聚氧乙烯月桂醚双水相体系的构建及其对抗生素的分离行为和机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双水相萃取技术作为一种新型的绿色分离/富集技术,具有简单、省时、高效和绿色无污染等优点,已被应用于金属离子的定量分离萃取、生物活性物质的分离纯化以及天然产物的提取等领域。目前的双水相体系主要包括聚合物-聚合物双水相体系、聚合物-盐双水相体系、离子液体-盐双水相体系和小分子有机溶剂-盐双水相体系,但由于有机溶剂易挥发不稳定、离子液体成本较高和两种聚合物体系的粘度较大等问题,影响了这三种双水相体系在工业规模化生产中的应用。而聚合物-盐双水相体系用盐代替聚合物-聚合物双水相体系中的一种聚合物作为成相物质,在降低体系粘度和生产成本的同时,保留了聚合物生物相容性好的优势,被广泛应用于生物活性物质、天然产物及抗生素的分离纯化,具有较高的开发价值和广阔的应用前景。双水相体系相平衡理论和液-液相平衡性质的研究是支撑双水相体系发展的理论基石,但目前的研究还不能完全清楚地从理论上解释双水相体系的形成机理以及预测物质在两相间的分配行为,这也在一定程度上限制了双水相体系的应用。因此,随着双水相体系研究的进一步发展,迫切需要相应的热力学理论做为指导工具。
     抗生素作为生物学和医学发展史上的重要里程碑,对人类和动物疾病的预防与治疗起到了极其重要的促进作用。随着抗生素在临床医学、养殖业以及食品加工业的大量使用,动物性食品药物残留和抗生素环境污染问题引起了人们的广泛关注。由于食品和环境样品的基质成分复杂且干扰物质多,其中所残留的抗生素又通常是痕量或超痕量存在,单一使用现有的分析检测方法已经不能满足其检测要求。因此,建立一种简单、快速、有效的分离/富集预处理技术已经成为抗生素残留检测工作的关键。
     本课题旨在构建聚氧乙烯月桂醚(Brij35)-盐双水相萃取体系,并将其应用于分离/富集环境和食品中的抗生素残留;深入分析体系中成相盐的分相能力,探索分相过程的热力学行为,为Brij35-盐双水相体系的应用研究提供坚实的理论基础;探讨各影响因素对目标抗生素在体系中选择性分配行为的影响机理,确立显著影响因素,构建最优实验条件,为食品和环境样品中其它污染物的分离/富集提供新的技术手段和科学依据。具体研究内容如下:
     (1)实验测定了14组Brij35-无机盐/有机盐双水相体系在不同温度下的双节线数据并对实验数据进行了关联拟合,针对具体的双水相体系确定了双节线拟合方程。通过实验测定和计算两种方式获得了Brij35-无机盐/有机盐双水相体系在不同温度下的液-液相平衡数据,并对数据进行了关联拟合,取得了令人满意的拟合效果。
     (2)通过计算Brij35-盐双水相体系的有效排除体积和绘制体系的双节线相图以及阴、阳离子的吉布斯自由能,深入探讨了双水相体系中成相盐的盐析能力和温度对体系成相条件的影响,得到如下结论:①当盐的阳(或阴)离子相同时,阴(或阳)离子的化合价越高,盐的盐析能力越强;②当盐的阳离子相同时,阴离子的吉布斯自由能的绝对值越大,盐的有效排除体积越大,盐的盐析能力越强,即:一价阴离子(OH-     (3)根据Brij35-盐双水相体系中电解质与高分子同时存在并且相互影响的特点,将超额吉布斯自由能表述为长程静电作用力、短程相互作用力和组合作用力三者之和,并使用PDH方程、改进的NRTL方程和Flory-Huggins方程分别表述三种作用力,对Brij35-盐双水相体系在温度T=(15、25和35)℃下的液-液相平衡数据进行了关联拟合。利用工作方程和关联拟合得到的模型参数,对Brij35-盐双水相体系中未参加关联计算的液-液相平衡数据进行预测,并将预测结果与实验测得结果进行比较,得到了令人满意的预测效果。
     (4)以环境和食品中的抗生素残留为目标,成功构建了Brij35-无机盐/有机盐双水相萃取体系与高效液相色谱法相结合的绿色分离/富集/检测技术:①构建Brij35-NaH2PO4双水相萃取体系用于分离、富集环境水样和水产品中残留的痕量氯霉素,通过响应曲面实验设计得出结论:NaH2PO4的浓度、Brij35的浓度、体系的温度和pH值等因素与萃取效率不是简单的线性关系,影响因素之间的相互作用对萃取效率也有一定的影响,其中NaH2PO4的浓度和体系的温度对萃取效率的影响极显著。②构建Brij35-(NH4)2SO4双水相萃取体系,并将其应用于土壤和蜂产品中甲砜霉素的分离与富集,对影响萃取效率和富集倍数的各因素进行了讨论,确定最佳萃取条件。③基于环境友好理念,构建了Brij35-有机盐(Na2C4H4O6)双水相萃取分离体系,并与高效液相色谱检测联用,成功实现了对动物副产品和环境水样中残留的磺胺嘧啶和磺胺二甲基嘧啶的同步分离、检测。基于单因素实验和正交实验分析,探讨了各因素对萃取效率和富集倍数的影响强度,确立了最优实验条件。
Aqueous two phase extration is a new and green separation and enrichment technology, and it has some advantages, such as simple, timesaving, efficient, green and eco-friendly, and it has been applied to the quantitative separation and extraction of metal ions, separation and purification of bioactivator and extraction of natural product. The existent aqueous two-phase system included polymer-polymer aqueous two-phase system, polymer-salt aqueous two-phase system, ionic liquid-salt aqueous two-phase system and micromolecule organic solvent-salt aqueous two-phase system. Because organic solvent is volatile and instable, the price of ionic liquid is higher and the viscosity of system containing two polymer is larger, the application of these three types of aqueous two-phase systems in large-scale industrial production was affected. One polymer of polymer-polymer aqueous two-phase system was replaced by salt, and it is polymer-salt aqueous two-phase system. The cost and viscosity of polymer-salt aqueous two-phase system is cheaper, and it has the advantage of good biocompatibility. It is applied in the separation and enrichment of bioactivator, natural product and antibiotic, and has high-exploited value and broad prospects on its application. The study of phase equilibrium theory and nature of aqueous two-phase system is the theoretical cornerstone to support its development, but the present study didn't explain the formation mechanism of aqueous two-phase system and it did not predict its distribution mechanism of the matter in two phases, which restrict its development. As the guidance of its development, the thermodynamic theory of aqueous two-phase system is imperative for the further advances in the studies of aqueous two-phase system.
     As the significant milestone of the development history of biology and medical science, antibiotics played a great important role to promote the prevention and treatment in the disease of human and animal. With using antibiotics extensively in clinical medicine, breeding industry and food processing industry, the drug residue in food of animal originated the problem and the antibiotics environment pollution has attracted the people's attention. The matrix elements of food and environment samples are complex and the samples contain many interfering substance, meanwhile, the residual antibiotics in real sample is trace or ultratrace. It is difficult to determine the trace of antibiotics only by using the available analysis and detection methods. Therefore, it is crucial to build up a simple, fast and effective pretreatment technology for separation and enrichment in order to determine the residual antibiotics.
     The aim of this paper is to establish the Brij35-salt aqueous two-phase extraction system, which will be applied to the separation and enrichment pretreatment of residual antibiotics in food and environment samples. The forming-phase abilities of salts and the thermodynamics behavior in forming-phase will be studied, which is the massy theoretical basis of the applied research of Brij35-salt aqueous two-phase system. The influence mechanism of the effect of influencing factors on the selective distribution behavior in system had been investigated, and the obvious significance and optimal experiment condition had been determined. These provided a new technological means and scientific basis for the separation and enrichment of other pollutant in food and environment samples. The concrete research content goes as follows:
     (1) The binodal curves data of14groups of Brij35-inorganic salt/organic salt aqueous two-phase system at different temperatures were determined, and the experimental data were fit by the experience equation. The optimal fitting equation was determined for each aqueous two-phase system. The liquid-liquid phase equilibrium data of14groups of Brij35-inorganic salt/organic salt aqueous two-phase system at different temperatures were determined by experiment or computer. The data were correlated and obtained the satisfactory fitting results.
     (2) The salting-out abilities of salts and the effect of temperature on the forming-phase conditions were deeply discussed through the effective exclude value of Brij35-salt aqueous two-phase system, the binodal curves diagram and the gibbs free energy of anion and cation. The conclusions can be drawn as follows:①The salting-out ability of salt with the same cation (or anion) is much stronger when the valence of anion (or cation) is higher.②When the cation of salt is same, its salting-out ability strengthened with the increase in effective exclude value and gibbs free energy of anion, namely, monovalent anion (OH-     (3) The excess gibbs free energy of Brij35-salt aqueous two-phase system was represented by the sum of three components of long-range interaction contribution, short-range interaction contribution and combinatorial contribution because the electrolyte and polymer coexisted in aqueous two-phase system and each component influences each other. These three contributions were respectively represented by PDH equation, modified NRTL equation and Flory-Huggins equation, and the liquid-liquid phase equilibrium data were correlated by the thermodynamic work equation. The liquid-liquid phase equilibrium data that were not used in the correlation was obtained by the prediction of the thermodynamic work equation and its model parameter. The prediction data were compared with the experiment data, and it gave a satisfactory results.
     (4) The green separation/enrichment/detection technique coupling Brij35-organic salt/inorganic salt aqueous two-phase extraction system with high performance liquid chromatography was built in order to trace the residual antibiotics in food and environment sample.①The Brij35-NaH2PO4aqueous two-phase extraction system was constructed and used in the separation and enrichment of residual trace chloramphenicol in aquatic products and environment water samples. The response surface method was used in designing the experiment scheme and analyzing the experiment data, and it supports the following conclusions that the relationship between extraction efficiency and the experiment influence factors includes the concentration of NaH2PO4, the concentration of Brij35, and the temperature and pH of system is not linear; the interaction of influence factors also affected the extraction efficiency; the influence of the concentration of NaH2PO4and its temperature on extraction efficiency is significant.②The Brij35-(NH4)2SO4aqueous two-phase extraction system was applied to separate and enrich residual thiamphenicol in soil and bee products, the effect of experiment influence factors on the extraction efficiency and enrichment factor was discussed, the linear relation of extraction efficiency and influence factors was verified by the response surface method, and the optimal experiment conditions was found.③Based on the concept of environment friendly, the Brij35-organic salt (Na2C4H4O6) aqueous two-phase extraction system was coupled with high performance liquid chromatography, and this system was successfully applied to simultaneously separate and determine residual sulfadiazine and sulfamethazine in animal by-products and environment water samples. The influence intension of experiment factors on extraction efficiency and enrichment factor was studied and the optimal experiment condition was established.
引文
[1]Pawliszyn J. New directions in sample preparation for analysis of organic compounds[J]. Trends Anal. Chem.,1995,14(3):113-122.
    [2]Hernandez F, Morell I, Beltran J, et al. Multiresidue procedure for the analysis of pesticides in groundwater-application to samples from the comunidad-valenciana, spain[J]. Chromatographia,1993,37(5-6):303-312.
    [3]Balinova A. Strategies for chromatographic analysis of pesticide residues in water[J]. J. Chromatogr. A,1996,754(1-2):125-135.
    [4]Salgado J C, Andrews B A, Ortuzar M F, et al. Prediction of the partitioning behaviour of proteins in aqueous two-phase systems using only their amino acid composition[J]. J. Chromatogr. A,2008,1178(1-2):134-144.
    [5]Johansson H O, Magaldi F M, Feitosa E, et al. Protein partitioning in poly(ethylene glycol)/sodium polyacrylate aqueous two-phase systems[J]. J. Chromatogr. A,2008, 1178(1-2):145-153.
    [6]Zhi W B, Song J N, Ouyang F, et al. Application of response surface methodology to the modeling of [alpha]-amylase purification by aqueous two-phase systems[J]. J. Biotechnol.,2005,118(2):157-165.
    [7]Bassani G, Farruggia B, Nerli B, et al. Porcine pancreatic lipase partition in potassium phosphate-polyethylene glycol aqueous two-phase systems [J]. J. Chromatogr. B,2007,859(2):222-228.
    [8]Da Silva C A S, Coimbra J S R, Rojas E E G, et al. Partitioning of caseinomacropeptide in aqueous two-phase systems[J]. J. Chromatogr. B,2007, 858(1-2):205-210.
    [9]Salabat A, Abnosi M H, Bahar A R. Amino acids partitioning in aqueous two-phase system of polypropylene glycol and magnesium sulfate[J]. J. Chromatogr. B,2007, 858(1-2):234-238.
    [10]Salabat A, Sadeghi R, Moghadam S T, et al. Partitioning of L-methionine in aqueous two-phase systems containing poly(propylene glycol) and sodium phosphate salts[J]. J. Chem. Thermodyn.,2011,43(10):1525-1529.
    [11]Trindade I P, Diogo M M, Prazeres D M F, et al. Purification of plasmid DNA vectors by aqueous two-phase extraction and hydrophobic interaction chromatography[J]. J. Chromatogr. A,2005,1082(2):176-184.
    [12]Barbosa H S, Hine A V, Brocchini S, et al. Dual affinity method for plasmid DNA purification in aqueous two-phase systems[J]. J. Chromatogr. A,2010,1217(9): 1429-1436.
    [13]Helfrich M R, El-Kouedi M, Etherton M R, et al. Partitioning and assembly of metal particles and their bioconjugates in aqueous two-phase systems[J]. Langmuir, 2005,21(18):8478-8486.
    [14]Bulgariu L, Bulgariu D. Extraction of gold(Ⅲ) from chloride media in aqueous polyethylene glycol-based two-phase system[J]. Sep. Purif. Technol.,2011,80(3): 620-625.
    [15]Li Z G, Teng H, Xiu Z L. Extraction of 1,3-propanediol from glycerol-based fermentation broths with methanol/phosphate aqueous two-phase system[J]. Process Biochem.,2011,46(2):586-591.
    [16]Kamihira M, Kumar A. Development of separation technique for stem cells[J]. Adv. Biochem. Eng. Biotechnol.,2007,106:173-193.
    [17]Lu Y M, Lu W J, Wang W, et al. Thermodynamic studies of partitioning behavior of cytochrome c in ionic liquid-based aqueous two-phase system[J]. Talanta,2011, 85(3):1621-1626.
    [18]Mokhtarani B, Karimzadeh R, Amini M H, et al. Partitioning of ciprofloxacin in aqueous two-phase system of poly(ethylene glycol) and sodium sulphate[J]. Biochem. Eng. J.,2008,38(2):241-247.
    [19]Jiang Y Y, Xia H S, Yu J, et al. Hydrophobic ionic liquids-assisted polymer recovery during penicillin extraction in aqueous two-phase system[J]. Chem. Eng. J.,2009,147(1):22-26.
    [20]Li H, Cao X J. Bioconversion of cephalosporin-G to 7-ADC A in a pH-thermo sensitive recycling aqueous two-phase systems[J]. Process Biochem.,2011,46(9): 1753-1758.
    [21]Li Z Y, Pei Y C, Liu L, et al. (Liquid+liquid) equilibria for (acetate-based ionic liquids+inorganic salts) aqueous two-phase systems [J]. J. Chem. Thermodyn.,2010, 42(7):932-937.
    [22]Han J, Wang Y, Yu C L, et al. (Liquid+liquid) equilibrium of (imidazolium ionic liquids+organic salts) aqueous two-phase systems at T=298.15K and the influence of salts and ionic liquids on the phase separation [J]. J. Chem. Thermodyn.,2012, 45(1):59-67.
    [23]Han J, Wang Y, Li Y, et al. Equilibrium phase behavior of aqueous two-phase systems containing 1-alkyl-3-methylimidazolium tetrafluoroborate and ammonium tartrate at different temperatures:experimental determination and correlation[J]. J. Chem. Eng. Data,2011,56(9):3679-3687.
    [24]Wang Y, Hu S P, Han J, et al. Measurement and correlation of phase diagram data for several hydrophilic alcohol+citrate aqueous two-phase systems at 298.15 K[J]. J. Chem. Eng. Data,2010,55(11):4574-4579.
    [25]Wang Y, Mao Y, Han J, et al. Liquid-liquid equilibrium of potassium phosphate/potassium citrate/sodium citrate+ethanol aqueous two-phase systems at (298.15 and 313.15) K and correlation[J]. J. Chem. Eng. Data,2010,55(12): 5621-5626.
    [26]Wang Y, Hu S P, Yan Y S, et al. Liquid-liquid equilibrium of potassium/sodium carbonate+2-propanol/ethanol+water aqueous two-phase systems and correlation at 298.15 K[J]. CALPHAD,2009,33(4):726-731.
    [27]Wang Y, Yan Y S, Hu S P, et al. Phase diagrams of ammonium sulfate+ ethanol/1-propano 1/2-propanol+water aqueous two-phase systems at 298.15 K and correlation[J]. J. Chem. Eng. Data,2010,55(2):876-881.
    [28]Zafarani-Moattar M T, Emamian S, Hamzehzadeh S. Effect of temperature on the phase equilibrium of the aqueous two-phase poly(propylene glycol)+ tripotassium citrate system [J]. J. Chem. Eng. Data,2008,53(2):456-461.
    [29]Ventura S P M, Neves C M S S, Freire M G, et al. Evaluation of anion influence on the formation and extraction capacity of ionic-liquid-based aqueous biphasic systems[J]. The Journal of Physical Chemistry B,2009,113(27):9304-9310.
    [30]Bridges N J, Gutowski K E, Rogers R D. Investigation of aqueous biphasic systems formed from solutions of chaotropic salts with kosmotropic salts (salt-salt ABS)[J]. Green Chem.,2007,9:177-183.
    [31]Zafarani-Moattar M T, Hamzehzadeh S. Liquid-liquid equilibria of aqueous two-phase systems containing polyethylene glycol and sodium succinate or sodium formate[J]. CALPHAD,2005,29(1):1-6.
    [32]Taboada M E, Asenjo J A, Andrews B A. Liquid-liquid and liquid-liquid-solid equilibrium in Na2CO3-PEG-H2O[J]. Fluid Phase Equilib.,2001,180(1-2): 273-280.
    [33]Foroutan M. Liquid-Liquid equilibria of aqueous two-phase poly(vinylpyrrolidone) and K2HPO4/KH2PO4 buffer:□ effects of pH and temperature [J]. J. Chem. Eng. Data,2007,52(3):859-862.
    [34]Zafarani-Moattar M T, Banisaeid S, Shamsi Beirami M A. Phase diagrams of some aliphatic alcohols+potassium or sodium citrate+ water at 25 ℃[J]. J. Chem. Eng. Data,2005,50(4):1409-1413.
    [35]Chen Y H, Meng Y S, Zhang S M, et al. Liquid-liquid equilibria of aqueous biphasic systems composed of 1-butyl-3-methyl imidazolium tetrafluoroborate+ sucrose/maltose+water[J]. J. Chem. Eng. Data,2010,55(9):3612-3616.
    [36]Zhang Y Q, Zhang S J, Chen Y H, et al. Aqueous biphasic systems composed of ionic liquid and fructose[J]. Fluid Phase Equilib.,2007,257(2):173-176.
    [37]Shekaari H, Sadeghi R, Jafari S A. Liquid-liquid equilibria for aliphatic alcohols+ dipotassium oxalate+water[J]. J. Chem. Eng. Data,2010,55(11):4586-4591.
    [38]Murugesan T, Perumalsamy M. Liquid-liquid equilibria of poly(ethylene glycol) 2000+sodium citrate+water at (25,30,35,40, and 45) ℃ [J]. J. Chem. Eng. Data, 2005,50(4):1392-1395.
    [39]Zafarani-Moattar M T, Hamidi A A. Liquid-liquid equilibria of aqueous two-phase poly(ethylene glycol)-potassium citrate system[J]. J. Chem. Eng. Data,2003,48(2): 262-265.
    [40]Graber T A, Taboada M E, Asenjo J A, et al. Influence of molecular weight of the polymer on the liquid-liquid equilibrium of the poly(ethylene glycol)+NaNO3+ H2O system at 298.15 K[J]. J. Chem. Eng. Data,2001,46(3):765-768.
    [41]Graber T A, Taboada M E, Carton A, et al. Liquid-liquid equilibrium of the poly(ethylene glycol)+sodium nitrate+water system at 298.15 K[J]. J. Chem. Eng. Data,2000,45(2):182-184.
    [42]Zafarani-Moattar M T, Nemati-Kande E. Study of liquid-liquid and liquid-solid equilibria of the ternary aqueous system containing poly ethylene glycol dimethyl ether 2000 and tri-potassium phosphate at different temperatures Experiment and correlation[J]. CALPHAD,2010,34(4):478-486.
    [43]Zafarani-Moattar M T, Nemati-Kande E. Thermodynamic studies on the complete phase diagram of aqueous two phase system containing polyethylene glycol dimethyl ether 2000 and di-potassium hydrogen phosphate at different temperatures[J]. CALPHAD,2011,35(2):165-172.
    [44]Gonzalez-Tello P, Camacho F. Blazquez G, et al. Liquid-liquid equilibrium in the system polyethylene glycol)+MgSO4+H2O at 298 K[J]. J. Chem. Eng. Data, 1996,41(6):1333-1336.
    [45]Wu C, Wang J, Pei Y, et al. Salting-out effect of ionic liquids on poly(propylene glycol) (PPG):formation of PPG+ionic liquid aqueous two-phase systems[J]. J. Chem. Eng. Data,2010,55:5004-5008.
    [46]Pei Y C, Wang J J, Liu L, et al. Liquid-liquid equilibria of aqueous biphasic systems containing selected imidazolium ionic liquids and salts[J]. J. Chem. Eng. Data,2007,52(5):2026-2031.
    [47]Tubio G, Pellegrini L, Nerli B B, et al. Liquid-liquid equilibria of aqueous two-phase systems containing poly(ethylene glycols) of different molecular weight and sodium citrate[J]. J. Chem. Eng. Data,2006,51(1):209-212.
    [48]De Souza E C, Diniz R S, Dos Reis Coimbra J S, et al. Measurements and Modeling of Liquid-Liquid Equilibrium of Polyethylene Glycol 400, Sodium Phosphate, or Sodium Citrate Aqueous Two-Phase Systems at (298.2,308.2, and 318.2) K[J]. J. Chem. Eng. Data,2013,58(7):2008-2017.
    [49]Malpiedi L P, Fernandez C, Pico G, et al. Liquid-liquid equilibrium phase diagrams of polyethyleneglycol+sodium tartrate+water two-phase systems[J]. J. Chem. Eng. Data,2008,53:1175-1178.
    [50]Huddleston J G, Willauer H D, Rogers R D. Phase diagram data for several PEG+ salt aqueous biphasic systems at 25 ℃[J]. J. Chem. Eng. Data,2003,48: 1230-1236.
    [51]Zhang W L, Hu Y T, Wang Y, et al. Liquid-liquid equilibrium of aqueous two-phase systems containing poly(ethylene glycol) of different molecular weights and several ammonium salts at 298.15K[J]. Thermochim. Acta,2013,560:47-54.
    [52]Diniz R S, Souza E C, Coimbra J S R, et al. Liquid-liquid equilibria of aqueous two-phase systems containing sodium hydroxide plus poly(ethylene glycol) of (1450,4000, or 10000) g.mol(-1) at (288.2,298.2, and 308.2) K[J]. J. Chem. Eng. Data,2012,57(2):280-283.
    [53]Alvarenga B G, Virtuoso L S, Lemes N H T, et al. Measurement and correlation of the phase equilibrium of aqueous two-phase systems composed of polyethylene(glycol) 1500 or 4000+ sodium sulfite+ water at different temperatures[J]. J. Chem. Eng. Data,2014,59(2):382-390.
    [54]Graber T A, Medina H, Galleguillos H R, et al. Phase equilibrium and partition of iodide in an aqueous biphasic system formed by (NH4)2SO4+PEG+H2O at 25 ℃[J]. J. Chem. Eng. Data,2007,52:1262-1267.
    [55]Govindarajan R, Perumalsamy M. Phase equilibrium of PEG 2000+ triammonium citrate+water system relating PEG molecular weight, cation, anion with effective excluded volume, gibbs free energy of hydration, size of cation, and type of anion at (298.15,308.15, and 318.15) K[J]. J. Chem. Eng. Data,2013,58(11): 2952-2958.
    [56]De Oliveira R M, Coimbra J S d R, Francisco K R, et al. Liquid-liquid equilibrium of aqueous two-phase systems containing poly(ethylene) glycol 4000 and zinc sulfate at different temperatures[J]. J. Chem. Eng. Data,2008,53(4):919-922.
    [57]Taboada M E, Rocha O A, Graber T A, et al. Liquid-liquid and solid-liquid equilibria of the poly(ethylene glycol)+sodium sulfate+water system at 298.15 K[J]. J. Chem. Eng. Data,2001,46(2):308-311.
    [58]Amaresh S P, Murugesan S, Regupathi I, et al. Liquid-liquid equilibrium of poly(ethylene glycol) 4000+diammonium hydrogen phosphate+water at different temperatures[J]. J. Chem. Eng. Data,2008,53(7):1574-1578.
    [59]Graber T A, Galvez M E, Galleguillos H R. Liquid-liquid equilibrium of the aqueous two-phase system water+PEG 4000+lithium sulfate at different temperatures:experimental determination and correlation [J]. J. Chem. Eng. Data, 2004,49(6):1661-1664.
    [60]Liu Y, Feng Y Q, Zhao Y J. Liquid-liquid equilibrium of various aqueous two-phase systems:experiment and correlation [J]. J. Chem. Eng. Data,2013, 58(10):2775-2784.
    [61]Jimenez Y P, Galleguillos H R. (Liquid+liquid) equilibrium of (NaNO3+PEG 4000+H2O) ternary system at different temperatures[J]. J. Chem. Thermodyn., 2011,43(11):1573-1578.
    [62]Zafarani-Moattar M T, Tolouei S. Liquid-liquid equilibria of aqueous two-phase systems containing polyethylene glycol 4000 and dipotassium tartrate, potassium sodium tartrate, or di-potassium oxalate:Experiment and correlation[J]. CALPHAD,2008,32(4):655-660.
    [63]Zafarani-Moattar M T, Sadeghi R. Phase behavior of aqueous two-phase PEG+NaOH system at different temperatures[J]. J. Chem. Eng. Data,2004,49(2): 297-300.
    [64]Sadeghi R, Golabiazar R. Thermodynamics of phase equilibria of aqueous poly(ethylene glycol)+sodium tungstate two-phase systems[J]. J. Chem. Eng. Data,2010,55(1):74-79.
    [65]Cunha E V C, Aznar M n. Liquid-liquid equilibrium in aqueous two-phase (water+ PEG 8000+salt):experimental determination and thermodynamic modeling[J]. J. Chem. Eng. Data,2009,54(12):3242-3246.
    [66]Zafarani-Moattar M T, Sadeghi R. Phase diagram data for several PPG+salt aqueous biphasic systems at 25 ℃[J]. J. Chem. Eng. Data,2005,48(5):947-950.
    [67]Zhao X H, Xie X Q, Yan Y S. Liquid-liquid equilibrium of aqueous two-phase systems containing poly(propylene glycol) and salt ((NH4)2SO4,MgSO4, KCl, and KAc):experiment and correlation[J]. Thermochim. Acta,2011,516(1-2):46-51.
    [68]Sadeghi R, Jamehbozorg B. The salting-out effect and phase separation in aqueous solutions of sodium phosphate salts and poly(propylene glycol)[J]. Fluid Phase Equilib.,2009,280(1):68-75.
    [69]Sadeghi R, Jamehbozorg B. Effect of temperature on the salting-out effect and phase separation in aqueous solutions of sodium di-hydrogen phosphate and poly(propylene glycol)[J]. Fluid Phase Equilib.,2008,271(1-2):13-18.
    [70]Salabat A, Dashti H. Phase compositions, viscosities and densities of systems PPG425+Na2SO4+H2O and PPG425+(NH4)2SO4+H2O at 298.15 K[J]. Fluid Phase Equilib.,2004,216(1):153-157.
    [71]Cheluget E L, Gelinas S, Vera J H, et al. Liquid-liquid equilibrium of aqueous mixtures of poly(propylene glycol) with NaCl[J]. J. Chem. Eng. Data,1994,39(1): 127-130.
    [72]Salabat A, Shamshiri L, Sardrodi J J. Liquid-liquid equilibrium data, viscosities, and densities of. aqueous mixtures of poly(propylene glycol) with trisodium citrate at 298.15 K[J]. J. Chem. Eng. Data,2005,50(1):154-156.
    [73]Shahbazinasab M-K, Rahimpour F. Liquid-liquid equilibrium data for aqueous two-phase systems containing PPG725 and salts at various pH values[J]. J. Chem. Eng. Data,2012,57(7):1867-1874.
    [74]Fedicheva N, Ninni L, Maurer G. Aqueous two-phase systems of poly(vinyl pyrrolidone)and sodium sulfate:experimental results and correlation/prediction[J]. J. Chem. Eng. Data,2007,52(5):1858-1865.
    [75]Zafarani-Moattar M T, Zaferanloo A. Measurement and correlation of phase equilibria in aqueous two-phase systems containing polyvinylpyrrolidone and di-potassium tartrate or di-potassium oxalate at different temperatures [J]. J. Chem. Thermodyn.,2009,41(7):864-871.
    [76]Zafarani-Moattar M T, Seifi-Aghjekohal P. Liquid-liquid equilibria of aqueous two-phase systems containing polyvinylpyrrolidone and tripotassium phosphate or dipotassium hydrogen phosphate:Experiment and correlation. [J]. CALPHAD, 2007,31(4):553-559.
    [77]Sadeghi R, Rafieia H R, Motamedia M. Phase equilibrium in aqueous two-phase systems containing poly(vinylpyrrolidone) and sodium citrate at different temperatures-experimental and modeling[J]. Thermochim. Acta,2006,451(1-2): 163-167.
    [78]Sadeghi R. Aqueous two-phase systems of poly(vinylpyrrolidone) and potassium citrate at different temperatures--Experimental results and modeling of liquid-liquid equilibrium data[J]. Fluid Phase Equilib.,2006,246(1-2):89-95.
    [79]Zafarani-Moattara M T, Sadeghib R. Effect of temperature on the phase equilibrium of aqueous two-phase systems containing polyvinylpyrrolidone and disodium hydrogen phosphate or trisodium phosphate[J]. Fluid Phase Equilib., 2005,238(1):129-135.
    [80]Sadeghi R. Measurement and correlation of phase equilibria for several PVP+salt aqueous two-phase systems at 303.15K[J]. Fluid Phase Equilib.,2005,237(1-2): 40-47.
    [81]Wang Y, Wu Y C, Ni L, et al. Liquid-liquid equilibria of polyvinylpyrrolidone+ several ammonium salts+water aqueous two-phase systems:experimental and correlation[J]. J. Chem. Eng. Data,2012,57(11):3128-3135.
    [82]Martins J P, Mageste A B, da Silva M d C H, et al. Liquid-liquid equilibria of an aqueous two-phase system formed by a triblock copolymer and sodium salts at different temperatures [J]. J. Chem. Eng. Data,2009,54(10):2891-2894.
    [83]Martins J P, da Silva M d C H, da Silva L H M, et al. Liquid-liquid phase equilibrium of triblock copolymer F68, poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide), with sulfate salts[J]. J. Chem. Eng. Data,2010, 55(4):1618-1622.
    [84]Da Silva L H M, Da Silva M d C H, Mesquita A F, et al. Equilibrium phase behavior of triblock copolymer+salt+water two-phase systems at different temperatures and pH[J]. J. Chem. Eng. Data,2005,50(4):1457-1461.
    [85]Da Silva M D H, Da Silva L H M, Amim J, et al. Liquid-liquid equilibrium of aqueous mixture of triblock copolymers L35 and F68 with Na2SO4, Li2SO4, or MgSO4[J]. J. Chem. Eng. Data,2006,51(6):2260-2264.
    [86]Virtuoso L S, Vello K A S F, de Oliveira A A, et al. Measurement and modeling of phase equilibrium in aqueous two-phase systems:L35+sodium citrate+water, L35 sodium tartrate+water, and L35+sodium hydrogen sulfite+water at different temperatures[J]. J. Chem. Eng. Data,2012,57(2):462-468.
    [87]Rodrigues G D, da Silva M d C H, da Silva L H M, et al. Liquid-liquid phase equilibrium of triblock copolymer L64, poly(ethylene oxide-b-propylene oxide-b-ethylene oxide), with sulfate salts from (278.15 to 298.15) K[J]. J. Chem. Eng. Data,2009,54(6):1894-1898.
    [88]Virtuoso L S, Silva L M d S, Malaquias B S, et al. Equilibrium phase behavior of triblock copolymer+sodium or+potassium hydroxides+water two-phase systems at different temperatures [J]. J. Chem. Eng. Data,2010,55(9):3847-3852.
    [89]Rodrigues G D, Teixeira L d S, Ferreira G M D, et al. Phase diagrams of aqueous two-phase systems with organic salts and F68 triblock copolymer at different temperatures [J]. J. Chem. Eng. Data,2010,55(3):1158-1165.
    [90]Ghahremani R, Rahimpour F. Equilibrium phase behavior of aqueous two-phase systems containing ethylene oxide-propylene oxide of different molecular weight (2500,12000) and sodium citrate salt at various temperatures and pH[J]. J. Chem. Eng. Data,2014,59(2):218-224.
    [91]Zafarani-Moattar M T, Nikjoo D. Liquid-liquid and liquid-liquid-solid equilibrium of the poly(ethylene glycol) dimethyl ether 2000+sodium sulfate+water system[J]. J. Chem. Eng. Data,2008,53(11):2666-2670.
    [92]Zafarani-Moattar M T, Hosseinpour-Hashemi V. (Liquid+liquid) equilibrium of the ternary aqueous system containing poly ethylene glycol dimethyl ether 2000 and tri-potassium citrate at different temperatures [J]. J. Chem. Thermodyn.,2012, 48(57):75-83.
    [93]Zafarani-Moattar M T, Hosseinpour-Hashemi V. Effect of temperature on the aqueous two-phase system containing poly(ethylene glycol) dimethyl ether 2000 and dipotassium oxalate[J]. J. Chem. Eng. Data,2012,57(2):532-540.
    [94]Zafarani-Moattar M T, Nikjoo D. Phase diagrams for liquid-liquid and liquid-solid equilibrium of the ternary poly(ethylene glycol) dimethyl ether 2000+sodium carbonate+water system[J]. J. Chem. Eng. Data,2009,54(10):2918-2922.
    [95]Zvarova T I, Shkinev V M, Vorob'eva G A, et al. Liquid-Liquid Extraction in the Absence of Usual Organic Solvents:Application of Two-Phase Aqueous Systems Based on a Water-Soluble Polymer[J]. Mikrochimica Acta,1984,84(3):449-458.
    [96]Shibukawa M, Nakayama N, Hayashi T, et al. Extraction behaviour of metal ions in aqueous polyethylene glycol-sodium sulphate two-phase systems in the presence of iodide and thiocyanate ions[J]. Anal. Chim. Acta,2001,427:293-300.
    [97]Bulgariu L, Bulgariu D. Selective extraction of Hg(Ⅱ), Cd(Ⅱ) and Zn(Ⅱ) ions from aqueous media by a green chemistry procedure using aqueous two-phase systems[J]. Sep. Purif. Technol.,2013,118:209-216.
    [98]Bulgariu L, Bulgariu D. Extraction of metal ions in aqueous polyethylene glycol-inorganic salt two-phase systems in the presence of inorganic extractants: correlation between extraction behaviour and stability constants of extracted species[J]. J. Chromatogr. A,2008,1196-1197:117-124.
    [99]黄振钟,吴欣欣,陈莉莉等.PEG-(NH4)2SO4-8Q5SAC双水相分光光度法测定工业废水中的微量铜[J].江西师范大学学报,2006,30(2):145-147.
    [100]蔡红,许秀丽,朱军等.偶氮胂Ⅰ双水相萃取分离钍、铀、镧、钒、钼的研究[J].稀有金属,2003,27(2):265-267.
    [101]邓凡政,魏迎,陈影等.双水相体系中CU(Ⅱ),La(Ⅲ),U(Ⅵ),Ce(Ⅳ)光谱行为及萃取分离[J].光谱学与光谱分析,2004,24(12):1637-1639.
    [102]王碧,阮尚全,覃松等.聚乙二醇-硫酸铵体系双水相萃取光度法测定钯[J].四川大学学报,2003,40(1):108-111.
    [103]陈玉焕,卢雁,张秀英等.铟在聚乙二醇-硫酸铵双水相体系中的分配[J].化学通报,2003,66(1):63-66.
    [104]谢治民,方正军,李勇等.聚乙二醇-硫酸铵双水相萃取分离测定铬(Ⅵ)的研究[J].湖南工程学院学报,2008,18(4):69-72.
    [105]练萍,李蕾,薛珺PEG600-PVP-(NH4)2SO4-H2O双水相体系萃取Cu2+[J].赣南师范学院学报,2003,3:49-50.
    [106]Patricio Pda R, Mesquita M C, da Silva L H, et al. Application of aqueous two-phase systems for the development of a new method of cobalt(Ⅱ), iron(Ⅲ) and nickel(Ⅱ) extraction:a green chemistry approach[J]. J. Hazard. Mater.,2011,193: 311-318.
    [107]Rodrigues G D, da Silva M d C H, da Silva L H M, et al. Liquid-liquid extraction of metal ions without use of organic solvent[J]. Sep. Purif. Technol.,2008,62(3): 687-693.
    [108]Lemos L R, Santos I J, Rodrigues G D, et al. Copper recovery from ore by liquid-liquid extraction using aqueous two-phase system[J]. J. Hazard. Mater.,2012, 237-238:209-214.
    [109]Rodrigues G D, de Lemos L R, da Silva L H, et al. Application of hydrophobic extractant in aqueous two-phase systems for selective extraction of cobalt, nickel and cadmium[J]. J. Chromatogr. A,2013,1279:13-19.
    [110]Saravanan S, Rao J R, Murugesan T, et al. Partition of tannery wastewater proteins in aqueous two-phase poly (ethylene glycol)-magnesium sulfate systems:Effects of molecular weights and pH[J]. Chem. Eng. Sci.,2007,62(4):969-978.
    [111]Karkas T, Onal S. Characteristics of invertase partitioned in poly (ethylene glycol)/magnesium sulfate aqueous two-phase system[J]. Biochem. Eng. J.,2012, 60:142-150.
    [112]Madhusudhan M C, Raghavarao K S M S. Aqueous two phase extraction of invertase from baker's yeast:Effect of process parameters on partitioning [J]. Process Biochem.,2011,46(10):2014-2020.
    [113]Chaiwut P, Rawdkuen S, Benjakul S. Extraction of protease from Calotropis procera latex by polyethylene glycol-salts biphasic system[J]. Process Biochem., 2010,45(7):1148-1155.
    [114]Rawdkuen S, Pintathong P, Chaiwut P, et al. The partitioning of protease from Calotropis procera latex by aqueous two-phase systems and its hydrolytic pattern on muscle proteins[J]. Food Bioprod. Process.,2011,89(1):73-80.
    [115]Ketnawa S, Rawdkuen S, Chaiwut P. Two phase partitioning and collagen hydrolysis of bromelain from pineapple peel Nang Lae cultivar[J]. Biochem. Eng. J.,2010,52(2-3):205-211.
    [116]Ahmad A L, Derek C J C, Zulkali M M D. Optimization of thaumatin extraction by aqueous two-phase system (ATPS) using response surface methodology (RSM)[J]. Sep. Purif. Technol.,2008,62(3):702-708.
    [117]Silva M E d, Franco T T. Purification of soybean peroxidase (Glycine max) by metal affinity partitioning in aqueous two-phase systems[J]. J. Chromatogr. B, 2000,743:287-294.
    [118]Priyanka B S, Rastogi N K, Raghavarao K S M S, et al. Optimization of extraction of luciferase from fireflies (Photinus pyralis) using aqueous two-phase extraction [J]. Sep. Purif. Technol.,2013,118:40-48.
    [119]Herculano P N, Porto T S, Maciel M H C, et al. Partitioning and purification of the cellulolytic complex produced by Aspergillus japonicus URM5620 using PEG-citrate in an aqueous two-phase system[J]. Fluid Phase Equilib.,2012,335: 8-13.
    [120]Bhavsar K, Ravi Kumar V, Khire J M. Downstream processing of extracellular phytase from Aspergillus niger:Chromatography process vs. aqueous two phase extraction for its simultaneous partitioning and purification[J]. Process Biochem., 2012,47(7):1066-1072.
    [121]Azevedo A M, Gomes A G, Rosa P A J, et al. Partitioning of human antibodies in polyethylene glycol-sodium citrate aqueous two-phase systems[J]. Sep. Purif. Technol.,2009,65(1):14-21.
    [122]Malpiedi L P, Romanini D, Pico G A, et al. Purification of trypsinogen from bovine pancreas by combining aqueous two-phase partitioning and precipitation with charged flexible chain polymers[J]. Sep. Purif. Technol.,2009,65(1):40-45.
    [123]Ng H S, Tan C P, Chen S K, et al. Primary capture of cyclodextrin glycosyltransferase derived from Bacillus cereus by aqueous two phase system[J]. Sep. Purif. Technol.,2011,81(3):318-324.
    [124]Lu Y M, Yang Y Z, Zhao X D, et al. Bovine serum albumin partitioning in polyethylene glycol (PEG)/potassium citrate aqueous two-phase systems[J]. Food Bioprod. Process.,2010,88(1):40-46.
    [125]Babu B R, Rastogi N K, Raghavarao K S M S. Liquid-liquid extraction of bromelain and polyphenol oxidase using aqueous two-phase system[J]. Chem. Eng. Process.,2008,47(1):83-89.
    [126]Alves J G L F, Chumpitaz L D A, Silva L H M d, et al. Partitioning of whey proteins, bovine serum albumin and porcine insulin in aqueous two-phase systems[J]. J. Chromatogr. B,2000,743:235-239.
    [127]Kimura K. Simultaneous accumulation of low-molecular-mass RNA at the interface along with accumulation of high-molecular-mass RNA on aqueous two-phase system partitioning[J]. J. Chromatogr. B,2000,743:421-442.
    [128]Ross K C, Zhang C. Separation of recombinant β-glucuronidase from transgenic tobacco by aqueous two-phase extraction[J]. Biochem. Eng. J.,2010,49(3): 343-350.
    [129]Braas G M F, Walker S G, Lyddiatt A. Recovery in aqueous two-phase systems of nanoparticulates applied as surrogate mimics for viral gene therapy vectors[J]. J. Chromatogr. B,2000,743:409-419.
    [130]Gouveia T d, Kilikian B V. Bioaffinity extraction of glucoamylase in aqueous two-phase systems using starch as free bioligand[J]. J. Chromatogr. B,2000,743: 241-246.
    [131]Kavakcioglu B, Tarhan L. Initial purification of catalase from Phanerochaete chrysosporium by partitioning in poly(ethylene glycol)/salt aqueous two phase systems[J]. Sep. Purif. Technol.,2013,105:8-14.
    [132]Garai D, Kumar V. Aqueous two phase extraction of alkaline fungal xylanase in PEG/phosphate system:Optimization by Box-Behnken design approach[J]. Biocatalysis and Agricultural Biotechnology,2013,2(2):125-131.
    [133]De Oliveira F C, Dos Reis Coimbra J S, Da Silva L H M, et al. Ovomucoid partitioning in aqueous two-phase systems[J]. Biochem. Eng. J.,2009,47(1-3): 55-60.
    [134]Sivars U, Abramson J, Iwata S, et al. Affinity partitioning of a poly(histidine)-tagged integral membrane protein, cytochrome bo3 ubiquinol oxidase, in a detergent-polymer aqueous two-phase system containing metal-chelating polymer[J]. J. Chromatogr. B,2000,743:307-316.
    [135]Rito-Palomares M, Negrete A, Galindo E, et al. Aroma compounds recovery from mycelial cultures in aqueous two-phase processes[J]. J. Chromatogr. B,2000,743: 403-408.
    [136]Rosso B U, Lima C d A, Porto T S, et al. Partitioning and extraction of collagenase from Penicillium aurantiogriseum in poly(ethylene glycol)/phosphate aqueous two-phase system[J]. Fluid Phase Equilib.,2012,335:20-25.
    [137]Lima C A, Junior A C V F, Filho J L L, et al. Two-phase partitioning and partial characterization of a collagenase from Penicillium aurantiogriseum URM4622: Application to collagen hydrolysis [J]. Biochem. Eng. J.,2013,75:64-71.
    [138]Shang Q K, Li W, Jia Q, et al. Partitioning behavior of amino acids in aqueous two-phase systems containing polyethylene glycol and phosphate buffer[J]. Fluid Phase Equilib.,2004,219(2):195-203.
    [139]Shahriari S, Taghikhani V, Vossoughi M, et al. Measurement of partition coefficients of P-amylase and amyloglucosidase enzymes in aqueous two-phase systems containing poly(ethylene glycol) and Na2SO4/KH2PO4 at different temperatures [J]. Fluid Phase Equilib.,2010,292(1-2):80-86.
    [140]Bim M A, Franco T T. Extraction in aqueous two-phase systems of alkaline xylanase produced by Bacillus pumilus and its application in kraft pulp bleaching[J]. J. Chromatogr. B,2000,743:349-356.
    [141]Costa S A, Pessoa Jr. A, Roberto I C a. Partitioning of xylanolitic complex from Penicillium janthinellum by an aqueous two-phase system[J]. J. Chromatogr. B, 2000,743:339-348.
    [142]Engel S, Barak Z, Chipman D M, et al. Purification of acetohydroxy acid synthase by separation in an aqueous two-phase system[J]. J. Chromatogr. B,2000,743: 281-286.
    [143]Ng H S, Tan C P, Mokhtar M N, et al. Recovery of Bacillus cereus cyclodextrin glycosyltransferase and recycling of phase components in an aqueous two-phase system using thermo-separating polymer[J]. Sep. Purif. Technol.,2012,89:9-15.
    [144]De Oliveira M C, De Abreu Filho M A N, Pessoa Filho P d A. Phase equilibrium and protein partitioning in aqueous two-phase systems containing ammonium carbamate and block copolymers PEO-PPO-PEO[J]. Biochem. Eng. J.,2007,37(3): 311-318.
    [145]Xie H-G, Wang Y-J, Sun M. Modeling of the partitioning of membrane protein and phase equilibria for Triton X-100-salt aqueous two-phase systems using a modified generalized multicomponent osmotic virial equation[J]. Process Biochem.,2006, 41(3):689-696.
    [146]Pereira J F B, Santos V C, Johansson H-O, et al. A stable liquid-liquid extraction system for clavulanic acid using polymer-based aqueous two-phase systems[J]. Sep. Purif. Technol.,2012,98:441-450.
    [147]Soares P A G, Nascimento C O, Porto T S, et al. Purification of a lectin from Canavalia ensiformis using PEG-citrate aqueous two-phase system[J]. J. Chromatogr. B,2011,879(5-6):457-460.
    [148]Porto C S, Porto T S, Nascimento K S, et al. Partition of lectin from Canavalia grandiflora Benth in aqueous two-phase systems using factorial design[J]. Biochem. Eng. J.,2011,53(2):165-171.
    [149]Nascimento C O, Soares P A G, Porto T S, et al. Aqueous two-phase systems:new strategies for separation and purification of lectin from crude extract of Cratylia mollis seeds[J]. Sep. Purif. Technol.,2013,116:154-161.
    [150]Chethana S, Nayak C A, Raghavarao K S M S. Aqueous two phase extraction for purification and concentration of betalains[J]. J. Food Eng.,2007,81(4):679-687.
    [151]Cao Q, Li S, He C, et al. Extraction and determination of papaverin in pericarpium papaveris using aqueous two-phase system of poly(ethylene glycol)-(NH4)2SO4 coupled with high-performance liquid chromatography[J]. Anal. Chim. Acta,2007, 590(2):187-194.
    [152]谢涛,王雯娟,吴如春等PEG/(NH4)2SO4双水相体系萃取甘草中的有效成分[J].化学研究与应用,2005,17(2):230-232.
    [153]石慧,陈媛梅PEG/(NH4)2SO4双水相体系在加杨叶总黄酮萃取分离中的应用[J].现代生物医学进展,2008,8(5):854-857.
    [154]赵爱丽,陈晓青,蒋新宇.应用双水相萃取法分离黄芩苷的研究[J].中成药,2008,30(4):498-501.
    [155]涛谢,廖安平,易元龙等.双水相萃取三七中三七皂苷的研究[J].中药材,2008,31(4):535-537.
    [156]Nascimento K S, Rosa P A J, Nascimento K S, et al. Partitioning and recovery of Canavalia brasiliensis lectin by aqueous two-phase systems using design of experiments methodology [J]. Sep. Purif. Technol.,2010,75(1):48-54.
    [157]Huo Q, Lin Q A, Gao W, et al. Measurement and correlation of partition coefficients of glycyrrhizic in aqueous two-phase EOPO/K2HPO4 systems[J]. Asian J. Chem.,2010,22(6):4496-4500.
    [158]戚琦,李蕾,李勋等.聚乙二醇800-PVP双水相体系萃取荧光测定阿司匹林肠溶片中水杨酸[J].光谱实验室,2005.01,22(1):103-105.
    [159]Bora M M, Borthakur S, Rao P C, et al. Aqueous two-phase partitioning of cephalosporin antibiotics:effect of solute chemical nature[J]. Sep. Purif. Technol., 2005,45(2):153-156.
    [160]Aguirre C, Concha I, Vergara J, et al. Partition and substrate concentration effect in the enzymatic synthesis of cephalexin in aqueous two-phase systems [J]. Process Biochem.,2010,45(7):1163-1167.
    [161]Ni Y, Zhou J, Sun Z. Production of a key chiral intermediate of Betahistine with a newly isolated Kluyveromyces sp. in an aqueous two-phase system[J]. Process Biochem.,2012,47(7):1042-1048.
    [162]Doozandeh S G, Pazuki G, Madadi B, et al. Measurement of cephalexin partition coefficients in PEG+K2HPO4+H2O aqueous two-phase systems at 301.15,306.15 and 311.15K[J]. J. Mol. Liq.,2012,174:95-99.
    [163]朱自强,关怡新,李勉.双水相系统在抗生素提取和合成中的应用[J].化工学报,2011,52(12):1029-1048.
    [164]Pimentel M C B, Araujo A I, Figueiredo Z M B, et al. Aqueous two-phase system for citrinin extraction from fermentation broth[J]. Sep. Purif. Technol.,2013,110: 158-163.
    [165]Pereira J F B, Vicente F, Santos-Ebinuma V C, et al. Extraction of tetracycline from fermentation broth using aqueous two-phase systems composed of polyethylene glycol and cholinium-based salts[J]. Process Biochem.,2013,48(4):716-722.
    [166]Chen B, Han J, Wang Y, et al. Separation, enrichment and determination of ciprofloxacin using thermoseparating polymer aqueous two-phase system combined with high performance liquid chromatography in milk, egg, and shrimp samples[J]. Food Chem.,2014,148:105-111.
    [167]Xie X, Wang Y, Han J, et al. Extraction mechanism of sulfamethoxazole in water samples using aqueous two-phase systems of poly(propylene glycol) and salt[J]. Anal. Chim. Acta,2011,687(1):61-66.
    [168]Yu H, Tao Y, Chen D, et al. Simultaneous determination of fluoroquinolones in foods of animal origin by a high performance liquid chromatography and a liquid chromatography tandem mass spectrometry with accelerated solvent extraction[J]. J. Chromatogr. B,2012,885-886:150-159.
    [169]Barker S A, Long A, Short C R. Isolation of drug residues from tissues by solid phase dispersion[J]. J. Chromatogr.,1989,475:353-361.
    [170]马娜,陈玲,熊飞.固相萃取技术及其研究进展[J].上海环境科学,2002,21(3):181-195.
    [171]Ganzler K, Salgo A, Valko K J. Microwave extraction:A novel sample preparation method for chromatography [J]. J. Chromatogr. A,1986,371:299-306.
    [172]李核,李攻科,张展霞.微波辅助萃取技术的进展[J]. Chin. J. Anal. Chem., 2003,31(10):1261-1268.
    [173]谷勋刚.超声波辅助提取新技术及其分析应用研究[D].2007.
    [174]于娜娜,张丽坤,朱江兰等.超临界流体萃取原理与应用[J].化工中间体,2011(8):38-43.
    [175]Baltussen E, Sandra P, David F, et al. Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples:Theory and principles[J]. J. Microcolumn Sep.,1999,11(10):737-747.
    [176]江忠义,吴洪.分子印迹技术[D].北京,化学工业出版社,2003.
    [177]S P-B, E. R K. Liquid-liquid-liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis[J]. Anal. Chem.,1999,71(14): 2650-2656.
    [178]Rezaee M, Assadi Y, Milani Hosseini M-R, et al. Determination of organic compounds in water using dispersive liquid-liquid microextraction[J]. J. Chromatogr. A,2006,1116(1-2):1-9.
    [179]Sereshti H, Khosraviani M, Sadegh Amini-Fazl M. Miniaturized salting-out liquid-liquid extraction in a coupled-syringe system combined with HPLC-UV for extraction and determination of sulfanilamide[J]. Talanta,2014,121:199-204.
    [180]Bloch R, Frommer M A. The mechanism for formation of "skinned" membranes I. Structure and properties of membranes cast from binary solutions[J]. Desalination, 1970,7(2):259-264.
    [181]Han J, Wang Y, Yu C L, et al. Extraction and determination of chloramphenicol in feed water, milk, and honey samples using an ionic liquid/sodium citrate aqueous two-phase system coupled with high-performance liquid chromatography[J]. Anal. Bioanal. Chem.,2011,399(3):1295-1304.
    [182]Engvall E, Jonsson K, Perlmann P. Enzyme-linked immunosorbent assay. II. Quantitative assay of protein antigen immunoglobulin G, by means of enzyme labelled antigen and antibody-coated tubes[J]. Biochim. Biophys. Acta,1971,251: 427-434.
    [183]Tao Y, Chen D, Yu G, et al. Simultaneous determination of lincomycin and spectinomycin residues in animal tissues by gas chromatography-nitrogen phosphorus detection and gas chromatography-mass spectrometry with accelerated solvent extraction[J]. Food Addit. Contam.,2011,28(2):145-154.
    [184]Ghoulipour V, Shokri M, Waqif-Husain S. Determination of ampicillin and amoxicillin by high-performance thin-layer chromatography[J]. Acta Chromatogr., 2011,23(3):483-498.
    [185]Yang X, Cheng X, Lin Y, et al. Determination of three nitroimidazoles in rabbit plasma by two-step stacking in capillary zone electrophoresis featuring sweeping and micelle to solvent stacking[J]. J. Chromatogr. A,2014,1325:227-233.
    [186]Sismotto M, Paschoal J A R, Teles J A, et al. A simple liquid chromatography coupled to quadrupole time of flight mass spectrometry method for macrolide determination in tilapia fillets[J]. J. Food Compos. Anal.,2014, 10.1016/j.jfca.2014.02.006.
    [187]Wen Y, Zhang M, Zhao Q, et al. Monitoring of five sulfonamide antibacterial residues in milk by in-tube solid-phase microextraction coupled to high-performance liquid chromatography [J]. J. Agric. Food Chem.,2005,53(22): 8468-8473.
    [188]Huang X, Qiu N, Yuan D. Simple and sensitive monitoring of sulfonamide veterinary residues in milk by stir bar sorptive extraction based on monolithic material and high performance liquid chromatography analysis[J]. J. Chromatogr. A,2009,1216(46):8240-8245.
    [189]Camara M, Gallego-Pico A, Garcinuno R M, et al. An HPLC-DAD method for the simultaneous determination of nine beta-lactam antibiotics in ewe milk[J]. Food Chem.,2013,141(2):829-834.
    [190]Evaggelopoulou E N, Samanidou V F. Development and validation of an HPLC method for the determination of six penicillin and three amphenicol antibiotics in gilthead seabream (Sparus Aurata) tissue according to the European Union Decision 2002/657/EC[J]. Food Chem.,2013,136:1322-1329.
    [191]Ben W, Qiang Z, Adams C, et al. Simultaneous determination of sulfonamides, tetracyclines and tiamulin in swine wastewater by solid-phase extraction and liquid chromatography-mass spectrometry[J]. J. Chromatogr. A,2008,1202(2):173-180.
    [192]Pailler J Y, Krein A, Pfister L, et al. Solid phase extraction coupled to liquid chromatography-tandem mass spectrometry analysis of sulfonamides, tetracyclines, analgesics and hormones in surface water and wastewater in Luxembourg[J]. Sci. Total Environ.,2009,407(16):4736-4743.
    [193]De Zayas-Blanco F, Garcia-Falcon M S, Simal-Gandara J. Determination of sulfamethazine in milk by solid phase extraction and liquid chromatographic separation with ultraviolet detection[J]. Food Control,2004,15(5):375-378.
    [194]Tao Y, Chen D, Yu H, et al. Simultaneous determination of 15 aminoglycoside(s) residues in animal derived foods by automated solid-phase extraction and liquid chromatography-tandem mass spectrometry[J]. Food Chem.,2012,135(2): 676-683.
    [195]Yu H, Tao Y F, Chen D M, et al. Development of a high performance liquid chromatography method and a liquid chromatography-tandem mass spectrometry method with the pressurized liquid extraction for the quantification and confirmation of sulfonamides in the foods of animal origin[J]. J. Chromatogr. B, 2011,879(25):2653-2662.
    [196]Blasco C, Di Corcia A, Pico Y. Determination of tetracyclines in multi-specie animal tissues by pressurized liquid extraction and liquid chromatography-tandem mass spectrometry[J]. Food Chem.,2009,116(4):1005-1012.
    [197]Berrada H, Borrull F, Font G, et al. Determination of macrolide antibiotics in meat and fish using pressurized liquid extraction and liquid chromatography-mass spectrometry[J]. J. Chromatogr. A,2008,1208(1-2):83-89.
    [198]Tsai W H, Huang T C, Huang J J, et al. Dispersive solid-phase microextraction method for sample extraction in the analysis of four tetracyclines in water and milk samples by high-performance liquid chromatography with diode-array detection[J]. J. Chromatogr. A,2009,1216(12):2263-2269.
    [199]Bogialli S, Curini R, Di Corcia A, et al. Simple confirmatory assay for analyzing residues of aminoglycoside antibiotics in bovine milk:hot water extraction followed by liquid chromatography-tandem mass spectrometry[J]. J. Chromatogr. A,2005,1067(1-2):93-100.
    [200]Lu Y B, Shen Q, Dai Z Y, et al. Development of an on-line matrix solid-phase dispersion/fast liquid chromatography/tandem mass spectrometry system for the rapid and simultaneous determination of 13 sulfonamides in grass carp tissues[J]. J. Chromatogr. A,2011,1218(7):929-937.
    [201]Zhou J H, Xue X F, Li Y, et al. Multiresidue determination of tetracycline antibiotics in propolis by using HPLC-UV detection with ultrasonic-assisted extraction and two-step solid phase extraction [J]. Food Chem.,2009,115(3): 1074-1080.
    [202]Zhou J H, Xue X F, Chen F, et al. Simultaneous determination of seven fluoroquinolones in royal jelly by ultrasonic-assisted extraction and liquid chromatography with fluorescence detection[J]. J. Sep. Sci.,2009,32(7):955-964.
    [203]Msagati T A M, Nindi M M. Determination of beta-lactam residues in foodstuffs of animal origin using supported liquid membrane extraction and liquid chromatography-mass spectrometry [J]. Food Chem.,2007,100(2):836-844.
    [204]Msagati T A M, Nindi M M. Multiresidue determination of sulfonamides in a variety of biological matrices by supported liquid membrane with high pressure liquid chromatography-electrospray mass spectrometry detection[J]. Talanta,2004, 64(1):87-100.
    [205]Chen H, Chen H, Ying J, et al. Dispersive liquid-liquid microextraction followed by high-performance liquid chromatography as an efficient and sensitive technique for simultaneous determination of chloramphenicol and thiamphenicol in honey[J]. Anal. Chim. Acta,2009,632(1):80-85.
    [206]Arroyo-Manzanares N, Gamiz-Gracia L, Garcia-Campana A M. Alternative sample treatments for the determination of sulfonamides in milk by HPLC with fluorescence detection[J]. Food Chem.,2014,143:459-464.
    [207]Tsai W H, Huang T C, Chen H H, et al. Determination of sulfonamides in swine muscle after salting-out assisted liquid extraction with acetonitrile coupled with back-extraction by a water/acetonitrile/dichloromethane ternary component system prior to high-performance liquid chromatography[J]. J. Chromatogr. A,2010, 1217(3):250-255.
    [208]Li C X, Han J, Wang Y, et al. Extraction and mechanism investigation of trace roxithromycin in real water samples by use of ionic liquid-salt aqueous two-phase system[J]. Anal. Chim. Acta,2009,653(2):178-183.
    [209]Yu C L, Han J, Wang Y, et al. Ionic liquid/ammonium sulfate aqueous two-phase system coupled with HPLC extraction of sulfadimidine in real environmental water samples[J]. Chromatographia,2011,74(5-6):407-413.
    [210]Shi X, Wu A, Zheng S, et al. Molecularly imprinted polymer microspheres for solid-phase extraction of chloramphenicol residues in foods[J]. J. Chromatogr. B, 2007,850(1-2):24-30.
    [211]Guo L Y, Guan M, Zhao C D, et al. Molecularly imprinted matrix solid-phase dispersion for extraction of chloramphenicol in fish tissues coupled with high-performance liquid chromatography determination[J]. Anal. Bioanal. Chem., 2008,392(7):1431-1438.
    [212]Hu X G, Pan J L, Hu Y L, et al. Preparation and evaluation of solid-phase microextraction fiber based on molecularly imprinted polymers for trace analysis of tetracyclines in complicated samples[J]. J. Chromatogr. A,2008,1188(2): 97-107.
    [213]Xu H Y, Chen L G, Sun L, et al. Microwave-assisted extraction and in situ clean-up for the determination of fluoroquinolone antibiotics in chicken breast muscle by LC-MS/MS[J]. J. Sep. Sci.,2011,34(2):142-149.
    [214]Fernandez-Torres R, Lopez M A B, Consentino M O, et al. Enzymatic-microwave assisted extraction and high-performance liquid chromatography-mass spectrometry for the determination of selected veterinary antibiotics in fish and mussel samples[J]. J. Pharm. Biomed. Anal.,2011,54(5):1146-1156.
    [215]Yudthavorasit S, Chiaochan C, Leepipatpiboon N. Simultaneous determination of multi-class antibiotic residues in water using carrier-mediated hollow-fiber liquid-phase microextraction coupled with ultra-high performance liquid chromatography tandem mass spectrometry[J]. Microchim. Acta,2011,172(1): 39-49.
    [216]Tao Y, Liu J F, Hu X L, et al. Hollow fiber supported ionic liquid membrane microextraction for determination of sulfonamides in environmental water samples by high-performance liquid chromatography [J]. J. Chromatogr. A,2009,1216(35): 6259-6266.
    [217]Zafarani-Moattar M T, Hamzehzadeh S. Phase diagrams for the aqueous two-phase ternary system containing the ionic liquid 1-butyl-3-methylimidazolium bromide and tri-potassium citrate at T= (278.15,298.15, and 318.15) K[J]. J. Chem. Eng. Data,2009,54(3):833-841.
    [218]Guan Y, Lilley T H, Treffry T E. A new excluded volume theory and its application to the coexistence curves of aqueous polymer two-phase systems [J]. Macromolecules,1993,26(15):3971-3979.
    [219]Bernal J D. A geometrical approach to the structure of liquids[J]. Nature,1959, 183(4655):141-147.
    [220]Sheng C Z, Han J, Wang Y, et al. Liquid-liquid equilibria of ionic liquid 1-(2-methoxyethyl)-3-methylimidazolium bromide+potassium carbonate, potassium phosphate, dipotassium phosphate+water aqueous two-phase sy stems [J]. Fluid Phase Equilib.,2014,364:55-61.
    [221]Rogers R D, Bond A H, Bauer C B, et al. Metal ion separations in polyethylene glycol-based aqueous biphasic systems:correlation of partitioning behavior with available thermodynamic hydration data[J]. J. Chromatogr. B,1996,680(1-2): 221-229.
    [222]Nascimento K S, Yelo S, Cavada B S, et al. Liquid-liquid equilibrium data for aqueous two-phase systems composed of ethylene oxide propylene oxide copolymers[J]. J. Chem. Eng. Data,2011,56(2):190-194.
    [223]Zafarani-Moattar M T, Samadi F, Sadeghi R. Volumetric and ultrasonic studies of the system (water+polypropylene glycol 400) at temperatures from (283.15 to 313.15) K[J]. J. Chem. Thermodyn.,2004,36(10):871-875.
    [224]King R S, Blanch H W, Prausnitz J M. Molecular thermodynamics of aqueous two-phase systems for bioseparations[J]. AIChE J.,1988,34(10):1585-1594.
    [225]GroSmann C, Zhu J, Manrer G. Phase equilibrium studies on aqueous two-phase systems containing amino acids and peptides[J]. Fluid Phase Equilib.,1993,82: 275-282.
    [226]Kenneth S P. Thermodytriarnics of electrolytes. I. Theoretical basis and general equation[J]. The Journal of Physical Chemistry,1973,77(2):268-277.
    [227]覃东棉,刘桂华,李小斌等.Debye-Hiickel理论的研究进展[J].材料导报,2010,24(7):107-132.
    [228]Pitzer K S. Electrolytes. From dilute solutions to fused salts[J]. J. Am. Chem. Soc., 1980,102(9):2902-2906.
    [229]Wu Y T, Lin D Q, Zhu Z Q, et al. Prediction of liquid-liquid equilibria of polymer-salt aqueous two-phase systems by a modified Pitzer's virial equation[J]. Fluid Phase Equilib.,1996,124(1):67-79.
    [230]吴有庭,朱自强,林东强等.多元渗透维里方程通式的表达双水相系统的液液平衡计算[J].高校化学工程学报,1997,11(4):337-342.
    [231]Perez B, Malpiedi L P, Tubfo G, et al. Experimental determination and thermodynamic modeling of phase equilibrium and protein partitioning in aqueous two-phase systems containing biodegradable salts[J]. The Journal of Chemical Thermodynamics,2013,56:136-143.
    [232]Cabezas H J, Evans J D, Szlag D C. A statistical mechanical model of aqueous two-phase systems[J]. Fluid Phase Equilib.,1989,53:453-462.
    [233]Edmond E, Ogston A G. An approach to the study of phase separation in ternary aqueous systems[J]. Biochem. J.,1968,109(4):569-576.
    [234]李勉,朱自强,梅乐和.聚合物-聚合物双水相系统相平衡计算[J].化学工程,1996,24(2):60-65.
    [235]Flory P J. Thermodynamics of high polymer solutions[J]. J. Chem. Phys.,1942,10: 51-61.
    [236]吴华昌,静邓,健周.双水相体系热力学模型的应用[J].四川理工学院学报(自然科学版),2005,18(1):74-78.
    [237]Diamond A D, Hsu J T. Fundamental studies of biomolecule partitioning in aqueous two-phase systems[J]. Biotechnol. Bioeng.,1989,34(7):1000-1014.
    [238]Zhu Z Q, Li M, Mei L H, et al. Measurement and correlation of partition coefficients of urokinase in aqueous two-phase peg potassium phosphate system[J]. Chin. J. Chem. Eng.,1996,4(1):19-27.
    [239]梅乐和,朱自强,林东强等.聚合物/盐系统中BSA分配系数的测定和关联[J].浙江大学学报,1999,33(1):52-56.
    [240]仲崇立.聚合物溶液及液体的状态方程研究[D].北京化工学院,1993.
    [241]Simha R, Somcynsky T. On the statistical thermodynamics of spherical and chain molecule fluids[J]. Macromolecules,1969,2:342-350.
    [242]Renon H, Prausnitz J M. Local compositions in thermodynamic excess functions for liquid mixtures[J]. AlChE Journal,1968,14(1):135-144.
    [243]Chen C C, Britt H I, Boston J F, et al. Local composition model for excess gibbs energy of electrolyte systems. Part I:Single solvent, single completely dissociated electrolyte systems[J]. AlChE Journal,1982,28(4):588-596.
    [244]Chen C C, Evans L B. A local composition model for the excess gibbs energy of aqueous electrolyte systems[J]. AIChE J.,1986,32(3):444-454.
    [245]Wu Y T, Zhu Z Q, Lin D Q, et al. Modeling of liquid-liquid equilibrium of polyethylene glycol-salt aqueous two-phase systems--the effect of partial dissociation of the salt[J]. Fluid Phase Equilib.,1999,154(1):109-122.
    [246]Wu Y T, Lin D Q, Zhu Z Q. Thermodynamics of aqueous two-phase systems-the effect of polymer molecular weight on liquid-liquid equilibrium phase diagrams by the modified NRTL model[J]. Fluid Phase Equilib.,1998,147(1):25-43.
    [247]Abrams D S, Prausnitz J M. Statistical thermodynamics of liquid mixtures:A new expression for the excess Gibbs energy of partly or completely miscible systems [J]. AlChE Journal,1975,21(1):116-128.
    [248]Fredenslund A, Jones R L, Prausnitz J M. Group-contribution estimation of activity coefficients in nonideal liquid mixtures[J]. AlChE Journal,1975,21(6):1086-1099.
    [249]Larsen B L, Rasmussen P, Fredenslund A. A modified UNIFAC group-contribution model for prediction of phase equilibria and heats of mixing[J]. Ind. Eng. Chem. Res.,1987,26(11):2274-2286.
    [250]高云龙,李总成,李以圭.硫酸按-聚乙二醇双水相体系热力学研究[J].高校化学工程学报,1990,4(4):291-301.
    [251]彭钦华,李总成,李以圭.磷酸氢二钾-磷酸二氢钾-聚乙二醇双水相体系热力学研究[J].高校化学工程学报,1994,8(1):25-32.
    [252]Chen CCA segment-based local composition model for the gibbs energy of polymer solutions[J]. Fluid Phase Equilib.,1993,83:301-312.
    [253]Simonson J M, Pitzer K S. Thermodynamlcs of multicomponent, miscible, ionlc systems:The system LiNO3-KNO3-H2O[J]. The Journal of Physical Chemistry, 1986,90(13):3009-3013.
    [254]Zafarani-Moattar M T, Sadeghi R. Measurement and correlation of liquid-liquid equilibria of the aqueous two-phase system polyvinylpyrrolidone-sodium dihydrogen phosphate[J]. Fluid Phase Equilib.,2002,203:177-191.
    [255]Walter H, Brooks D E, Fisher D. Partitioning in aqueous two-phase systems[D]. New York, Academic Press,1985.
    [256]Krevelen D W, Hoftyzer P J. Properties of polymers:their estimation and correlation with chemical structure[D]. Amsterdam, Elsevier Science Publishers, 1976.
    [257]Zana R. Partial molal volumes of polymers in aqueous solutions from partial molal volume group contributions[J]. J. Polym. Sci. Part B:Polym. Phys.,1980,18(1): 121-126.
    [258]王凯旋,张健,王俊等.应用双响应曲面法优化乳酸菌发酵桑椹汁的生产工艺条件[J].蚕业科学,2013,39(4):763-770.
    [259]Commission decision 2002/657/EC of 12 august 2002 implementing council, directive 96/23/EC concerning the performance of analytical methods, the interpretation of results, Off[J]. J. Eur. Comm.,2002, L211:8-36.
    [260]Chen H X, Chen H, Ying J, et al. Dispersive liquid-liquid microextraction followed by high-performance liquid chromatography as an efficient and sensitive technique for simultaneous determination of chloramphenicol and thiamphenicol in honey [J]. Anal. Chim. Acta,2009,632(1):80-85.
    [261]Han J, Wang Y, Yu C L, et al. Separation, concentration and determination of chloramphenicol in environment and food using an ionic liquid/salt aqueous two-phase flotation system coupled with high-performance liquid chromatography [J]. Anal. Chim. Acta,2011,685:138-145.
    [262]Commission Regulation (EU) No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin, Off[J]. J. Eur. Comm.,2009, L15: 1-72.
    [263]Haller M Y, Muller S R, McArdell C S, et al. Quantification of veterinary antibiotics (sulfonamides and trimethoprim) in animal manure by liquid chromatography-mass spectrometry[J]. J. Chromatogr. A,2002,952:111-120.
    [264]Martinez-Carballo E, Gonzalez-Barreiro C, Scharf S, et al. Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in austria[J]. Environ. Pollut.,2007,148(2):570-579.
    [265]Karci A, Balcioglu I A. Investigation of the tetracycline, sulfonamide, and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in turkey[J]. Sci. Total Environ.,2009,407(16):4652-4664.
    [266]Aust M O, Godlinski F, Travis G R, et al. Distribution of sulfamethazine, chlortetracycline and tylosin in manure and soil of Canadian feedlots after subtherapeutic use in cattle[J]. Environ. Pollut.,2008,156(3):1243-1251.
    [267]Redshaw C H, Wootton V G, Rowland S J. Uptake of the pharmaceutical Fluoxetine Hydrochloride from growth medium by Brassicaceae[J]. Phytochemistry,2008,69(13):2510-2516.
    [268]Migliore L, Cozzolino S, Fiori M. Phytotoxicity to and uptake of enrofloxacin in crop plants[J]. Chemosphere,2003,52(7):1233-1244.
    [269]洪振涛,张卫锋,聂建荣等.气相色谱法测定动物组织中氯霉素的残留量[J].中国兽药杂志,2006,40(2):14-16.
    [270]Chen X, Yang B, Ni L, et al. Simultaneous analysis of thiamphenicol and its prodrug thiamphenicol glycinate in human plasma and urine by high performance liquid chromatography:application to pharmacokinetic study [J]. J. Pharm. Biomed. Anal.,2006,41(3):943-949.
    [271]Xie K, Jia L, Yao Y, et al. Simultaneous determination of thiamphenicol, florfenicol and florfenicol amine in eggs by reversed-phase high-performance liquid chromatography with fluorescence detection[J]. J. Chromatogr. B,2011,879(23): 2351-2354.
    [272]Shen J Z, Xia X, Jiang H Y, et al. Determination of chloramphenicol, thiamphenicol, florfenicol, and florfenicol amine in poultry and porcine muscle and liver by gas chromatography-negative chemical ionization mass spectrometry[J]. J. Chromatogr. B,2009,877:1523-1529.
    [273]Tian D, Feng F, Li Y, et al. Liquid chromatography-mass spectrometry method for the determination of thiamphenicol in rabbit tears[J]. J. Pharm. Biomed. Anal., 2008,48(3):1015-1019.
    [274]Zhang S, Liu Z, Guo X, et al. Simultaneous determination and confirmation of chloramphenicol, thiamphenicol, florfenicol and florfenicol amine in chicken muscle by liquid chromatography-tandem mass spectrometry[J]. J. Chromatogr. B, 2008,875(2):399-404.
    [275]刘智宏.酶标免疫测定法(EIA)在检测动物性食品中氯霉素残留的应用[J].中国兽药杂志,1995,29(2):47-48.
    [276]Weber J D, Smedley M D. Liquid chromatographic determination of sulfamethazine in milk[J]. J. Assoc. Off. Anal. Chem.,1989,72(3):445-447.
    [277]Huang Y H, Xu Y, He Q H, et al. Determination of sulfadiazine residues in pork by molecular imprinted column coupling with high performance liquid chromatography[J]. Chin. J. Anal. Chem.,2012,40(7):1011-1018.
    [278]Yan H Y, Sun N, Liu S J, et al. Miniaturized graphene-based pipette tip extraction coupled with liquid chromatography for the determination of sulfonamide residues in bovine milk[J]. Food Chem.,2014,10.1016/j.foodchem.2014.02.089.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700