共沸精馏提纯乙酰丙酮过程中水相后处理工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙酰丙酮是一种重要的有机化工产品,有着广泛的工业应用。我国工业上乙酰丙酮的生产主要采用醋酸异丙烯酯异构化。由于异构化产物中醋酸,醋酐等副产物与乙酰丙酮的沸点相近,高纯度乙酰丙酮的分离提纯变得困难。上海华谊吴泾化工有限公司1000t/a乙酰丙酮的中试项目采用加水作为共沸剂共沸精馏方法生产高纯度乙酰丙酮,使乙酰丙酮的纯度达到99.5%以上。该工艺使用大量的水作为共沸剂,造成该工艺能耗很大,脱酸塔塔底产生大量含少量醋酸和乙酰丙酮的废水,直接排放不仅会造成AA的损失而且会对环境造成很大污染。针对这些问题,本文从两方面对废水处理工艺进行研究。第一,研究加碱中和醋酸、醋酐生成醋酸盐以去除废水中的醋酸、醋酐,对饱和的醋酸钠溶液进行结晶析出,并将盐水作为共沸剂循环使用的工艺。第二,对采用有机溶剂萃取方法回收废水中乙酰丙酮做了研究,并对回收萃取剂的精馏过程进行了模拟计算和实验研究,提出了适合该体系的萃取分离工艺,从而达到降低操作成本,节约能耗,回收有用物质的目的。
     本文主要研究了以下内容:
     (1)对醋酸钠对乙酰丙酮-水体系的液液平衡以及对乙酰丙酮-醋酸-水体系的汽液平衡的盐效应进行了研究,醋酸钠的加入降低了乙酰丙酮在水中的溶解度,增大了乙酰丙酮和水的不互溶区;醋酸钠对乙酰丙酮和醋酸都有盐析作用,增大了醋酸和乙酰丙酮在汽相中的含量,对乙酰丙酮的盐析效应大于对醋酸的盐析效应,分别用改进的Furter方程和Setschenow方程对汽液平衡数据和液液平衡数据进行了关联,关联系数都接近1。
     (2)对加碱中和-降温结晶-盐水循环的工艺流程进行了实验研究,结晶温度对乙酰丙酮产品纯度的影响较大,结晶温度为5℃时,产品中醋酸含量小于0.1%,结晶温度为25℃时最终产品中醋酸的含量接近0.2%。循环废水PH值对乙酰丙酮产品质量的影响较小。经过连续140小时的连续实验,工艺操作的连续性和稳定性较好,产品的纯度也保持在很高的水平。
     (3)对常压状态下水-乙酰丙酮-环己烷,水-乙酰丙酮-乙酸乙酯,水-乙酰丙酮-乙酸正丙酯三元体系在多个温度下的液液平衡数据进行了测定。得到各体系在288.15 K,298.15 K和313.15 K下的溶解度和节点数据。并用Bachman和Othmer-Tobias方程对实验数据进行了检验,关联效果较好。对不同萃取剂对乙酰丙酮的分配系数和选择性做了计算,比较了温度对萃取效果的影响,对于乙酸乙酯和乙酸正丙酯,低温情况下的分配系数更高,对于三种萃取剂都是低温下对乙酰丙酮的选择性更高。选用NRTL,UNIQUAC方程对实验数据进行了关联,得到各体系相应的二元交互作用参数,将实验结果和关键结果进行了比较,两个方程对三个体系的关联效果都很好。
     (4)对环己烷-乙酰丙酮、环己烷-醋酸、乙酸乙酯-乙酰丙酮、水-乙酰丙酮二元体系在常压下,以及醋酸-乙酰丙酮在60.0 kPa下的恒压汽液平衡数据进行了测定。用Herington方程对热力学一致性进行检验,各数据均满足热力学一致性标准。对于含醋酸体系,由于醋酸存在强缔合作用,第二维里系数计算用化学理论和Hayden-O'Connell方程来表示其非理想性。实验发现环己烷-醋酸和水-乙酰丙酮体系存在最低共沸点,选用Wilson, NRTL,UNIQUAC方程对实验数据进行关联,三个方程对关联效果都很好,关联结果为后续的精馏分离提供设计依据。
     (5)通过实验考察了乙酸乙酯和环己烷萃取醋酸和乙酰丙酮的效果,环己烷对醋酸的萃取效果极差,两种萃取剂对乙酰丙酮有很大的选择性,且在低温下选择性更大。由此设计了一条先萃取乙酰丙酮后处理含醋酸废水的工艺路线。根据液液平衡数据对各萃取剂萃取乙酰丙酮的级数进行了计算。用改进的转盘塔对乙酰丙酮进行了萃取研究,以环己烷为萃取剂,转盘塔转速对萃取结果的影响比相比要大,在200 r/min时萃取率不足10%,而在800 r/min时萃取率超过60%;以乙酸乙酯为萃取剂,萃取效果比环己烷要好,在大于600 r/min时,萃取相中己检测不到乙酰丙酮。
     (6)在汽液平衡基础上,用ASPEN PLUS对萃取液的分离过程进行了模拟计算,确定了达到一定分离效果对塔工艺参数的要求,并对塔的灵敏度进行模拟分析。对精馏过程进行实验研究,建立了常压精馏分离环己烷与乙酰丙酮、醋酸以及乙酸乙酯与乙酰丙酮、醋酸的工艺流程,用于回收乙酰丙酮,实现萃取剂环己烷的循环利用,最终塔顶环己烷和乙酸乙酯的纯度分别达到99.2%和96.6%。收率超过99%。
Acetyl acetone is an important reagent in analytical and coordination chemistry, which is widely used in many industrial production units. Acetyl acetone is mainly produced by isomerization reaction of isopropenyl acetate. Acetic acid and acetic anhydride are main by-products in reaction product which are difficult to separate by using traditional distillation for their closed boiling points with acetyl acetone. Azeotropic distillation is used in the separation process with water as entrainer. In this process, large quantity of water was fed into the distillation column which increases energy consumption. Meanwhile masses of wastewater with small quantity of acetyl acetone and acetic acid were left at the bottom of the column. Direct emissions would cause significant pollution and loss of acetyl acetone. Focusing on solving those problems, two kinds of process of wastewater treatment were investigated. One process was neutralizing wastewater by adding alkaline and recycling saline water into the column after removing crystal salt. In another work, the process of recycling acetyl acetone from waste water by extraction was investigated systematically. Simulation and experiment of the distillation of extraction phase were both studied and a feasible process was developed.
     The main contents of this thesis are as follows:
     (1) Salt effects of sodium acetate on VLE of water+acetyl acetone+acetic acid and in LLE of water+acetyl acetone were investigated. Adding of sodium acetate increased immiscible area of water and acetyl acetone. The salt exhibited salting-out effects on acetyl acetone and acetic acid and the efficiency on acetyl acetone was a little greater than that of acetic acid.
     (2) The process was neutralizing wastewater by adding alkaline and recycling saline water was studied with experiment. The influence of Ph value and crystallization temperature of saline water on the quality of product was studied. The experiment continued for 140 h, all the operation condition and product quality were stable, indicating the feasibility of this process.
     (3) Liquid-liquid equilibrium data of the solubility curves and the tie-line compositions for ternary systems of water+acetyl acetone+ethyl acetate and water+acetyl acetone+propyl acetate, together with the tie-line compositions for ternary systems of water+acetyl acetone+ cyclohexane were determined. Distribution and selectivity coefficients were evaluated for the immiscibility region, which were found to be bigger at lower temperature. The reliability of the experimental tie-lines was confirmed by using Bachman and Othmer-Tobias correlation.
     The experimental data were fitted using the NRTL and UNIQUAC equations, parameters of these two models were regressed.
     (4) Isobaric vapor-liquid equilibrium (VLE) data for the binary systems of cyclohexane+ acetyl acetone, acetic acid+cyclohexane, water+acetyl acetone and acetyl acetate+acetyl acetone were determined at 101.3 kPa, and those for acetic acid+acetyl acetone system were determined at 60.0 kPa. A minimum boiling azeotrope was found in acetic acid+cyclohexane and water+acetyl acetone system. The non-ideality of the vapor phase of the acetic acid+ acetyl acetone and acetic acid+cyclohexane system were investigated by using Hayden-O'Connell equation. Thermodynamic consistency was tested for all of the VLE data by using Herington method. The experimental data were correlated satisfactorily by the Wilson, NRTL, UNIQUAC models. Correlation results were in good agreement with experimental data which provided the basic data for rectifying process design of the relevant components.
     (5) The extraction of acetyl acetone and acetic acid from aqueous by cyclohexane and ethyl acetate were experimental studied. The extraction ability of ethyl acetate on acetyl acetone and acetic acid was better than cyclohexane and the distribution of acetyl acetone were both much bigger than that of acetic acid. The increasing of temperature significantly increased the distribution of acetic acid with cyclohexane as extractant. The temperature effect was not so obvious for ethyl acetate. The extraction process with modified rotating disc column was experimental studied. For cyclohexane, extraction efficiency was deeply affected by rotation speed rather than the phase ratio. The extraction percent of acetyl acetone was less than 10% at a rotation speed of 200 r/min but more than 60% at a rotation speed of 800 r/min. The extraction effect of ethyl acetate was far better than cyclohexane, there was no acetyl acetone left in residual extracted water at a rotation speed of 600 r/min.
     (6) Based on the VLE data, simulation and experiment of the distillation of extraction phase were both studied; sensitivity analysis of distillation column was investigated. It was found that solvents were easy to be separated from extraction phase and recycling used in the extraction process. The optimal parameters of distillation column were obtained. The purity of cyclohexane and ethyl acetate were more than 99.2% and 96.6% respectively. The recovery percent of both solvents was more than 99%.
引文
[1]程嘉豪.乙酰丙酮的合成与应用[J]。化工时刊,1994,7:7-11.
    [2]周光宇,胡敢予,黄忆明.乙酰丙酮法检测米粉中甲醛含量的应用及分析[J].实用预防医学,2003,10(2):256-257.
    [3]刘军.乙酰丙酮法测定啤酒中甲醛的改进[J].检验医学与临床.2010,7(16):1755.
    [4]韩宝芹,位晓娟,房子,刘万顺,杨菊林.乙酰丙酮法测定甲壳胺寡糖数均分子量[J].中国海洋药物.2004,23(6):12-17.
    [5]邹巧根,韦萍,邹姗,李菁,欧阳平凯.羧甲基壳聚糖的含量测定[J].药物生物技术.2008,15(1):59-63.
    [6]陈彦逍,刘绍英,王公应.乙酰丙酮钙催化剂催化合成甲基丙烯酸二甲氨基乙酯[J].石油化工.2007,36(2):137-141.
    [7]Imura H., Ebisawa M., Kato M., Ohashi K. Novel synergism by complex ligands in solvent extraction of rare earth metals(III) with β-diketones[J]. Journal of Alloys and Compounds.2006,408-412:952-957.
    [8]袁福根,李鹏飞,翁翠弟.乙酰丙酮金属配合物表面改性纳米二氧化钛[J].分子科学学报,2010,26(2):127-135.
    [9]Khuhawar M. Y., Rajper A. D., Rind F. M. A. Spectrophotometric and liquid chromato-graphic determination of dopamine from pharmaceutical preparations using acetyl acetone as derivatizing reagent [J]. Pak. J. Pharm. Sci.,2006,19(4):286-289.
    [10]于锡娟,伍荣护,宋慧宇,苏庆德.镨乙酰丙酮配合物宽波段光声光谱研究[J].中国稀土学报,2002,20(4):374-377.
    [11]徐润华.乙酸法乙酰丙酮的合成及应用[J]。河南化工,2003,12:1-2.
    [12]沈利英,施嵘.医药中间体乙酰丙酮的合成方法和应用[J].安徽化工,2001,27(3):20-23.
    [13]Spes H., Kunstle G., et al. Process for continuously producing acetyl acetone[P]. DE2047320.
    [14]庆月.乙酰丙酮生产工艺的选择[J].医药化工,2005,8:22-26.
    [15]Furter W. F., Cook R. A. Salt effect in distillation:a literaturere view[J]. Int J. Heat Mass Transfer,1967,10(1):23-36.
    [16]Furter W. F. Salt effect in distillation:a literaturere view.II[J]. Can. J. Chem. Eng., 1977,55(7):229-239.
    [17]Tan T. C. Model for predicting the effect of dissolved salt on the vapor liquid equilibrium of sol vent mixtures [J]. Chem. Eng. Res. Des.,1987,65:355-366.
    [18]Tan T. C. A modified NRTL model for predicting the effect of dissolved solute on the vapor-liquid equilibrium of solvent mixtures[J]. Trans. Ind. Eng. Chem.1990,68(1): 93-103.
    [19]Tan T. C, Gan S. H. Vapour-liquid equilibrium of water/ethanol/1-butanol/salt: prediction and experimental verification[J]. Fluid Phase Equilibria,2005,83(12): 1361-1371.
    [20]Tan T. C, Tan R., Soon L. H., Ong S. H. P. Prediction and experimental verification of the effect of salt on the vapour-liquid equilibrium of ethanol/1-propanol/water mixture[J]. Fluid Phase Equilibria,2005,234(1-2):84-93.
    [21]Tan T. C, Chai C. M, Tok A. T., Ho K. W. Prediction and experimental verification of the salt effect on the vapour-liquid equilibrium of water-ethanol-2-propanol mixture[J]. Fluid Phase Equilibria,2004,218(1):113-121.
    [22]Tan T. C. New screening technique and classification of salt for salt distillation of close-boiling and azeotropic solvent mixtures[J]. Chem. Eng. Res. Des.,1987,65(9): 421-425.
    [23]Tan T. C. Criteria for the elimination of azeotrope of a solvents mixture by dissolved solute[J]. Fluid Phase Equilibrium,1990,55(1-2):59-74.
    [24]Tan T. C, Aravinth S. Liquid-liquid equilibria of water/acetic acid/1-butanol system-effects of sodium(potassium) chloride and correlations[J]. Fluid Phase Equilibria, 1999,163(2):243-257
    [25]Ohe S. Vapour-liquid-equilibrium data-salt effect[M]. Tokyo:Kodan dan,1991, 5-12.
    [26]Ohe S. Prediction of salt effect on vapor-liquid equilibria[J]. Fluid Phase Equilibria, 1998,144(1-2):119-129.
    [27]Takamatsu H., Ohe S. Modified solvation model for salt effect on vapor-liquid equilibria[J]. Fluid Phase Equilibria,2002,194-197:701-715.
    [28]Chou T. J., Tanioka A. Predicting the effect of dissolve salt on the Vaper-liquid equilibria for alcohol-water systems[J]. Trans IChemE,1999,77:329-334.
    [29]Polka H. M., Gmehling J. Effect of calcium nitrate on the vapor-liquid equilibria of ethanol+water and 2-propanol+water[J]. J. Chem. Eng. Data.,1994,39(3): 621-624.
    [30]Renard J. A. Tenrary systems:Water-acetonitrile-salts[J]. J. Chem. Eng. Data.,1966, 11(2):169-171.
    [31]Li Z. C, Tang Y. P., Liu Y.,Li Y. G. Salting effect in partially miserable system of n-butanol-water and butanone-water [J]. Fluid Phase Equiilbria,1995,103(1): 143-153.
    [32]Al-Sahhaf T. A. Salt effect on Liquid-liquid equilibrium in partially miserable system of water+2-butanol and water+ethyl acetate[J]. Fluid Phase Equiilbria,1999,157(2): 271-283.
    [33]Al-Sahhaf T. A., Kapetanovic E. Salt effect of lithium chloirde, sodium bormide or potassium iodide on Liquid-Liquid equilibirum in the system of water+1-butanol and water+ethyl acetate[J]. J. Chem. Eng. Data.1997,42(1):74-77.
    [34]许文友.乙腈水氟化钾及乙腈水碳酸钾液液相平衡数据的测定和关联[J].化工学报,1997,52(8):74-77.
    [35]许文友,赵强,陈小平.环己酮-水-氟化钾及环己酮-水-碳酸钾的液液相平衡[J].化学工程,201 0,38(3):57-60.
    [36]许文友,任万忠,邹旭华,陈小平.丁酮-水-氟化钾及丁酮-水-碳酸钾液液相平衡[J].化学工程,2001,29(4):43-46.
    [37]许文友,袁希钢.正丙醇-水-钾盐和异丙醇-水-钾盐体系液液相平衡数据的测定和理论计算[J].化学工程,2004,32(1):65-68.
    [38]许文友,袁希钢.叔丁醇-水-钾盐体系液液相平衡的研究[J].高校化学工程学报,2003,17(1):91-94.
    [39]Tan T. C, Kannangara K. K. D. D. S. Liquid-liquid equilibria of water/1-propanol/methyl ethyl ketone/potassium chloride[J]. Fluid Phase Equilibria, 2001,190(1-2):179-189
    [40]Tan T. C, Aravinth S. Liquid-liquid equilibria of water/acetic acid/1-butanol system —effects of sodium (potassium) chloride and correlations[J]. Fluid Phase Equilibria, 1999,163(2):243-257
    [41]Santos F. S., d'Avila S. G., Aznar M. Salt effect on liquid-liquid equilibrium of water +1-butanol+acetone system:Experimental determination and thermodynamic modeling[J]. Fluid Phase Equilibria,2001,187-188:265-274.
    [42]Pereira M. A. P., Aznar M. Salt effect on (liquid+liquid) equilibrium of (water+ tert-butanol+1-butanol) system:experimental data and correlation [J]. J. Chem. Thermodynamics,2006,38(8):84-89.
    [43]Govindarajan M., Sabarathinam P. L. Salt effect on liquid-liquid equilibrium of the methyl isobutyl ketone-acetic acid-water system at 35 ℃[J]. Fluid Phase Equilibria, 1995,108(1-2):269-292.
    [44]Al-Sahhaf T. A., Kapetanovic E., Kadhem Q. Salt effects on liquid-liquid equilibria in the partially miscible systems water+2-butanone and water+ethyl acetate[j]. Fluid Phase Equilibria,1999,157(2):271-283.
    [45]Zhao X. H., Xie X. Q., Yan Y. S. Liquid-liquid equilibrium of aqueous two-phase systems containing poly(propylene glycol) and salt ((NH4)2SO4, MgSSO4, KC1, and KAc):experiment and correlation[J]. Thermochimica Acta,2011,516(1-2):46-51.
    [46]段占廷,雷良恒,周荣琪.加盐萃取精馏研究(Ⅰ):用乙二醇加乙酸钾制取无水乙 醇[J].石油化工,1980,9(6):350—353.
    [47]Banat F., Al-Asheh S., Simandl J. Effect of trivalent, bivalent, and univalent cation inorganic salts on the isothermal vapor-liquid equilibria of propionic acid-water system[J]. Chemical Engineering and Processing,2003,42(10):759-766.
    [48]Banat F. A., Al-Rub F. A. A., Simandl J. Analysis of vapor-liquid equilibrium of ethanol-water system via headspace gas chromatography:effect of molecular sieves [J]. Separation and Purification Technology,2000,18(2):111-118.
    [49]Banat F., Al-Asheh S., Simandl J. Vapor-liquid equilibria of propionic acid-water system in the presence of different types of inorganic salts:effect of temperature and salt concentration[J]. Chemical Engineering and Processing,2003,42(11):917-923.
    [50]Sadeghi R., Goodarzi B. Effect of potassium citrate salts on the vapor-liquid equilibrium properties of aqueous solutions of alanine at different temperatures[J]. Biophysical Chemistry,2008,135(1-3):116-124.
    [51]Salabat A. Liquid-liquid equilibrium in the ternary systems triethylene glycol+salts+ water at different temperatures:Experimental determination andcorrelation [J]. Fluid Phase Equilibria,2010,288(1-2):63-66.
    [52]Johnson A. I., Furter W. F. Salt effect in vapor liquid equilibrium, part II[J]. Can. J. Chem. Eng.,1960,38(3):78-87.
    [53]Burns J. A., Furter W. F. Salt effect in vapor-liquid equilibrium at fixed liquid composition[J]. Advan. Chem. Ser.,1979,177:11-26.
    [54]Hashitani M, Hirata M., Hirose Y., Salt Effect in Vapor-Liquid Equilibrium and Distillation with the Salt. Three Ternary Systems:Ethanol-, Isopropanol-, n-Propanol-Water-Calcium Chloride[J]. Kagaku Kogaku,1968,32(2):182-187.
    [55]Subbaiah T. Salt effect in vapor-/liquid equilibria[J]. J. Chem. Technol. Biotechnol. 1993,57(2):163-168.
    [56]Wu W. L., Zhang Y. M., Lu X. H. Modification of the furter equation and correlation of the vapor-liquid equilibrium for mixed-solvent electrolyte systems[J]. Fluid Phase Equilibrium,1999,154(2):301-310.
    [57]Debye P., Hückel E. Theory of electrolyte 1. Freezing point lowering and related phenomena[J]. Phys. Zeit.,1923,24:185-195.
    [58]Lebowitz J. L., Percus J. K. Mean special model for lattice gases with extended hard cores and continium fluids[J]. Physical Review,1966,144 (1):251-258.
    [59]Pitzer K. S. Thermoldynamics of electrolytes theretical basis and general equations[J]. J. Phys. Chem.,1973,77(2):268-277.
    [60]Pitzer K. S. Activity coeffcients in electrolyte slutions[M].2nd Ed. Boca Ration. FL: CRC Press 1991.
    [61]Kim H. T., Frederick W. J. Evaluation of pitzer ion interation parameterof aqueous electrolyte at 25 ℃.1. Single salt parameters [J]. J. Chem. Eng. Data,1988,33(2): 177-184.
    [62]Kim H. T., Frederick Jr. W. J. Evaluation of Pitzer ion interaction parameters of aqueous mixed electrolyte solutions at 25 ℃.2. Ternary mixing parameters [J]. J. Chem. Eng. Data,1988,33 (3),278-283.
    [63]Tan T. C. Model for predicting the effect of dissolved salt on the vapor liquid equilibrium of solvent mixtures[J]. Chem.Eng. Res. Des.,1987,65(4):355-366.
    [64]Tan T. C. A modified NRTL model for predicting the effect of dissolved solute on the vapor-liquid equilibrium of solvent mixtures[J]. Trans. Ind. Eng. Chem.1990,68(1): 93-103.
    [65]Chen C. C, Evan L. B. A local composition model for excess gibbs energy of electrolyte systems[J]. AIChE,1986,32(3):444-454.
    [66]Chen C. C. Representation of solid-liquid equilibriumof aqueous electrolyte systems with the electrolyte NRTL model[J]. Fluid Phase Equilibrium,1986,27:457-474.
    [67]Mock B., Evans L. B., Chen C. C. Thermodynamic representation of phase equilibria of mixed-solvent electrolyte systems[J]. AIChE J.,1986,32(10):1655-1664.
    [68]Bekerman E., Tassios D. Correlation of VIE systemscontaining two solvents and one salt[J]. Adv. Chem. Ser.,1976,155:3-16.
    [69]Sander B., Fredenslund A., Rasmussen P. Calculation of Vapour-liquid equilibiria in mixed solvent/salt system using an extend UNIQUAC equation[J]. Chem. Eng. Sci. 1986,41(5):1171-1183.
    [70]Nicolaisen H., Rasmussen P., Sorensen J. M. Correlation and prediction of mineral solubilities in the reciprocal salt system (Na+, K+)(C1-, SO42-)-H2O at 0-100 ℃[J]. Chem. Eng. Sci.,1993,48(18):3149-3158.
    [71]Thomsen K., Rasmussen P., Gani R. Correlation and prediction of thermal properties and phase behaviour for a class of aqueous electrolyte systems[J]. Chem. Eng. Sci., 1996,51(14):3675-3683.
    [72]Thomsen K., Rasmussen P., Gani R. Simulation and optimization of fractional crystallization processes[J]. Chem. Eng. Sci.,1998,53(8),1551-1564.
    [73]Iliuta M. C, Thomsen K., Rasmussen P. Extended UNIQUAC model for correlation and prediction of vapour-liquid-solid equilibria in aqueous salt systems containing non-electrolytes. Part A. Methanol-water-salt systems[J]. Chem. Eng. Sci.2000, 55(14):2673-2686.
    [74]Thomsen K., Iliuta M. C, Rasmussen P. Extended UNIQUAC model for correlation and prediction of vapor-liquid-liquid-solid equilibria in aqueous salt systems containing non-electrolytes. Part B. Alcohol (ethanol, propanols, butano Is)-water-salt systems[J]. Chem. Eng. Sci.2004,59(17):3631-3647.
    [75]Glugla P. G., Sax S. M. Vapor liquid equilibrium for salt-containing systems:A correlation of vapor pressure depression and a prediction of multicomponet systems[J]. AIChEJ.,1985,31(11):1911-1914.
    [76]Christensen C, Sander B., Fredenslund Aa., Rasmussen P. Towards the extension of UNIFAC to mixtures with electrolytes[J]. Fluid Phase Equilibria,1983,13:297-309.
    [77]Lee L. L. Accurate prediction of physical properties for acid gas treating[C]. Proceedings of the seventy-fifth GPA Annual Convention.1976,92-101.
    [78][78] Kikic I., Fermeglia M., Rasmussen P. Unifac prediction of vapor—liquid equilibria in mixed solvent—salt systems[J]. Chem. Eng. Sci.,1991,46(11): 2775-2780.
    [79]Achard C, Dussap C. G, Gros J. B. Application of a group-contribution method to biological systems:Prediction of water activity, ph, and related properties [J]. Computers & Chemical Engineering,1993,17(S1):S159-S164.
    [80]Achard C, Dussap C. G., Gros J. B. Representation of vapour-liquid equilibria in water-alcohol-electrolyte mixtures with a modified UNIFAC group-contribution method[J]. Fluid Phase Equilibria,1994,98:71-89.
    [81]Setschenow J. Complex properties of non-electrolytes aqueous containing salts[J]. Ann. Chim. Phys.,1891,25(6):226-234.
    [82]潘晓梅.盐效应及其在分离工程中的应用的研究[D].天津大学,2002,74-76.
    [83]Li Z. C, Tang Y. P., Liu Y. Salting efect in partially miserable system of n-butanol-water and butanone-water[J]. Fluid Phase Equiilbrium,1995,103(1): 143-153.
    [84]Al-Sahhaf T. A., Kapetanovic E., Kadhem. Salt effects on liquid-liquid equilibrium in the partially miscible system of water+2-butanone and water+ethyl acetate [J]. Fluid Phase Equiilbrium,1999,157(2):271-283.
    [85]Al-Sahhaf T. A., Kapetanovic E. Salt effects of lithium chloirde, sodium bormide, or potassium iodide on liquid-liquid equilibirum in the system of water+l-butanol[J]. J. Chem. Eng. Data,1997,42(1):74-77.
    [86]Colombo A., Battilana P., Ragaini V., Bianchi C. L. Liquid-liquid equilibria of the ternary systems water+acetic acid+ethyl acetate and water+acetic acid+ isophorone (3,5,5-Trimethyl-2-cyclohexen-l-one)[J]. J. Chem. Eng. Data,1999, 44(1):35-39.
    [87]Kirbaslar I. S. Liquid-liquid equilibria of the water-aceitc acid-butyl acetate system[J]. Braz. J. Chem. Eng.2002,19(2):243-254.
    [88]Xiao X. J., Wang L. J., Ding G. H., Li X. Liquid-liquid equilibria for the ternary system water+acetic acid+propyl acetate[J]. J. Chem. Eng. Data,2006,51(2): 582-583.
    [89]Wang L. J., Cheng Y. W., Li X. Liquid-liquid equilibria for the acetic acid+water+ amyl acetate and acetic acid+water+2-methyl ethyl acetate ternary systems [J]. J. Chem. Eng. Data,2007,52(6):2171-2173.
    [90]Wang L. J., Cheng Y. W., Xiao X. J., Li X. Liquid-liquid equilibria for the ternary systems acetic acid+water+butyl acetate and acetic acid+water+2-methyl propyl acetate at 304.15 K,332.15 K, and 366.15 K[J]. J. Chem. Eng. Data,2007,52(4): 1255-1257.
    [91]Cháfer A., Lladosa E., de la Torre J., Burguet M. C. Study of liquid-liquid equilibrium of the systems isobutyl acetate+acetic acid+water and isobutyl alcohol+acetic acid +water at different temperatures [J]. Fluid Phase Equilibria,2008,271(1-2):76-81.
    [92]Fahim M. A., Al-Muhtaseb S. A., Al-Nashef I. M. Phase equilibria of the ternary system water+acetic acid+1-pentanol[J]. J. Chem. Eng. Data,1996,41(3):562-565.
    [93]Aljimaz A. S., Fandary M. S. H., Alkandary J. A. Liquid-liquid equilibria of the ternary system water+acetic acid+1-heptanol[J]. J. Chem. Eng. Data 2000,45(2): 301-303.
    [94]Korenman Y. I., Bolotov V. M., Selmanshuk N. N. Extraction agent for phenol or resorcinol[P]. U.S.S.R. SU979318 Al 7 Dec 1982.
    [95]邓修,吴俊生.化工分离工程[M].科学出版社,2000.
    [96]Campbell J. A. Distribution equation[J]. Ind. Eng. Chem.1944,36(12):1158-1161.
    [97]Bachman I. Convergenc of tie lines in ternary liquid systems[J]. J. Phys. Chem.1940, 44(4):446-449.
    [98]Hand D.B. Dineric distribution[J]. J. Phys. Chem.1930,34 (9):1961-2000.
    [99]Othmer D., Tobias P. Liquid-liquid extraction data—the line correlation [J]. Ind. Eng. Chem.1942,34(6):693-696.
    [100]Macedo E. A., Rasmussen P.Vapor-liquid equilibrium for the binary systems ethyl acetate-acetic acid and ethyl propionate-propionic acid[J]. J. Chem. Eng. Data,1982, 27 (4):463-465.
    [101]李若红.醋酸-水体系分离中相关相平衡的研究[D].天津大学,2006.
    [102]Garner F. H., Ellis S. R. M. and Pearce C. J. Extraction of acetic acid from water: 3-Binary vapour-liquid equilibrium data[J]. Chemical Engineering Science,1954,3(2): 48-54.
    [103]Lark B. S., Banipal T. S., Singh S., Palta R. C. Excess gibbs energy for binary mixtures containing carboxylic acids.1. Excess gibbs energy for acetic acid+ cyclohexane,+benzene, and 4-n-Heptane[J]. J. Chem. Eng. Data,1984,29(3): 277-280.
    [104]斯坦利M瓦拉斯,化工相平衡[M],北京:中国石化出版社,1991。
    [105]周星风,倪良,李浩然等.动态法进行等温和等压汽-液平衡的测定和控制研究[J].化学学报,1990,48(3):334-339.
    [106]Ochi K. A measurement of vapor-liquid equilibria at extreme dilution[J]. J. Chem. Eng.,1987,20(1):6-10.
    [107]房鼎业,乐清华,李福清.化学工程与工艺专业实验[M],化学工业出版社,2000.
    [108]Prausnitz J. M. Computer calulation for multiconpoment vapor-liquid equilibira and liquid-liquid equilibria[M]. Prentice Hall, Englewood Cliffs, New Jersey,1980,67.
    [109]Chao K. C, Greenkorn R. A. Thermodynamics of fluids an introduction to equilibrium theory[M]. Marcel Dekker, Inc.1975,60-73.
    [110]Smith J. M., Van Ness H. C., Abbott M. M. Introduction to chemical engineering thermodynamics[M]. New York:McGraw-Hill,2004.
    [111]Soave G. Equilibrium constants from a modified Redlich-Kwong equation of state[J]. Chem.Eng.Sci.,1972,27(6):1197-1203.
    [112]Peng D. Y., Robinson D. B. A new two-constant equation of state[J]. Ind. Eng. Chem. Fundam.,1976,15(1):59-64.
    [113]Redlich O., Kwong J. N. S. On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions[J]. Chem. Rev.,1949,44(1),233-244.
    [114]Patel N. C., Teja A. S. A new cubic equation of state for fluids and fluid mixtures[J]. Chem. Eng. Sci.1982,37(3):463-473.
    [115]Martin J. J., Hou Y. C. Development of an equation of state for gases. AIChE J.,1955, 1(2):142-151.
    [116]Rysselberghe P. V. Activity coefficients in mixed solutions and the Gibbs-Duhem and Duhem Margules formulas[J]. J. Phys. Chem.,1934,38 (9):1161-1168.
    [117]Oliver E. D. Multicomponent Margules Equations[J]. Ind. Eng. Chem. Fundamen., 1968,7 (2):335.
    [118]Giles N. F., Wilson L. C, Wilson G. M., Wilding W. V. Phase equilibria on eight binary mixtures[J]. J. Chem. Eng. Data,1997,42 (6):1067-1074.
    [119]Wilson G. M. Vapor-liquid equilibrium. XI. A new expression for the excess free energy of mixing[J]. J. Am. Chem. Soc,1964,86(2):127-130.
    [120]Renon H., Prausnitz J.M. Local compositions in thermodynamic excess functions for liquid mixtures[J]. AIChE J.,1968,14(1):135-144.
    [121]Abrams D. S., Prausnitz J. M. Statistical thermodynamic of liquid mixture:a new expression for the excess Gibbs energy of partly or completely miscible systems[J]. AIChE J.,1975,21(1):116-128.
    [122]Abrams D. S., Pransnitz J. M. Statistical thermodynamics of liquid mixtures:a new expression for the excess Gibbs energy of partially or completely miscible systems[J]. AIChE J.,1975,21(1):116-128.
    [123]Gmehling J., Li J., Schiller M. A. Modified UNIFAC model.2. Present parameter matrix and results for different thermodynamic properties[J]. Ind. Eng. Chem. Res., 1993,32(1):178-193.
    [124]Tsonopoulos C. An empirical correlation of second virial coefficients[J]. AIChE J., 1974,20(2):263-272.
    [125]Tsonopoulos C., Heidman J. L. From the virial to the cubic equation of state[J]. Fluid Phase Equilibria.,1990,57(3):261-276.
    [126]Tsonopoulos C., Dymond J. H. Second virial coefficients of normal alkanes, linear 1-alkanols (and water), alkyl ethers, and their mixture[J]. Fluid Phase Equilibria,1997, 133(1-2):11-34.
    [127]Reid R. C., Prausnitz J. M., Poling B. E. The properties of gas and liquids[M]. New York:McGrawHill,1987.
    [128]Hayden J. G, O,Connell J. P. A generalized method for predicting second virial coefficients[J]. Ind. Eng. Chem. Process Des. Dev.,1975,14(3):209-216.
    [129]Daubert T. E., Danner R. P. Physical and thermodynamic properties of pure chemicals (data compilation)[M]. New York:Hemisphere,1989.
    [130]白鹏,陆春宏,田野,于鲤铭.萃取、共沸精馏技术联用回收废液中的醋酸[J].化学工业与工程.2008,25:424-427.
    [131]张晓辉,刘家祺,贾彦雷,陈亚萍糠醛废水中的醋酸回收工艺2006,23:142-146.
    [132]Saha B., Chopade S. P., Mahajani S. M. Recovery of dilute acetic acid through esterification in a reactive distillation column[J]. Catalysis Today,2000,60:147-157.
    [133]Ingale M. N., Mahajani V.V. Recovery of acetic acid and propionic acid from aqueous waste stream[J]. Separations Technology,1994,4(2):123-126.
    [134]Lei Z. G., Li C. Y., Li Y. X., Chen B. H. Separation of acetic acid and water by complex extractive distillation [J]. Separation and Purification Technology,2004,36: 131-138.
    []35]秦炜,马志君,戴猷元Aliquat336萃取醋酸的平衡特性[J].化工学报2002,53(9):957-961.
    [136]Bianchi C. L., Ragaini V., Pirola C. and Carvoli G. A new method to clean industrial water from acetic acid via esterification[J].Applied Catalysis B:Environmental,2003, 40(2):93-99.
    [137]Shina C. H., Kima, J. Y., Kim. J. Y. et al. A solvent extraction approach to recover acetic acid from mixed waste acids produced during semiconductor water process[J]. Journal of Hazardous Materials.2009,163,1278-1284.
    [138]Alghezawi N., Sanl1 O., Aras L., Asmana G. Separation of acetic aciddwater mixtures through acrylonitrile grafted poly(vinyl alcohol) membranes by pervaporation[J]. Chemical Engineering and Processing.2005,44:51-58.
    [139]Yu L. X., Guo Q. F., Hao J. H., Jiang W. J. Recovery of acetic acid from dilute wastewater by means of bipolar membrane electrodialysis[J]. Desalination,2000, 129(3):283-288.
    [140]Yeom C. K., Lee K.H. Pervaporation separation of water-acetic acid mixtures through poly(vinyl alcohol) membranes crosslinked with glutaraldehyde[J]. Journal of Membrane Science.1996,109:257-265.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700