [164]Wang T. Peng C, Liu H, et al. Equation of state for the vapor-liquid equilibria of binary systems containing imidazolium-based ionic liquids[J]. Ind Eng Chem Res,2007. 46(1-2): 4323-4329.
    [165]Xu X. Peng C, Liu H, et al. Modeling pVT properties and phase equilibria for systems containing ionic liquids using a new lattice-fluid equation of state[J]. Ind Eng Chem Res, 2009,48(24):11189-11201.
    [166]Breure B, Bottini S B, Witkamp G-J, et al. Thermodynamic modeling of the phase behavior of binary systems of ionic liquids and carbon dioxide with the group contribution equation of state[J]. J Phys Chem B,2007,111(51):14265-14270.
    [167]Kato R, Krummen M, Gmehling J. Measurement and correlation of vapor-liquid equilibria and excess enthalpies of binary systems containing ionic liquids and hydrocarbons[J]. Fluid Phase Equilib,2004,224(1):47-54.
    [168]Ji X, Adidharma H. Thermodynamic modeling of ionic liquid density with heterosegmented statistical associating fluid theory[J]. Chem Eng Sci,2009,64(9): 1985-1992.
    [169]Ji X, Adidharma H. Thermodynamic modeling of CO2 solubility in ionic liquid with heterosegmented statistical associating fluid theory [J]. Fluid Phase Equilib,2010, 293(2):141-150.
    [170]Li J, He C, Peng C, et al. Modeling of the thermodynamic properties of aqueous ionic liquid solutions with an equation of state for square-well chain fluid with variable range[J]. Ind Eng Chem Res,2011,50(11):7027-7040.
    [171]Dong K, Zhang S, Wang D, et al. Hydrogen bonds in imidazolium Iionic liquids[J]. J Phys Chem A,2006, 110(31):9775-9782.
    [172]Jodry J J, Mikami K. New chiral imidazolium ionic liquids:3D-network of hydrogen bonding[J]. Tetrahedron Letters,2004,45(23):4429-4431.
    [173]Gardas R L, Freire M G, Carvalho P J, et al. PpT measurements of imidazolium-based ionic liquids[J]. J Chem Eng Data,2007,52(5):1881-1888.
    [174]Machida H, Sato Y, Smith Jr. R L. Pressure-volume-temperature (PVT) measurements of ionic liquids ([bmim+][PF6-]. [bmim+][BF4-], [bmim+][OcSO4-]) and analysis with the Sanchez-Lacombe equation of state [J]. Fluid Phase Equilib,2008,264(1-2):147-155.
    [175]Sanmamed Y A, Gonzalez-Salgado D, Troncoso J, et al. Viscosity-induced errors in the density determination of room temperature ionic liquids using vibrating tube densitometry[J]. Fluid Phase Equilib,2007,252(1-2):96-102.
    [176]Gardas R L, Freire M G, Carvalho P J, et al. High-pressure densities and derived thermodynamic properties of imidazolium-based ionic liquids[J]. J Chem Eng Data, 2007,52(1):80-88.
    [177]Alavi S, Thompson D L. Molecular dynamics studies of melting and some liquid-state properties of l-ethyl-3-methylimidazolium hexafluorophosphate [emim][PF6][J]. J Chem Phys,2005,122(15):154704.
    [178]Ghatee M H, Zare M, Moosavi F, et al. Temperature-dependent density and viscosity of the Ionic liquids l-alkyl-3-methylimidazolium Iodides:experiment and molecular dynamics simulation[J]. J Chem Eng Data,2010,55(9):3084-3088.
    [179]Krummen M, Wasserscheid P, Gmehling J. Measurement of activity coefficients at infinite dilution in ionic liquids using the dilutor technique[J]. J Chem Eng Data,2002, 47(6):1411-1417.
    [180]Esperanca J M S S, Visak Z P, Plechkova N V, et al. Density, speed of sound, and derived thermodynamic properties of ionic liquids over an extended pressure range.4. [C3mim][NTf2] and [C5mim][NTf2][J]. J Chem Eng Data,2006,51(6):2009-2015.
    [181]de Azevedo R G, Esperanca J M S S, Szydlowski J, et al. Thermophysical and thermodynamic properties of ionic liquids over an extended pressure range: [bmim][NTf2] and [hmim][NTf2][J]. J Chem Thermodyn,2005,37(9):888-899.
    [182]Tome L I N, Carvalho P J, Freire M G, et al. Measurements and correlation of high-pressure densities of imidazolium-based ionic liquids[J]. J Chem Eng Data.2008, 53(8):1914-1921.
    [183]Fredlake C P, Crosthwaite J M, Hert D G, et al. Thermophysical properties of imidazolium-based ionic liquids[J]. J Chem Eng Data,2004,49(4):954-964.
    [184]Gardas R L, Costa H F, Freire M G, et al. Densities and derived thermodynamic properties of imidazolium-, pyridinium-, pyrrolidinium-, and piperidinium-based ionic liquids[J]. J Chem Eng Data, 2008,53(3):805-811.
    [185]Esperanca J M S S, Guedes H J R, Blesic M, et al. Densities and derived thermodynamic properties of ionic liquids.3. Phosphonium-based ionic liquids over an extended pressure range[J]. J Chem Eng Data,2006,51(1):237-242.
    [186]Kilaru P, Baker G A, Scovazzo P. Density and surface tension measurements of imidazolium-, quaternary phosphonium-, and ammonium-based room-temperature ionic liquids:data and correlations[J]. J Chem Eng Data,2007,52(6):2306-2314.
    [187]Goldon A, Dabrowska K, Hofman T. Densities and excess volumes of the 1,3-dimethylimidazolium methylsulfate + methanol system at temperatures from (313.15 to 333.15) K and pressures from (0.1 to 25) MPa[J]. J Chem Eng Data,2007, 52(5):1830-1837.
    [188]Fernandez A, Garcia J, Torrecilla J S, et al. Volumetric, transport and surface properties of [bmim][MeSO4] and [emim][EtSO4] ionic liquids as a function of temperature[J]. J Chem Eng Data,2008,53(7):1518-1522.
    [189]Hofman T, Goldon A, Nevines A. et al Densities, excess volumes, isobaric expansivity, and isothermal compressibility of the (1-ethyl-3-methylimidazolium ethylsulfate + methanol) system at temperatures (283.15 to 333.15) K and pressures from (0.1 to 35) MPa[J]. J Chem Thermodyn,2008,40(4):580-591.
    [190]Jiang H, Wang J, Zhao F, et al. Volumetric and surface properties of pure ionic liquid n-octyl-pyridinium nitrate and its binary mixture with alcohol[J]. J Chem Thermodyn, 2012,47:203-208.
    [191]Paulechka Y U, Zaitsau D H. Kabo G J, et al. Vapor pressure and thermal stability of ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide[J]. Thermochim Acta,2005.439(1-2):158-160.
    [192]Zaitsau D H, Kabo G J, Strechan A A, et al. Experimental vapor pressures of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides and a correlation scheme for estimation of vaporization enthalpies of ionic liquids[J]. J Phys Chem A, 2006,110(22):7303-7306.
    [193]Valderrama J O. Robles P A. Critical properties, normal boiling temperatures, and acentric factors of fifty ionic liquids[J]. Ind Eng Chem Res,2007,46(4):1338-1344.
    [194]Poling B E, Thomson G H, Friend D G, et al. Perry's chemical engineers'book,8th ed, section 2, physical and chemical data[M]. New York:McGraw-Hill,2008.
    [195]Safarov J, Verevkin S P, Bich E. et al. Vapor pressures and activity coefficients of n-alcohols and benzene in binary mixtures with 1-methyl-3-burylimidazolium octyl sulfate and 1-methyl-3-octylimidazolium tetrafluoroborate[J]. J Chem Eng Data,2006, 51(2):518-525.
    [196]Kato R, Gmehling J. Measurement and correlation of vapor-liquid equilibria of binary systems containing the ionic liquids [EMIM][(CF3SO2)2N], [BMIM][(CF3SO2)2N], [MMIM][(CH3)2PO4] and oxygenated organic compounds respectively water [J]. Fluid Phase Equilib,2005,231(1):38-43.
    [197]Kato R, Gmehling J. Systems with ionic liquids:measurement of VLE and γ∞ data and prediction of their thermodynamic behavior using original UNIFAC, mod. UNIFAC(Do) and COSMO-RS(Ol)[J]. J Chem Thermodyn,2005,37(6):603-619.
    [198]Verevkin S P, Safarov J, Bich E, et al. Thermodynamic properties of mixtures containing ionic liquids:vapor pressures and activity coefficients of w-alcohols and benzene in binary mixtures with 1-methyl-3-butyl-imidazolium bis(trifluoromethyl-sulfonyl) imide[J]. Fluid Phase Equilib,2005,236(1-2):222-228.
    [199]Nebig S, Bolts R, Gmehling J. Measurement of vapor-liquid equilibria (VLE) and excess enthalpies (HE) of binary systems with 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and prediction of these properties and γ∞ using modified UNIFAC (Dortmund)[J]. Fluid Phase Equilib,2007,258(2):168-178.
    [200]Heintz A, Vasiltsova T V, Safarov J, et al. Thermodynamic properties of mixtures containing ionic liquids.9. Activity coefficients at infinite dilution of hydrocarbons, alcohols, esters, and aldehydes in trimethyl-butylammonium bis(trifluoromethylsulfonyl) imide using gas-liquid chromatography and static method[J]. J Chem Eng Data,2006,51(2):648-655.
    [201]Cabaco M I, Longelin S, Danten Y, et al. Transient dimer formation in supercritical carbon dioxide as seen from Raman scattering [J]. J Chem Phys,2008,128(7):074507.
    [202]Hutchings J W, Fuller K L, Heitz M P, et al. Surprisingly high solubility of the ionic liquid trihexyltetradecylphosphonium chloride in dense carbon dioxide[J]. Green Chem, 2005,7(6):475-478.
    [203]Costantini M, Toussaint V A. Shariati A, et al. High-pressure phase behavior of systems with ionic liquids: Part IV. Binary system carbon dioxide + 1-hexyl-3-methylimidazolium tetrafluoroborate[J]. J Chem Eng Data,2004,50(1): 52-55.
    [204]Gutkowski K I, Shariati A, Peters C J. High-pressure phase behavior of the binary ionic liquid system 1-octyl-3-methylimidazolium tetrafluoroborate + carbon dioxide[J]. J Supercrit Fluids,2006,39(2):187-191.
    [205]Kroon M C, Shariati A, Costantini M, et al. High-pressure phase behavior of systems with ionic liquids: Part V. The binary system carbon dioxide + 1-butyl-3-methylimidazolium tetrafluoroborate [J]. J Chem Eng Data, 2004,50(1): 173-176.
    [206]Shariati A, Gutkowski K, Peters C J. Comparison of the phase behavior of some selected binary systems with ionic liquids[J]. AIChE J,2005,51(5):1532-1540.
    [207]Shariati A. Peters C J. High-pressure phase behavior of systems with ionic liquids:Part Ⅲ. The binary system carbon dioxide + 1-hexyl-3-methylimidazolium hexafluorophosphate[J]. J Supercrit Fluids,2004,30(2):139-144.
    [208]Shariati A, Peters C J. High-pressure phase behavior of systems with ionic liquids:II. The binary system carbon dioxide+l-ethyl-3-methylimidazolium hexafluorophosphate[J]. J Supercrit Fluids,2004,29(1-2):43-48.
    [209]Shin E-K, Lee B-C, Lim J S. High-pressure solubilities of carbon dioxide in ionic liquids:1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide[J]. J Supercrit Fluids,2008,45(3):282-292.
    [210]Heintz A, Lehmann J K, Wertz C. Thermodynamic properties of mixtures containing ionic liquids. 3. Liquid-liquid equilibria of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with propan-1-ol, butan-1-ol, and pentan-l-ol[J]. J Chem Eng Data,2003,48(3):472-474.
    [211]Maia F M, Rodriguez O, Macedo E A. LLE for (water + ionic liquid) binary systems using [Cxmim][BF4] (x = 6,8) ionic liquids[J]. Fluid Phase Equilib,2010.296(2): 184-191.
    [212]Macleod D B, D.Sc. M A. On a relation between surface tension and density[J]. Trans Faraday Soc,1923.19:38-41.
    [213]Sugden S. The variation of surface tension with temperature and some related functions [J]. J. Chem. Soc,1924,125:32-41.
    [214]Sugden S. Relation between surface tension, density, and chemical composition[J]. J. Chem. Soc,1924.125:1177-1189.
    [215]Weinaug C F, Katz D L. Surface tensions of methane-propane mixtures[J]. Ind Eng Chem,1943,35(2):239-246.
    [216]Patterson D D, Rastogi A K. The surface tension of polyatomic liquids and the principle of corresponding states [J]. J Phys Chem,1970,74(5):1067-1071.
    [217]Rice P. Teja A S. A generalized corresponding-states method for the prediction of surface tension of pure liquids and liquid mixtures[J]. J Colloid Interface Sci,1982, 86(1):158-163.
    [218]Lielmezs J. Herrick T A. New surface tension correlation for liquids[J]. Chem Eng J, 1986,32(3):165-169.
    [219]Diguilio R, Teja A S. Correlation and prediction of the surface tensions of mixtures[J]. Chem Eng J,1988.38(3):205-208.
    [220]Dee G T. Sauer B B. The principle of corresponding states for polymer liquid surface tension[J]. Polymer,1995,36(8):1673-1681.
    [221]Digilov R M. The law of corresponding states and surface tension of liquid metals[J]. Int J Thermophys.2002.23(5):1381-1390.
    [222]Li P, Ma P-S, Dai J-G, et al. Estimations of surface tensions at different temperatures by a corresponding-states group-contribution method[J]. Fluid Phase Equilib,1996,118(1): 13-26.
    [223]Kauffman G W, Jurs P C. Prediction of surface tension, viscosity, and thermal conductivity for common organic solvents using quantitative structure-roperty relationships[J]. J Chem Inf Comput Sci,2001,41(2):408-418.
    [224]Wang J, Du H, Liu H, et al. Prediction of surface tension for common compounds based on novel methods using heuristic method and support vector machine [J]. Talanta,2007, 73(1):147-156.
    [225]Khajeh A, Modarress H. Quantitative structure-property relationship for surface tension of some common alcohols[J]. J Chemom,2011,25(6):333-339.
    [226]Khajeh A, Modarress H. QSPR prediction of surface tension of refrigerants from their molecular structures [J]. Int J Refrig,2012,35(1):150-159.
    [227]Gardas R L, Coutinho J A P. Applying a QSPR correlation to the prediction of surface tensions of ionic liquids[J]. Fluid Phase Equilib,2008,265(1-2):57-65.
    [228]Butler J A V. The thermodynamics of the surfaces of solutions [J]. Proc. R. Soc. Lond. A, 1932,135:348-375.
    [229]Hoar T P, Melford D A. The surface tension of binary liquid mixtures:lead + tin and lead + indium alloys[J]. Trans Faraday Soc,1957,53:315-326.
    [230]Sprow F B, Prausnitz J M. Surface tensions of simple liquid mixtures[J]. Trans Faraday Soc,1966,62:1105-1111.
    [231]Darwish E, Al-Sahhaf T A, Fahim M A. Prediction of the surface tension of petroleum cuts using a modified UNIFAC group contribution method[J]. Fluid Phase Equilib, 1995,105(2):229-239.
    [232]Sprow F B, Prausnitz J M. Surface thermodynamics of liquid mixtures [J]. Can J Chem Eng,1967,45(1):25-28.
    [233]Suarez F, Romero C M. Apparent molar volume and surface tension of dilute aqueous solutions of carboxylic acids[J]. J Chem Eng Data,2011,56(5):1778-1786.
    [234]Hu Y, Li Z, Lu J, et al. A new model for the surface tension of binary and ternary liquid mixtures based on Peng-Robinson equation of state[J]. Chin J Chem Eng,1997,5(3): 193-199.
    [235]Li C, Wang W, Wang Z. A surface tension model for liquid mixtures based on the Wilson equation[J]. Fluid Phase Equilib,2000,175(1-2):185-196.
    [236]Li C, Wang W. A surface tension model for liquid mixtures based on NRTL equation[J]. Chin J Chem Eng,2001,9(1):45-50.
    [237]Shereshefsky J L. A theory of surface tension of binary solutions:Ⅰ, Binary liquid mixtures of organic compounds[J]. J Colloid Interface Sci,1967,24(3):317-321.
    [238]Yarranton H W, Masliyah J H. Gibbs-Langmuir Model for Interfacial Tension of Nonideal Organic Mixtures over Water[J]. J Phys Chem,1996,100(5):1786-1792.
    [239]Fu J, Li B, Wang Z. Estimation of fluid-fluid interfacial tensions of multicomponent mixtures[J]. Chem Eng Sci,1986,41(10):2673-2679.
    [240]Boudh-Hir M E, Mansoori G A. Statistical mechanics basis of Macleod's formula[J]. J Phys Chem,1990,94(21):8362-8364.
    [241]Escobedo J, Mansoori G A. Surface tension prediction for pure fluids[J]. AIChE J.1996. 42(5):1425-1433.
    [242]Escobedo J, Mansoori G A. Surface tension prediction for liquid mixtures[J]. AIChE J, 1998,44(10):2324-2332.
    [243]Kirkwood J G, Buff F P. The statistical mechanical theory of surface tension[J]. J Chem Phys.1949,17(3):338-343.
    [244]Davis H T. Statistical mechanics of interfacial properties of polyatomic fluids. I. Surface tension[J]. J Chem Phys,1975,62(9):3412-3415.
    [245]Winterfeld P H, Scriven L E, Davis H T. An approximate theory of interfacial tensions of multicomponent systems:Applications to binary liquid-vapor tensions[J]. AIChE J, 1978,24(6):1010-1014.
    [246]Li Z, Lu B C Y. A molecular model for representing surface tension for polar liquids[J]. Chem Eng Sci,2001,56(24):6977-6987.
    [247]Li Z, Lu B C-Y. On the prediction of surface tension for multicomponent mixtures[J]. Can J Chem Eng,2001,79(3):402-411.
    [248]Rowlinson J S. Translation of J. D. van der Waals "the thermodynamic theory of capillarity under the hypothesis of a continuous variation of density"[J]. J Stat Phys, 1979,20(2):197-244.
    [249]Cahn J W, Hilliard J E. Free energy of a nonuniform system. I. Interfacial free energy[J]. JChem Phys,1958,28(2):258-267.
    [250]Carey B S, Scriven L E, Davis H T. Semiempirical theory of surface tension of binary systems[J]. AIChE J,1980,26(5):705-710.
    [251]Falls A H, Scriven L E, Davis H T. Adsorption, structure, and stress in binary' interfaces [J]. J Chem Phys,1983.78(12):7300-7317.
    [252]Perez-Lopez J H, Gonzalez-Ortiz L J, Leiva M A, et al. Estimation of surface tension of pure fluids using the gradient theory[J]. AIChE J,1992,38(5):753-760.
    [253]Cornelisse P M W, Peters C J, de Swaan Arons J. Application of the Peng-Robinson equation of state to calculate interfacial tensions and profiles at vapour-liquid interfaces [J]. Fluid Phase Equilib.1993.82:119-129.
    [254]Zuo Y-X, Stenby E H. Calculation of interfacial tensions with gradient theory[J]. Fluid Phase Equilib,1997.132(1-2):139-158.
    [255]Miqueu C, Mendiboure B, Graciaa A. et al. Modelling of the surface tension of pure components with the gradient theory of fluid interfaces:a simple and accurate expression for the influence parameters [J]. Fluid Phase Equilib,2003,207(1-2): 225-246.
    [256]Miqueu C, Mendiboure B, Graciaa C, et al. Modelling of the surface tension of binary and ternary mixtures with the gradient theory of fluid interfaces [J]. Fluid Phase Equilib, 2004,218(2):189-203.
    [257]Mejia A, Segura H, Vega L F, et al. Simultaneous prediction of interfacial tension and phase equilibria in binary mixtures:An approach based on cubic equations of state with improved mixing rules[J]. Fluid Phase Equilib,2005,227(2):225-238.
    [258]Lin H, Duan Y-Y, Min Q. Gradient theory modeling of surface tension for pure fluids and binary mixtures[J]. Fluid Phase Equilib,2007,254(1-2):75-90.
    [259]Poser C I, Sanchez I C. Surface tension theory of pure liquids and polymer melts[J]. J Colloid Interface Sci,1979,69(3):539-548.
    [260]Cornelisse P M W, Wijtkamp M, Peters C J, et al. Interfacial tensions of fluid mixtures with polar and associating components [J]. Fluid Phase Equilib,1998,150-151: 633-640.
    [261]Kahl H, Enders S. Calculation of surface properties of pure fluids using density gradient theory and SAFT-EOS[J]. Fluid Phase Equilib,2000,172(1):27-42.
    [262]Mousazadeh M H, Faramarzi E. Calculation of surface tension of metals using density gradient theory and PC-SAFT equation of state[J]. Fluid Phase Equilib,2011,301(1): 13-17.
    [263]Fu D, Li X-S, Yan S, et al. Investigation of critical properties and surface tensions for n-alkanes by perturbed-chain statistical associating fluid theory combined with density-gradient theory and renormalization-group theory[J]. Ind Eng Chem Res,2006, 45(24):8199-8206.
    [264]Vilaseca O, Vega L F. Direct calculation of interfacial properties of fluids close to the critical region by a molecular-based equation of state[J]. Fluid Phase Equilib,2011, 306(1):4-14.
    [265]Winkelmann J, Brodrecht U, Kreft I. Density functional theory:modelling of surface tensions for molecular fluids[J]. Ber Bunsenges Phys Chem,1994,98(7):912-919.
    [266]Winkelmann J. Density functional theory:prediction of ellipsometric parameters and structural behaviour of pure fluid vapour-liquid interfaces [J]. Ber Bunsenges Phys Chem,1994,98(10):1308-1316.
    [267]Wadewitz T, Winkelmann J. Density functional theory:structure and interfacial properties of binary mixtures[J]. Ber Bunsenges Phys Chem,1996,100(11):1825-1832.
    [268]Fu D, Lu J-F, Liu J-C, et al. Prediction of surface tension for pure non-polar fluids based on density functional theory[J]. Chem Eng Sci,2001,56(24):6989-6996.
    [269]Gloor G J, Bias F J, del Rio E M, et al. A SAFT-DFT approach for the vapour-liquid interface of associating fluids[J]. Fluid Phase Equilib,2002,194-197:521-530.
    [270]Lu J-F, Fu D, Liu J-C, et al. Application of density functional theory for predicting the surface tension of pure polar and associating fluids[J]. Fluid Phase Equilib,2002, 194-197:755-769.
    [271]Gloor G J, Jackson G, Blas F J, et al. An accurate density functional theory for the vapor-liquid interface of associating chain molecules based on the statistical associating fluid theory for potentials of variable range [J]. J Chem Phys,2004.121(24): 12740-12759.
    [272]Llovell F, Galindo A, Blas F J, et al. Classical density functional theory for the prediction of the surface tension and interfacial properties of fluids mixtures of chain molecules based on the statistical associating fluid theory for potentials of variable range[J]. J Chem Phys,2010,133(2):024704.
    [273]Maghari A. Najafi M. On the calculation of surface tensions of n-alkanes using the modified SAFT-BACK-DFT approach[J]. J Solution Chem,2010,39(1):31-41.
    [274]Reiss H, Frisch H L, Lebowitz J L. Statistical mechanics of rigid spheres[J]. J Chem Phys,1959.31(2):369-380.
    [275]Reiss H, Frisch H L, Helfand E, et al. Aspects of the statistical thermodynamics of real fluids[J]. J Chem Phys,1960.32(1):119-124.
    [276]Li J, Ma J, Peng C, et al. Equation of state coupled with scaled particle theory for surface tensions of liquid mixtures[J]. Ind Eng Chem Res,2007,46(22):7267-7274.
    [277]Sandoval R, Wilczek-Vera G, Vera J H. Prediction of ternary vapor-liquid equilibria with the PRSV equation of state[J]. Fluid Phase Equilib,1989,52:119-126.
    [278]Benson G C, Lam V T. Surface tensions of binary liquid systems. Ⅱ. Mixtures of alcohols[J]. J Colloid Interface Sci,1972,38(2):294-301.
    [279]Myers R S, Clever H L. The surface tension and density of some hydrocarbon+alcohol mixtures at 303.15 K[J]. J Chem Thermodyn,1974,6(10):949-955.
    [280]Litkenhous E E, van Arsdale J D V, Hutchinson I W. The physical properties of the ternary system butyl alcohol-ethyl acetate-toluene[J].J Phys Chem,1940,44(3): 377-388.
    [281]Ridgway K, Butler P A. Physical properties of the ternary system benzene-cyclohexane-hexane[J]. J Chem Eng Data.1967,12(4):509-515.
    [282]Rusanov A I, Levichev S A. Thermodynamic investigation of surface layers of liquid solutions[J]. Kolloidn Zh,1968,30:112-118. (In Russian)
    [283]Vazquez G, Alvarez E, Navaza J M, et al. Surface tension of binary mixtures of water+ monoethanolamine and water + 2-amino-2-methyl-l-propanol and tertiary mixtures of these amines with water from 25 ℃ to 50 ℃[J]. J Chem Eng Data,1997,42(1):57-59.
    [284]Vazquez G, Alvarez E, Rendo R et al Surface tension of aqueous solutions of diethanolamine and triethanolamine from 25 ℃ to 50 ℃[J]. J Chem Eng Data,1996, 41(4):806-808.
    [285]Lampreia I M S, Santos A F S, Barbas M J A, et al. Changes in aggregation patterns detected by diffusion, viscosity, and surface tension in water + 2-(diethylamino)ethanol mixtures at different temperatures [J]. J Chem Eng Data,2007.52(6):2388-2394.
    [286]Maham Y, Mather A E. Surface thermodynamics of aqueous solutions of alkylethanolamines[J]. Fluid Phase Equilib.2001,182(1-2):325-336.
    [287]Alvarez E, Gomez-Diaz D. La Rubia M D. et al. Surface tension of aqueous binary mixtures of 2-(methylamino)ethanol and 2-(ethylamino)ethanol and aqueous ternary mixtures of these amines with triethanolamine or N-methyldiethanolamine from (293.15 to 323.15) K[J]. J Chem Eng Data,2008,53(1):318-321.
    [288]Alvarez E, Rendo R, Sanjurjo B. et al. Surface tension of binary mixtures of water + N-methyldiethanolamine and ternary mixtures of this amine and water with monoethanolamine, diethanolamine, and 2-amino-2-methyl-l-propanol from 25 to 50 ℃[J]. J Chem Eng Data,1998,43(6):1027-1029.
    [289]Alvarez E, Cancela A, Maceiras R, et al. Surface tension of aqueous binary mixtures of l-amino-2-propanol and 3-amino-l-propanol, and aqueous ternary mixtures of these amines with diethanolamine, triethanolamine, and 2-amino-2-methyl-l-propanol from (298.15 to 323.15) K[J]. J Chem Eng Data,2003,48(1):32-35.
    [290]Domanska U, Pobudkowska A, Rogalski M. Surface tension of binary mixtures of imidazolium and ammonium based ionic liquids with alcohols, or water:Cation, anion effect[J]. J Colloid Interface Sci,2008,322(1):342-350.
    [291]Wandschneider A, Lehmann J K, Heintz A. Surface tension and density of pure ionic liquids and some binary mixtures with 1-propanol and 1-butanol[J]. J Chem Eng Data, 2008,53(2):596-599.
    [292]Rilo E, Pico J, Garcia-Garabal S, et al. Density and surface tension in binary mixtures of CnMIM-BF4 ionic liquids with water and ethanol[J]. Fluid Phase Equilib,2009, 285(1-2):83-89.
    [293]Dee G T, Sauer B B. The surface tension of polymer blends:theory and experiment [J]. Macromolecules,1993,26(11):2771-2778.
    [294]Gaines G L. Surface tension of polymer solutions. I. Solutions of poly(dimethylsiloxanes)[J]. JPhys Chem,1969,73(9):3143-3150.
    [295]Gasior W, Moser Z, Pstrus J. Density and surface tension of the Pb-Sn liquid alloys[J]. J Phase Equilib,2001,22(1):20-25.
    [296]Gasior W, Moser Z, Pstrus J. Surface tension, density, and molar volume of liquid Sb-Sn alloys:Experiment versus modeling[J]. J Phase Equilib,2003,24(6):504-510.
    [297]Guo Z, Saunders N, Miodownik P, et al. Modeling material properties of lead-free solder alloys[J]. J Electron Mater,2008,37(1):23-31.
    [298]Lee J, Shimoda W, Tanaka T. Surface tension and its temperature coefficient of liquid Sn-X (X=Ag, Cu) alloys[J]. Mater Trans,2004,45(9):2864-2870.
    [299]Moser Z, Gasior W, Pstrus J. Surface tension measurements of the Bi-Sn and Sn-Bi-Ag liquid alloys[J]. J Electron Mater,2001,30(9):1104-1111.
    [300]Moser Z, Gasior W, Pstrus J. Surface tension of liquid Ag-Sn alloys:Experiment versus modeling[J], J Phase Equilib,2001,22(3):254-258.
    [301]Moser Z, Gasior W, Pstrus J, et al. Surface tension and density measurements of Sn-Ag-Sb liquid alloys and phase diagram calculations of the Sn-Ag-Sb ternary system[J]. Mater Trans,2004,45(3):652-660.
    [302]Moser Z, Gasior W, Pstrus J, et al. Studies of the Ag-In phase diagram and surface tension measurements [J]. J Electron Mater,2001,30(9):1120-1128.
    [303]Picha R, Vfestal J, Kroupa A. Prediction of alloy surface tension using a thermodynamic database[J]. CALPHAD,2004,28(2):141-146.
    [304]Basin A S, Solov'ev A N. Investigation of the density of liquid lead, cesium, and gallium by the gamma-method[J]. JAppl Mech Tech Phys,1967,8(6):57-59.
    [305]Alchagirov B B, Mozgovoi A G, Khatsukov A M. The density of molten indium at temperatures up to 600 K[J]. High Temp,2004.42(6):1003-1005.
    [306]McGonigal P J, Cahill J A, Kirshenbaum A D. The liquid range density, observed normal boiling point and estimated critical constants of indium[J]. J Inorg Nucl Chem, 1962,24(8):1012-1013.
    [307]Wang L, Mei Q. Density measurement of liquid metals using dilato meter [J]. J Mater Sci Tech,2006.22(4):569-571.
    [308]Yan L, Zheng S, Ding G, et al. Surface tension calculation of the Sn-Ga-In ternary alloy[J]. CALPHAD,2007.31(1):112-119.
    [309]Shipp W E. Surface tension of binary mixtures of several organic liquids at 25℃[J]. J Chem Eng Data,1970,15(2):308-311.
    [310]Suri S K, Ramakrishna V. Surface tension of some binary liquid mixtures[J]. J Phys Chem,1968,72(9):3073-3079.
    [311]Schmidt R L, Randall J C, Clever H L. The surface tension and density ofbinary hydrocarbon mixtures:benzene-n-hexane and benzene-n-dodecane[J]. J Phys Chem, 1966,70(12):3912-3916.
    [312]Siskova M, Secova V. Surface tension ofbinary solutions of non-electrolytes[J]. Collect Czech Chem Commun,1970,35:2702-2711.
    [313]Koefoed J, Villadsen J V. Surface tension of liquid mixtures. A micro-method applied to the system:chloroform-carbon-tetrachloride, benzene-diphenylmethane and heptane-hexadecane[J]. Acta Chem Scand,1958,12(5):1124-1134.
    [314]Kahl H, Wadewitz T, Winkelmann J. Surface tension and interfacial tension of binary organic liquid mixtures[J]. J Chem Eng Data,2003,48(6):1500-1507.
    [315]Clever H L, Chase W E. Thermodynamics of liquid surfaces:Surface tension of n-hexane-cyclohexane mixture at 25°,30° and 35℃[J]. J Chem Eng Data,1963,8(3): 291-292.
    [316]Lam V T, Benson G C. Surface tensions of binary liquid systems. I. Mixtures of nonelectrolytes[J]. Can J Chem,1970,48(24):3773-3781.
    [317]Campbell A N. Kartzmark E M. Thermodynamic and other properties of methanol + acetone, carbon disulphide + acetone, carbon disulphide+methanol. and carbon disulphide+methanol + acetone[J]. J Chem Thermodyn,1973.5(2):163-172.
    [318]Morgan J L R, Scarlett Jr. A J. The properties of mixed liquids. IV. The law of Mixtures. II [J]. JAm Chem Soc.1917,39(11):2275-2293.
    [319]Ernst R C, Litkenhous E E, Spanyer Jr. J W. The physical properties of the ternary system acetone-n-butyl alcohol-water[J]. J Phys Chem.1931,36(3):842-854.
    [320]Tahery R, Modarress H, Satherley J. Density and surface tension of binary mixtures of acetonitrile+1-alkanol at 293.15 K[J].J Chem Eng Data,2006,51(3):1039-1042.
    [321]Wright E H M, Akhtar B A. Equlibrium studies of soluble films of short-chain monocarboxylic fatty acids at the organoliquid-vapour phase boundary[J]. Trans Faraday Soc,1970,66:990-1003.
    [322]Vijande J, Pineiro M M, Garcia J, et al. Density and surface tension variation with temperature for heptane + 1-alkanol[J]. J Chem Eng Data,2006, 51(5):1778-1782.
    [323]Chen Z, Ma P, Xia S, et al. Surface tension of o-xylene + acetic acid and w-xylene + acetic acid binary mixtures from 303.15 K to 343.15 K[J]. J Chem Eng Data,2007, 52(2):454-457.
    [324]Vazquez G, Alvarez E, Navaza J M. Surface tension of alcohol+water from 20 to 50 ℃[J]. J Chem Eng Data,1995,40(3):611-614.
    [325]Alvarez E, Gomez-Diaz D, La Rubia M D, et al. Surface tension of binary mixtures of N-methyldiethanolamine and triethanolamine with ethanol[J]. J Chem Eng Data,2008, 53(3):874-876.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700