两性离子型可回用两水相体系的构建及其分配生物小分子的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
制约两水相萃取发展最重要的因素是两水相体系成相聚合物的回收问题,成相聚合物的低回收率使两水相萃取的成本上升且增加了环境的污染。本文合成两个pH响应型聚合物PADB和PADBA,并利用这两个聚合物构建了pH响应型可回用两水相体系,该两水相体系以一个pH条件回收两个成相聚合物,有效的解决了两相体系的回收问题。其中PADB以丙烯酸,甲基丙烯酸二甲氨基乙酯,甲基丙烯酸丁酯为单体无规聚合而成,而PADBA以丙烯酸,甲基丙烯酸二甲氨基乙酯,甲基丙烯酸丁酯,丙烯醇为单体无规聚合而成,通过红外光谱和核磁共振的方法确定了两个聚合物的结构;通过乌氏粘度计方法测定了聚合物的粘度,并计算聚合物的粘均分子量(PADBA为3.37×105,PADB为2.93×106);通过称重法测定了聚合物的回收率,测得PADBA的回收率为97.18%,而PADB的回收率为98.87%;通过测定不同pH下聚合物的Zeta电位,计算聚合物PADBA的等电点为4.01,而PADB的等电点为2.79。
     对于形成的PADB/PADBA两水相体系,通过浊点法测定了该体系的双节线,通过分别测定成相后上下相各个聚合物的浓度来绘制系线。研究了pH对PADB/PADBA可回用两水相体系双节线和系线的影响,结果显示随着pH的增加,双节线往上移动,表示在相同PADBA浓度(或PADB浓度)下,形成两相所需的PADB浓度(或PADBA浓度)增加。而系线随着pH的增加不断变短,表示pH的增加使相同初始浓度的两水相体系分相后上下相差异变小。同时利用NRTL和Flory-Huggins两个模型拟合实验数据,其中Flory-Huggins模型的RMSD在pH为6.05时达到最小值0.8777,而NRTL模型的RMSD在pH为6.05时达到最小值1.0092。相比于NRTL模型,Flory-Huggins模型的RMSD更小,说明Flory-Huggins模型比NRTL模型更适合PADB/PADBA两水相体系的相图拟合。
     利用构建的PADB/PADBA可回用两水相体系分配一些抗生素和甜味剂,包括螺旋霉素、红霉素、林可霉素、去甲基金霉素和甜叶菊甙,考察了不同聚合物浓度、体系pH、盐离子、盐离子浓度等因素对这些生物小分子分配的影响。结果表明,聚合物浓度和pH对螺旋霉素、红霉素、林可霉素和甜叶菊甙在PADB/PADBA两水相体系中的分配影响不大,而在去甲基金霉素的分配中,不同pH下的去甲基金霉素的分配系数的范围为0.4到0.8,且当pH为5.28时分配系数最小,为0.467。在加入的多种无机盐中,MgSO4的影响较大,其中螺旋霉素的分配系数随着MgSO4离子浓度增加而增加,在90mmol/l时达到最大值1.99;红霉素的分配系数在低浓度的MgSO4离子中变化不大,而在高浓度MgSO4离子中随着MgSO4浓度的增加而增加,并在1200mmol/l的时候达到最大值5.3;MgSO4使去甲基金霉素的分配系数下降,且当MgSO4浓度达到60mmol/l时,其分配系数达到最小值0.084。同时考察了不同离子加入顺序对甜叶菊甙分配系数的影响,当甜叶菊甙先和MgSO4混合溶解后再与聚合物溶液混合,其分配系数会随着MgSO4浓度的增加而增加,并在MgSO4浓度为200mmol/l时分配系数达到最大值9.0。PADB/PADBA两水相体系更适合于分配带电荷的生物小分子且Mg2+离子对PADB/PADBA两水相体系分配的影响要比其他离子的影响大。利用PADB/PADBA两水相体系来取代有机溶剂萃取分离生物小分子可解决有机溶剂成本高、污染大的问题,具有一定的前景。
     采用一个改进的Gibbs系综蒙特卡洛法模拟了聚合物/聚合物两水相体系的液液平衡,其结果和实际的两水相体系中上下相分别富含一种聚合物的现象相同。考察了聚合物分子量(以单体数量来表示不同聚合物分子量)和聚合物浓度(以聚合物链的初始数量表示聚合物浓度)对成相的影响,结果与实验过程中聚合物分子量和浓度对成相的影响相一致。同时,利用上述参数模拟了DEXT40/PEG4000两水相体系在200C的液液平衡数据,结果显示聚合物成相趋势与实验显示的相成趋势一致,其数据值的误差归于成相聚合物参数的估计方法不够完善。
Compared with traditional extraction technology like organic solvent extraction or ion exchange resin, aqueous two-phase systems (ATPS) have been widely used for purification of bioproducts due to the simple manipulation, mild operation condition, and low pollution. However, the key problem was the recovery difficulty of polymers phase-forming ATPS, increasing the cost. In this paper, two pH-response polymers PADB and PADBA were synthesized and used to construct the pH-response aqueous two-phase systems. PADB was synthesized by acrylic acid (AA), dimethylamino-ethyl methacrylate (DMAEMA), butyl methacrylate (BMA) and PADBA was synthesized by AA, DMAEMA, BMA, allyl alcohol (Aal). The structures of these two polymers were confirmed by IR and H NMR. The viscosities of polymers were measured by ubbelohde viscometer and the average molecular weights of two polymers were calculated using Fuoss equation where molecular weight of PADBA is3.37×105and PADB is2.93×106. The recoveries of polymers at different pH were tested and the maximal recovery of PADBA is97.18%and PADB is98.87%. The isoelectric points were tested by measuring Zeta potential of polymers at different pH where pI of PADBA is4.01and PADB is2.79.
     The cloud point method was used to calculate the binodal curve of PADB/PADBA aqueous two-phase systems and the tie lines were determined by measurement of each polymer concentration in each phase. The effect of pH on the binodal curve and tie lines of PADB/PADBA aqueous two-phase systems was investigated. The results shows that the two-phase region becomes higher in the phase diagram as pH increases which means that to form ATPS at higher pH, higher concentration of PADB is needed with the same concentration of PADBA.The tie lines becomes shorter as pH increases which means that the difference between two phases becomes smaller after phase separation at the same initial concentrations. The NRTL model and Flory-Huggins model were used to fit the liquid-liquid equilibrium of PADB/PADBA aqueous two-phase systems. The minimal RMSD in Flory-Huggins model is0.8777at pH6.05, and in NRTL model is1.0092at pH6.05. Flory-Huggins model shows better correlation than NRTL model for PADB/PADBA aqueous two-phase systems.
     PADB/PADBA aqueous two-phase systems were used to partition some bioproducts, including Spiramycin, Erythromycin, Lincomycin, Stevioside and Demeclocycline. The influence of the polymer concentration, pH, salts, salts concentration on the partition in PADB/PADBA aqueous two-phase systems were investigated. The results shows that the polymer concentration and pH have limited effect on the partition of Spiramycin, Erythromycin and Lincomycin in PADB/PADBA aqueous two-phase systems. The partition coefficient of Demeclocycline in PADB/PADBA aqueous two-phase systems is at the range of0.4to0.8at different pH and reaches minimum (0.467) when pH is5.28. In all the addition of salts, the partition coefficient of Spiramycin in PADB/PADBA aqueous two-phase systems increases with the salt concentration and reaches maximum at90mmol/l (1.99). The partition coefficient of Erythromycin in PADB/PADBA aqueous two-phase systems reaches maximum at high concentration1200mmol/l (5.296).The partition coefficient of Demeclocycline in PADB/PADBA aqueous two-phase systems is at the range of0.1~0.2at the salt range of10mmol/1~90mmol/l and reaches minimum (0.084) at60mmol/l. This result shows extensive application prospect in purification of Demeclocycline. In the investigation of the sequence of adding salts, the partition coefficient of Stevioside in PADB/PADBA aqueous two-phase systems reachs maximum (9.0) when Stevioside is mixed with MgSO4(100mmol/l~200mmol/l) firstly then mixed with polymers solution.
     A modified Gibbs Ensemble Monte Carlo method was used to simulate the liquid-liquid equilibrium of aqueous two-phase systems composed of two model polymers. The results show that one polymer is enriched in one phase and the other polymer is enriched in the other phase which is the same with the real system. The effect of molecular weight (using the number of monomers to express the molecular weight) and the polymer concentration (using the number of initial polymer chains to express the polymer concentration) on the phase forming were investigated. Results show that ATPS can't form ATPS at low molecular weight and at low polymer concentration which is also same with real system. And the simulated tie lines are parallel and the tie line length decreases as the concentration decreases, fitting the real system. The program was also used to simulate the experiment data of DEXT40/PEG4000ATPS at20"C, and the results show the same tendency of phase forming with real system.
引文
[1]M. T. Zafarani-Moattar, R. Sadeghi, A. A. Hamidi. Liquid-liquid equilibria of an aqueous two-phase system containing polyethylene glycol and sodium citrate:experiment and correlation. Fluid Phase Equilibria.2004,219:149-155
    [2]R. Hatti-Kaul. Aqueous two-phase systems:Methods and Protocols. Humana Press Inc. New Jersey.2000.
    [3]A. Salabat, S. T. Moghadam, M. R. Far. Liquid-liquid equilibria of aqueous two-phase systems composed of TritonX-100 and sodium citrate or magnesium sulfate salts. CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry.2010,34:81-83
    [4]M. T. Zafarani-Moattar, S. Hamzehzadeh. Phase Diagrams for the Aqueous Two-Phase Ternary System Containing the Ionic Liquid 1-Butyl-3-methylimidazolium Bromide and Tri-potassium Citrate at T=(278.15,298.15, and 318.15) K. Journal of chemical and engineering data.2009,54:833-841
    [5]Y. Shang, H. Liu, Y. Hu, J. M. Prausnitz. Aqueous Two-Phase System (ATPS) Containing Gemini (12-3-12,2Br-) and SDS I:Phase Diagram and Properties of ATPS Journal of Dispersion Science and Technology.2006,27:335-339
    [6]P. J. Flory. Thermodynamics of high polymer solutions. Journal of chemical physics. 1942,10:51-62
    [7]Huggins, M. L. Solutions of Long Chain Compounds. Journal of chemical physics. 1941,9:440-441
    [8]E. d. S. Tada, W. Loh, P. d. A. Pessoa-Filho. Phase equilibrium in aqueous two-phase systems containing ethyleneoxide-propylene oxide block copolymers and dextran. Fluid Phase Equilibria.2004,218:221-228
    [9]M. Foroutan, N. Heidari, M. Mohammadlou, A. J. Sojahrood. Effect of temperature on the (liquid+liquid) equilibrium for aqueous solution of nonionic surfactant and salt:Experimental and modeling. Journal of chemical thermodynamics.2008,40:1077-1081
    [10]R. Sadeghi. Aqueous two-phase systems of poly(vinylpyrrolidone) and potassium citrate a tdifferent temperatures-Experimental results and modeling of liquid-liquid equilibrium data. Fluid Phase Equilibria.2006,246:89-95
    [11]M. T. Zafarani-Moattar, R. Sadeghi. Measurement and correlation of liquid-liquid equilibria of the aqueous two-phase system polyvinylpyrrolidone-sodium dihydrogen phosphate. Fluid Phase Equilibria.2002,203:177-191
    [12]G. R. Pazukia, H. Pahlevanzadeh, A. M. Ahooei. Prediction of phase behavior of CO2-NH3-H2O system by using the UNIQUAC-Non Random Factor (NRF) model Fluid Phase Equilibria.2006,242:57-64
    [13]V. M. d. Andrade, G. D. Rodrigues, R. M. M. d. Carvalho, L. H. M. d. Silva, M. C. H. d. Silva. Aqueous two-phase systems of copolymer L64+ organic salt+ water:Enthalpic L64-salt interaction and Othmer-Tobias, NRTL and UNIFAC thermodynamic modeling Chemical Engineering Journal.2011,171:9-15
    [14]L. R. d. Lemos, P. d. R. Patricio, G. D. Rodrigues, R. M. M. d. Carvalho, M. C. H. d. Silva, L. H. M. d. Silva. Liquid-liquid equilibrium of aqueous two-phase systems composed of polyethylene oxide) 1500 and different electrolytes ((NH4)2SO4, ZnSO4 and K2HPO4): Experimental and correlation. Fluid Phase Equilibria.2011,35:19-24
    [15]Y. T. Wu, D. Q. Lin, Z. Q. Zhu. Thermodynamics of aqueous two-phase systems-the effect of polymer molecular weight on liquid-liquid equilibrium phase diagrams by the modified NRTL model. Fluid Phase Equilibria.1998,147:25-43
    [16]R. Sadeghi, M. T. Zafarani-Moattarb. Extension of the NRTL and NRF models to multicomponent polymer solutions:Applications to polymer-polymer aqueous two-phase systems Fluid Phase Equilibria.2005,231:77-83
    [17]A. Salabat, M. Alinoori. Salt effect on aqueous two-phase system composed of nonylphenyl ethoxylate non-ionic surfactant. Computer Coupling of Phase Diagrams and Thermochemistry.2008,32:611-614
    [18]L. H. M. d. Silva, A. J. A. Meirelles. Phase equilibrium in polyethylene glycol/maltodextrin aqueous two-phase systems. Carbohydrate Polymers.2000,42:273-278
    [19]L. R. d. Lemos, I. J. B. Santos, G. D. Rodrigues, G. M. D. Ferreira, L. H. M. d. Silva, M. d. C. H. d. Silva, R. M. M. Carvalho. Phase Compositions of Aqueous Two-Phase Systems Formed by L35 and Salts at Different Temperatures. Journal of chemical and engineering data. 2010,55:1193-1199
    [20]R. Sadeghi, M. T. Zafarani-Moattar. Extension of the NRTL and NRF models to multicomponent polymer solutions:Applications to polymer-polymer aqueous two-phase systems. Fluid Phase Equilibria.2005,231:77-83
    [21]A. Haghtalab, B. Mokhtarani. The new experimental data and a new thermodynamic model based on group contribution for correlation liquid-liquid equilibria in aqueous two-phase systems of PEG and (K2HPO4 or Na2SO4). Fluid Phase Equilibria. 2004,215:151-161
    [22]A. Haghtalab, M. A. Asadollahi. An excess Gibbs energy model to study the phase behavior of aqueous two-phase systems of polyethylene glycolq+dextran. Fluid Phase Equilibria.2000,171:77-90
    [23]A. Haghtalab, B. Mokhtarani. On extension of UNIQUAC-NRF model to study the phase behavior of aqueous two phase polymer-salt systems. Fluid Phase Equilibria. 2001,180:139-149
    [24]M. T. Zafarani-Moattar, J. Gasemi. Liquid-liquid equilibria of aqueous two-phase systems containing polyethylene glycol and ammonium dihydrogen phosphate or diammonium hydrogen phosphate. Experiment and correlation. Fluid Phase Equilibria. 2002,198:281-291
    [25]M. T. Zafarani-Moattar, R. Sadeghi. Liquid-liquid equilibria of aqueous two-phase systems containing polyethylene glycol and sodiumdi hydrogen phosphate or disodium hydrogen phosphate Experiment and correlation. Fluid Phase Equilibria.2001,181:95-112
    [26]M. T. Zafarani-Moattar, E. Nemati-Kande. Study of liquid-liquid and liquid-solid equilibria of the ternary aqueous system containing poly ethylene glycol dimethyl ether 2000 and tri-potassium phosphate at different temperatures:Experiment and correlation. CALPHAD:Computer Coupling of Phase Diagrams and Thermochemistry.2010,34:478-486
    [27]Y. Wang, S. Hu, Y. Yan, W. Guan. Liquid-liquid equilibrium of potassium/sodium carbonate+2-propanol/ethanol+water aqueous two-phase systems and correlation at 298.15K. CALPHAD:Computer Coupling of Phase Diagrams and Thermochemistry.2009,33:726-731
    [28]P. P. Madeira, J. A.Teixeira, E. A. Macedo, L. M. Mikheeva, B. Y. Zaslavsky. AG(CH2) as solvent descriptorin polymer/polymer aqueous two-phase systems. Journal of Chromatography A.2005,1185:85-92
    [29]H. Walter, E. D. Brooks, D. Fisher. Partitioning in Aqueous Two-Phase Systems:Theory, Methods, Uses, and Applications to Biotechnology. Academic Press.1985.
    [30]P. P. Madeira, J. A.Teixeira, E. A. Macedo, L. M. Mikheeva, B. Y. Zaslavsky. Correlations between distribution coefficients of various biomolecules in different polymer/polymer aqueous two-phase systems. Fluid Phase Equilibria.2008,267:150-157
    [31]A. Salabat, M. H. Abnosi, A. R. Bahar. Amino acids partitioning in aqueous two-phase system of polypropylene glycol and magnesium sulfate. Journal of Chromatography B. 2007,858:234-238
    [32]F. C. d. Oliveiraa, J. S. d. R. Coimbra, L. H. M. d. Silva, E. E. G. Rojas, M. d. C. H. d. Silva. Ovomucoid partitioning in aqueous two-phase systems. Biochemical Engineering Journal.2009,47:55-60
    [33]B. K. Vaidya, H. K. Suthar, S. Kasture, S. Nene. Purification of potato polyphenol oxidase (PPO) by partitioning in aqueous two-phase system. Biochemical Engineering Journal.2006,28:161-166
    [34]G. Pico, D. Romanini, B. Nerli, B. Farruggia. Polyethyleneglycol molecular mass and polydispersivity effect on protein partitioning in aqueous two-phase systems Journal of Chromatography B.2006,830:286-292
    [35]C. A. S. d. Silva, J. S. R. Coimbra, E. E. G. Rojas, L. A. Minim, L. H. M. d. Silva. Partitioning of caseinomacropeptide in aqueous two-phase systems. Journal of Chromatography B.2007,858:205-210
    [36]G. Patil, K. S. M. S. Raghavarao. Aqueous two phase extraction for purification of C-phycocyanin. Biochemical Engineering Journal.2007,34:156-164
    [37]N. Imelio, A. Marini, D. Spelzini, G. Pico, B. Farruggia. Pepsin extraction from bovine stomach using aqueous two-phase systems:Molecular mechanism and influence of homogenate mass and phase volume ratio. Journal of Chromatography B.2008,873:133-138
    [38]F. Luechau, T. C. Ling, A. Lyddiatt. Selective partition of plasmid DNA and RNA in aqueous two-phase systems by the addition of neutral salt Separation and Purification Technology.2009,68:114-118
    [39]G. A. Gomes, A. M. Azevedo, M. R. Aires-Barros, D. M. F. Prazeres. Purification of plasmid DNA with aqueous two phase systems of PEG 600 and sodium citrate/ammonium sulfate Separation and Purification Technology.2009,65:22-30
    [40]H. Y. Yue, Q. P. Yuan, W. C. Wang. Purification of phenylalanine ammonia-lyase in PEG1000/Na2SO4 aqueous two-phase system by a two-step extraction Biochemical Engineering Journal.2007,37:231-237
    [41]L. A. Ferreira, J. A. Teixeira, L. M. Mikheeva, A. Chait, B. Y. Zaslavsky. Effect of salt additives on partition of nonionic solutes in aqueous PEG-sodium sulfate two-phase system. Journal of Chromatography A.2011,1218:5031-5039
    [42]W.-Y. Yang, C.-D. Lin, M. Chu, C.-J. Lee. Extraction of cephalosporin C from whole broth and separation of desacetyl cephalosporin C by aqueous two-phase partition. Biotechnology and Bioengineering.1994,43:439-445
    [43]H.-O. Johansson, G. Lundh, G. Karlstrom, F. Tjerneld. Effects of ions on partitioning of serum albumin and lysozyme in aqueoustwo-phase systems containing ethylene oxide/propylene oxide co-polymers. Biochimica et Biophysica Acta.1996,1290:289-298
    [44]C. W. Ooi, B. T. Tey, S. L. Hii, A. Ariff, H. S. Wu, J. C. W. Lan, R. S. Juang, S. M. M. Kamal, T. C. Ling. Direct Purification of Burkholderia Pseudomallei Lipase from Fermentation Broth Using Aqueous Two-Phase Systems. Biotechnology and Bioprocess Engineering.2009,14:811-818
    [45]A. B. Mageste, L. R. d. Lemosa, G. M. D. Ferreiraa, M. d. C. H. d. Silvaa, L. H. M. d. Silvaa, R. C. F. Bonomob, L. A. Minimc. Aqueous two-phase systems:An efficient, environmentally safe and economically viable method for purification of natural dye carmine Journal of Chromatography A.2009,1216:7623-7629
    [46]D. P. d. Silva, M. Z. R. Pontes, M. A. d. Souza, M. Vitolo, J. B. d. A. e. Silva, A. Pessoa-Junior. Infleunce of pH on the partition of glucose-6-phosphate dehydrogenase and hexokinase in aqueous two-phase system. Brazilian Journal of Microbiology. 2002,33:196-201
    [47]A. M. Azevedo, P. A. J. Rosa, I. F. Ferreira, M. R. Aires-Barros. Integrated process for the purification of antibodies combining aqueous two-phase extraction, hydrophobic interaction chromatography and size-exclusion chromatography. Journal of Chromatography A.2008,1213:154-161
    [48]翟素玲,刘建刚,骆广生.双水相电泳分离氨基酸.高校化学工程学报.2000,14:
    [49]S. H. Li, C. Y. He, F. Gao, D. B. Li, Z. Chen, H. W. Liu, K. Li, F. Liu. Extraction and determination of morphine in compound liquorice using an aqueous two-phase system of poly(ethylene glycol)/K.2HPO4 coupled with HPLC. Colloids and Surfaces A: Physicochemical and Engineering Aspects.2007,302:58-66
    [50]E. Omidinia, H. S. Mohamadi, R. Dinarvand, H.-A. Taherkhani. Investigation of chromatography and polymer/salt aqueous two-phase processes for downstream processing development of recombinant phenylalanine dehydrogenase. Bioprocess and Biosystems Engineering.2010,33:317-329
    [51]L. P. Malpiedi, G. A. Pico, W. Loh, B. B. Nerli. Role of polymer-protein interaction on partitioning pattern of bovine pancreatic trypsinogen and alpha-hymotrypsinogen in polyethyleneglycol/sodium tartrate aqueous two-phase systems. Journal of Chromatography B. 2010,878:1831-1836
    [52]J.-W. Lee, D. Forciniti. Purification of Human Antibodies from Transgenic Corn Using Aqueous Two-Phase Systems. Biotechnology progress.2010,26:159-167
    [53]J. Benavides, J. A. Mena, M. Cisneros-Ruiz, O. T. Ramirez, L. A. Palomares, M. Rito-Palomares. Rotavirus-like particles primary recovery from insect cells in aqueous two-phase systems. Journal of Chromatography B.2006,842:48-57
    [54]G. Pazuki, M. Vossoughi, V. Taghikhani. Partitioning of Penicillin G Acylase in Aqueous Two-Phase Systems of Poly(ethyleneglycol) 20000 or 35000 and Potassium Dihydrogen Phosphate or Sodium Citrate. Journal of chemical and engineering data.2010,55:243-248
    [55]G. Tubio, G. A. Pico, B. B. Nerli. Extraction of trypsin from bovine pancreas by applying polyethyleneglycol/sodium citrate aqueous two-phase systems. Journal of Chromatography B. 2009,877:115-120
    [56]K. C. Ross, C. Zhang. Separation of recombinant β-glucuronidase from transgeni ctobacco by aqueous two-phase extraction. Biochemical Engineering Journal.2010,49 343-350
    [57]F. Jara, A. M. R. Pilosof. Partitioning of a-lactalbumin and β-lactoglobulin in whey protein concentrate/hydroxypropylmethylcellulose aqueous two-phase systems. Food Hydrocolloids.2011,25:374-380
    [58]S. Shahriari, V. Taghikhani, M. Vossoughi, A. A. S. kordi, I. Alemzade, G R. Pazuki. Measurement of partition coefficients of a-amylase and amyloglucosidase enzymes in aqueous two-phase systems containing poly(ethylene glycol) and Na2SO4/KH2PO4 at different temperatures Fluid Phase Equilibria.2010,292:80-86
    [59]Y.-M. Lu, Y.-Z. Yang, X.-D. Zhao, C.-B. Xia. Bovine serum albumin partitioning in polyethylene glycol (PEG)/potassium citrate aqueous two-phase systems food and bioproducts processing.2010,88:40-46
    [60]K. Naganagouda, V. H. Mulimani. Aqueous two-phase extraction (ATPE):An attractive and economically viable technology for downstream processing of Aspergillus oryzae a-galactosidase. Process Biochemistry.2008,43:1293-1299
    [61]R. Kammoun, H. Chouayekh, H. Abid, B. Naili, S. Bejar. Purification of CBS819.72 a-amylase by aqueous two-phase systems:Modelling using Response Surface Methodology. Biochemical Engineering Journal.2009,46:306-312
    [62]S. Saravanan, J. R. Rao, B. U. Nair, T. Ramasami. Aqueous two-phase poly(ethylene glycol)-poly (acrylic acid) system for protein partitioning:Influence of molecular weight, pH and temperature. Process Biochemistry.2008,43:905-911
    [63]T. S. Porto, G. M. M. e. Silva, C. S. Porto, M. T. H. Cavalcanti, B. B. Neto, J. L. Lima-Filho, A. Converti, A. L. F. Porto, A. P. Jr. Liquid-liquid extraction of proteases from fermented broth by PEG/citrate aqueous two-phase system. Chemical Engineering and Processing:Process Intensification.2008,47:716-721
    [64]C. Aguirrea, I. Conchaa, J. Vergaraa, R. Riverosa, A. Illanesb. Partition and substrate concentration effect in the enzymatic synthesis of cephalexin in aqueous two-phase systems. Process Biochemistry.2010,45:1163-1167
    [65]M. Terrenia, D. Ubialia, G. Pagania, O. Hernandez-Justizb, R. Fernandez-Lafuenteb, J. M. Guisanb. Penicillin G acylase catalyzed acylation of 7-ACA in aqueous two-phase systems using kinetically and thermodynamically controlled strategies:improved enzymatic synthesis of 7-[(1-hydroxy-1-phenyl)-acetamido]-3-acetoxymethyl-△3-cephem-4-carboxylic acid. Enzyme and Microbial Technology.2005,36:672-679
    [66]R. Kuboi, T. Maruki, H. Tanaka, I. Komasawa. Fermentation of Bacillussubtilis ATCC6633 and production of subtilin in polyethylene glycol/phosphate aqueous two-phase systems. Journal of Fermentation and Bioengineering.1994,78:431-436
    [67]C. Li, F. Ouyang, J. Bai. Extractive cultivation of Lactococcus lactis using a polyethylene glycol/MgSo4·7H2O aqueous two-phase system to produce nisin Biotechnology Letters. 22:843-847
    [68]O. K. Ashipala, Q. He. Optimization of fibrinolytic enzyme production by Bacillus subtilis DC-2 in aqueous two-phase system (poly-ethylene glycol 4000 and sodium sulfate). Bioresource Technology.2008,99:4112-4119
    [69]C. W. Ooi, S. L. Hii, S. M. M. Kamal, A. Ariff, T. C. Ling. Extractive fermentation using aqueous two-phase systems for integrated production and purification of extracellular lipase derived from Burkholderia pseudomallei. Process Biochemistry.2011,46:68-73
    [70]J. Sinha, P. K. Dey, T. Panda. Extractive fermentation for improvedproduction of endoglucanase by an intergeneric fusant of Trichoderma reesei/Saccharomyces cerevisiae using aqueous two-phase system. Biochemical Engineering Journal.2000,6:163-175
    [71]W. Wang, J. F. Wan, B. Ning, J. A. Xia, X. J. Cao. Preparation of a novel light-sensitive copolymer and its application in recycling aqueous two-phase systems. Journal of Chromatography A.2008,1205:171-176
    [72]S. Miao, J. P. Chen, X. J. Cao. Preparation of a novel thermo-sensiitive copolymer forming recyclable aqueous two-phase systems and its application in bioconversion of Penicillin G. Separation and Purification Technology.2010,75:156-164
    [73]H. A. Al-Muallem, M. I. M. Wazeer, S. A. AH. Synthesis and solution properties of a new ionic polymer and its behavior in aqueous two-phase polymer systems. Polymer. 2002,43:1041-1050
    [74]C. S. Patricjios, W. R. Hertler, T. A. Hatton. Phase behavior of random and ABC triblock methacrylic polyampholytes with poly(vinyl alcohol) in water:effect of pH and salt. Fluid Phase Equilibria.1995,108:243-254
    [75]W. Qin, X. J. Cao. systhesis of a novel pH-sensitive methacrylate amphiphilic polymer and its primary application in aqueous two-phase systems. Applied Biochemistry and Biotechnology.2008,150:171-183
    [76]K. Berggren, H.-O. Johansson, F. Tjerneld. Effects of salts and the surface hydrophobicity of proteins on partitioning in aqueous two-phase systems containing thermoseparating ethylene oxide-propylene oxide copolymers. Journal of Chromatography A. 1995,718:67-79
    [77]H. O. Johansson, J. Persson, F. Tjerneld. Thermo separating Water/Polymer System:A Novel One-Polymer Aqueous Two-Phase System for Protein Purification. Biotechnology and Bioengineering.1999,66:247-257
    [78]J. Persson, A. Kaul, F. Tjerneld. Polymer recycling in aqueous two-phase extractions using thermo separating ethylene oxide-propylene oxide copolymers. Journal of Chromatography B.2000,743:115-126
    [79]B. Mosvan, L. C. A. M. Karel, A. M. Luuk, W. Vander. Polyethylene glycol)-salt aqueous two-phase systems with easily recyclable volatile salts. Journal of Chromatography B. 1998,71:61-68
    [80]J. Chen, S. Miao, J. Wan, J. Xia, X. Cao. Synthesis and application of two light-sensitive copolymers forming recyclable aqueous two-phase systems. Process Biochemistry. 2010,45:1928-1936
    [81]M. P. Allen, D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press. New Pork.1987.
    [82]L. Verlet. Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review.1967,159:98-103
    [83]C. W. Gear. Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall.1971.
    [84]F. Faure, B. Rousseau, V. Lachet, P. Ungerer. Molecular simulation of the solubility and diffusion of carbon dioxide and hydrogen sulfide in polyethylene melts. Fluid Phase Equilibria.2007,261:168-175
    [85]A. V. Egorov, E. N. Brodskaya, A. Laaksonen. Molecular dynamics simulations of solid-liquid phase transition in small water aggregates. Computational Materials Science. 2006,36:166-170
    [86]T. Chen, C. Peng, H. Liu, Y. Hu. Molecular thermodynamics model for random copolymer solutions. Fluid Phase Equilibria.2005,233:73-80
    [87]W. Wang, K. A. Kistler, K. Sadeghipour, G. Baran. Molecular dynamics simulation of AFM studies of a single polymer chain. Physics Letters A.2008,372:7007-7010
    [88]K. L. Yung, L. He, Y. Xu, Y. W. Shen. Molecular dynamics simulation of liquid crystal formation within semi-flexible main chain LCPs. Polymer.2005,46:11881-11888
    [89]A. Adnan, C. T. Sun, H. Mahfuz. A molecular dynamics simulation study to investigate the effect of filler size on elastic properties of polymer nanocomposites. Composites Science and Technology.2007,67:348-356
    [90]B. J. Palmer, C. Lo. Molecular dynamic implementation of the Gibbs ensemble calculation. Journal of chemical physics.1994,101:10899-10907
    [91]M. J. Kotelyanskii, R. Hentschke. Gibbs-ensemble molecular dynamics:liquid-gas equilibrium in a Lennard-Jones system. Physical Review.1995,51:5116-5119
    [92]M. J. Kotelyanskii, R. Hentschke. Gibbs-ensemble molecular dynamics:liquid-gas equilibria for Lennard-Jones spheres and n-hexane. Molecular Simulation.1996,17:95-112
    [93]R. Hentschke, T. Bast, E. Aydt, M. Kotelyanskii. Gibbs-ensemble molecular dynamics:a new method for simulations invovling particle exchange. Journal of Molecular Modeling. 1996,2:319-326
    [94]A. Baranyai, P. T. Cummings. On the molecular dynamics algorithum for Gibbs ensemble simulation. Molecular Simulation.1996,17:21-25
    [95]D. A. Kofke. Gibbs-Duhem integration:a new method for direct evaluation pf phase coexistence by molecular simulation. Molecular Physics.1993,78:1331-1336
    [96]D. A. Kofke. Direct evaluation pf phase coexistence by molecular simulation via integration along the saturation line. Journal of chemical physics.1993,98:4149-4162
    [97]M. Metha, D. A. Kofke. Molecular simulation in a pseudo grand canonical ensemble. Molecular Physics.1995,86:139-147
    [98]J. Vrabec, J. Fischer. Vapor-Liquid Equilibria of Binary Mixtures Containing Methane, Ethane, and Carbon Dioxide from Molecular Simulation International Journal of Thermophysics.1996,17:889-908
    [99]M. J. McGrath. Toward a Monte Carlo program for simulating vapor-liquid phase equilibria from first principles. Computer Physics Communications.2005,169:289-294
    [100]J. Su, L. Zhang. The phase behaviors of adsorbed polymethylene chains. Polymer. 2007,48:7419-7430
    [101]A. L. Galbraith, C. K. Hall. Vapor-liquid phase equilibria for mixtures containing diatomic Lennard-Jones molecules. Fluid Phase Equilibria.2006,241:175-185
    [102]J. Carrero-Mantilla. Simulation of the (vapor+liquid) equilibria of binary mixtures of benzene, cyclohexane, and hydrogen. Journal of chemical thermodynamics.2008,40:271-283
    [103]E. A. Tritopoulou, I. G. Economou. Molecular simulation of structure and thermodynamic properties of pure tri-and tetra-ethylene glycols and their aqueous mixtures. Fluid Phase Equilibria.2006,248:134-146
    [104]C. Y. Ji, Y. Y. Yan. A molecular dynamics simulation of liquid-vapour-solid system near triple-phase contact line of flow boiling in a microchannel. Applied Thermal Engineering. 2008,28:195-202
    [105]W.-Z. Ouyang, Z.-Y. Lu, Z.-Y. Sun, L.-J. An. Molecular dynamics study on the phase diagrams of linear and branched chain molecules. Chemical Physics.2008,344:52-60
    [106]孙风霞.仪器分析.化学工业出版社.北京.2004.
    [107]郑昌仁.高聚物分子量及其分布.化学工业出版社.北京.1986.
    [108]张俐娜,薛奇,莫志深,金熹高.高分子物力近代研究方法.武汉大学出版社.武汉.2003.
    [109]M. Bohdanecky, J. Kavar. Viscosity of Polymer Solutions. Elsevier Scientific Publishing Company. New York.1982.
    [110]R. Chang. Physical Chenmistry for the Chemical and Biological Sciences. University Science Books. Sausalito.2000.
    [111]L. G. Wade. Organic Chemistry:Sixth Edition. Pearson Education. Beijing.2009.
    [112]H. Renon, J. M. Prausnitz. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE Journal.1968,14:135-144
    [113]M. Perumalsamy, T. Murugesan. Prediction of liquid-liquid equilibria for PEG 2000-sodium citrate based aqueous two-phase systems. Fluid Phase Equilibria. 2006,244:52-61
    [114]E. V. C. Cunha, M. Aznar. Liquid Liquid Equilibrium in AqueousTwo-Phase (Water PEG8000 Salt):Experimental Determination and Thermodynamic Modeling. Journal of chemical and engineering data.2009,54:3242-3246
    [115]J. P. Martins, J. S. d. R. Coimbra, F. C. d. Oliveira, G. Sanaiotti, C. A. S. d. Silva, L. H. M. d. Silva, M. d. C. H. d. Silva. Liquid Liquid Equilibrium of AqueousTwo-Phase System Composed of Poly(ethylene glycol) 400 and Sulfate Salts. Journal of chemical and engineering data.2010,55:1247-1251
    [116]J. M. Prausnitz, R. N. lichtenthaler, E. G. d. Azevedo.流体相平衡的分子热力学.化学工业出版社.北京.2006.
    [117]叶宪曾,张新祥.仪器分析教程.北京大学出版社.北京.2007.
    [118]A. P. Albertsson. Partition of cell particles and macromolecules:distribution and fractionation of cells, mitochondria, chloroplasts, viruses, proteins, nucleic acids, and antigen-antibody complexes in aqueous polymer two-phase systems. Wiley-Interscience. NewYork.1971.
    [119]A. Schluck, M. Gerd, R. M. Kula. Influence of electrostatic interactions on partitioning in aqueous polyethylene glycol/dextran biphasic systems:part Ⅰ. Biotechnology and Bioengineering.1995,46:443-451
    [120]A. Pfennig, S. Albrecht, G. Johann. Consistent view of electrolytes in aqueous two phase systems. Journal of Chromatography B.1995,711:45-52
    [121]G. M. Torrie, J. P. Valleau. Monte Carlo study of a phase-separating mixture by umbrella sampling. Journal of chemical physics.1977,66:1402-1408
    [122]R. J. Sadus. Molecular Simulation of Fluids Theoty, Algorithms and Object-Orientation. ELSEVIER. New York.1999.
    [123]S. De, F. Guilak, M. Mofrad. Computational Modeling in Biomechanics. Springer. New York.2010.
    [124]T. Furuya, Y. Iwai, Y. Tanaka, H. Uchida, S. Yamada, Y. Arai. Measurement and correlation of liquid-liquid equilibria for dextran-poly(ethylene glycol)-water aqueous two-phase systems at 20℃. Fluid Phase Equilibria.1995,103:119-141

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700