微乳液萃取镓和铝的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微乳液是由表面活性剂、助表面活性剂(通常为醇类)、油(通常为碳氢化合物)和水(或电解质水溶液)在适当的比例下自发形成的外观为透明或半透明,粒径在10~200 nm之间,具有超低界面张力(通常约为10-2mN·m-1)热力学稳定的乳状液体系。本文主要研究了微乳液的性质及其在金属离子镓和铝之间分离萃取方面的应用。
     首先,我们以十六烷基三甲基溴化铵为表面活性剂,以正戊醇为助表面活性剂,以正庚烷为油相和盐酸溶液制备了热力学稳定的W/O型微乳液体系。通过稀释法估算了微乳液各种结构参数和醇转移的界面自由能;发现微乳液形成后随含水量的增加,水内核半径Rw直线增加,平均聚集数N减小,颗粒总数Nd增加,形成自由能减小,微乳液变得不稳定。制备了微乳液拟三元相图,考察了微乳液各成分对微乳液结构和性质的影响,并在微乳液中引入表面活性剂磷酸三丁酯,制作了拟三元相图,发现磷酸三丁酯使微乳液的三相区大幅变小,使微乳液更加稳定。通过对微乳液电导率的变化的测定,验证了磷酸三丁酯对微乳液稳定性的作用,同时验证了此W/O型微乳液的为渗滤导电机理。
     然后,在对微乳液性质的研究基础上,分别利用阴离子和阳离子表面活性剂,制备了两种稳定的微乳液。用两种微乳液进行了萃取镓的研究,考察了萃取时间、水油比、萃取剂浓度、料液盐酸浓度等等因素对萃取的影响。发现两种微乳液有其相似点,如萃取速度快,对酸度敏感等;但由于表面活性剂性质差别很大,导致了微乳液的很多不同之处,阳离子表面活性剂制备的微乳液,相对由阴离子表面活性剂制备的微乳液来说,需要更长的时间来达到萃取平衡,萃取效果也相对较差,两种微乳液萃取镓的最佳条件也不同。
     最后,利用阳离子表面活性剂十六烷基三甲基溴化铵制备的微乳液,进行了微乳液分离金属镓和铝的研究。该微乳液由于磷酸三丁酯的加入,在萃取过程中具有很强的稳定性,可以保持在较大的水油比下也不会破乳。通过考察各种影响萃取的因素对萃取率的影响,我们得出了最佳萃取条件;在最优条件下,微乳液对镓和铝具有非常好的选择性。对富集了镓的微乳液,进行了反萃实验,结果表明,大部分镓可被反萃到低浓度盐酸溶液中,该微乳液成地功实现了镓和铝的分离。
Microemulsion is a kind of thermodynamically stable dispersion systems, which is consisted of a surfactant, a cosurfactan, organic solvent and water. Usually microemulsion is transparent or translucent, the diameter of microemulsion varies from 10nm to 200nm, and the interfacial tension of micromulsion is very low (about 10-2 mN·m-1). In this paper, the study is focused on microemulsion's characteristic and application on the extraction of gallium and aluminum.
     First, a new stable W/O microemulsion was made from cetyltrimethylammonium bromide (CTAB), n-pentanol, n-heptane and HCl solution. Dilution method was used to estimate some paraters of the micromeulson, and it was found that with the increase of water uptake of the formed microemulsion, Rw increased linearly, N and the free energy decreased, and the microemulsion became unstable. The pseudo-ternary diagram of the microemulsion was prepared to study the structures and forms of different kinds of microemulsion, and tributyl phosphate (TBP) was introduced to stabilize the microemulsion. The conductivity of the microemulsions was surveyed to verify the effect of TBP on the stability of microemulsion, and the study on the influence of water content to the conductivity proved that this W/O microemulsion is percolation conductive.
     Second, on the basis of the study on microemulsion'property, two kind of microemulsions were made of cationic surfactant and anionic surfactant, respectively. The study of different factors like time, volume ratio, the concentration of extractant and acidity were carried out, the result showed that the trends of extraction rate of some factors on these two kinds of microemulsion were the same, but the nature of the surfactant determined that there were many differences, the micromulsion made of cationic surfactant spent more time to arrive at the equilibrium, and the extraction rate is lower than that made of anionic surfactant. The best conditions of the extraction were different for two kinds of microemulsions.
     Last, the cationic surfactant Cetyl trimethylammonium bromide (CTAB) was chosen to organize a microemulsion, and the separation of gallium and aluminum was studied. The factors which influnced the extraction rate were surveyed, and the best condition for the extraction was obtained. On the optimal condition, the selectivity of microemulsion on gallium and aluminum was very well; for the microemulsion that was enriched with gallium, a back-extraction was carried out and most gallium was extracted to the HCl solution. The separation of gallium and aluminum was successfully achieved finally.
引文
[1]T. P. Hoar, J. H. Schulman, Transparent water in oil dispersion:the oleopathic hydro-micelle, Nature,1943,152,102-103.
    [2]Jack H. Schulman, Walther Stoeckenius, Leon M. Prince Mechanism of Formation and Structure of Micro Emulsions by Electron Microscopy, J. Phys. Chem. B,1959, 63,1677-1680.
    [3]Dinesh O. Shah., Macro and Microemulsions (M). Washington, D. C.:American Chemical Society,1985.
    [4]Shah, D. O., Ed. Surface Phenomena in Enhanced Recovery, Plenum Press,1981, New York.
    [5]郭荣,微乳液特性与应用,江苏化工,1989,4:14-17.
    [6]赵国玺,朱王步瑶.表明活性剂作用原理[M],中国轻工业出版社,2003,北京,Chap.12,P.620-621.
    [7]Winsor, P. A. Hydrotropy, Solubilization and Related Emulsification Process,Trans. Faraday Soc.1948,44,376-398.
    [8]P. A. Winsor The Interpretation of Published X-Ray Mesurements on Detergent Solutions on the Basis o f an Intermicellar Equilibrium, J. Phys. Chem.,1952,56 (3), 391-399.
    [9]M. Nagao, H. Seto, D. Okuhara, et al Temperature- and pressure-induced phase transition in a ternary microemulsion system, Journal of Physics and Chemistry of Solids,1999,60(8-9),1363-1365.
    [10]D. O. Shah, R. H. Hamlin, Jr.. Science,1971,171,483.
    [11]D. O. Shah, et al AIChE J.,1972,18,1116.
    [12]Suk-Young Choi, Seong-Geun Oh, Seong-Youl Bae, et al Effect of short-chain alcohols as co-surfactants on pseudo-ternary phase diagrams containing lecithin, Korean J. Chem. Eng.,1999,16(3),377-381.
    [13]F. Pattarino, E. Marengo, M. Trotta, M. R. Gasco, J. Dispersion Sci. Technol., 2000,21,345.
    [14]W. Warisnoichroen, A. B. Lansley, M. J. Lawrence. AAPS harm. Sci.2000,2, 429.
    [15]M. Zhou, R. D. Rhue, Effect of Interfacial Alcohol Concentrations on Oil Solubilization by Sodium Dodecyl Sulfate Micelles. J. Colloid Interface Sci.,2000, 228,18-23.
    [16]Yingwei Xie, Ruqiang Ye, Honglai Liu. Microstructure studies on biosurfactant-rhamnolipid/n-butanol/water/n-heptane microemulsion system, J. Colloids and Surfaces A:Physicochem. Eng. Aspects.2007,292,189.
    [17]T. L. Lin, Y. Hu, T. T. Lee, The effect of alcohols on the size of water-in-oil microemulsion droplets, Progress in Colloid and Polymer Science,1997,105, 268-271.
    [18]Winsor P.A., London,1954.
    [19]Kunieda, H.& Shinoda, H. Evaluation of the hydrophile-lipophile balance (HLB) of nonionic surfactants. Ⅰ. Multisurfactant systems, J. Colloid Interface Sci.,1985, 107,107-121.
    [20]Kunieda, H.& Shinoda, H. Evaluation of the hydrophile-lipophile balance (HLB) of nonionic surfactants. Ⅱ. Commercial-surfactant systems, J. Colloid Interface Sci., 1985,107,122-128.
    [21]L. M. prince, Microemulsions, Theory and practice, Chapter 5, Academic press, New York (1977).
    [22]K. Shinoda, S. Friberg, Mieroemulsion:Collidal aspects, Adv. Colloid Interface Sci,1975,4:281-300.
    [23]M. L. Robbins, in "Micellization, Solubilization and Micrcemulsion":Vol.2 (K. L. Mittal ed.), P.713, Plenum Press, New York(1977).
    [24]D. J. Mitchell, B. W. Ninham, Micelles, vesicles and microemulsions, J. Chem. Soc., Faraday Trans.2,1981,77,601-629.
    [25]J. N. Israelachvili, D. J. Mitchell, B. W.Ninham, Theory of self-assembly of lipid bilayers and vesicles [J].Biochimica et biophysica acta; 1977,470(2):185-201.
    [26]M. Bourrel, R. S. Schechter, Micrcemulsin and Related systems:Fomulation, Solvency and Physical Properties, Chapter 1, Surfactant Science Series Vol.30, Marcel Dekker, Inc., New York and Basel (1988).
    [27]J. W. McBain, Frontiers in Collid Chemistry, Interscience Publishers, Inc., New York,1949, P.44.
    [28]Eli Ruckenstein, J. C. Chi, Stability of microemulsions, Journal of the Chemical Society, Faraday Transactions 2,1975,71,1690-1707.
    [29]颜肖慈,罗明道,界面化学[M].化学工业出版社,北京,Chap.5,P.89-90.
    [30]Fernando Garcia-Sanchez, Gaudencio Eliosa-Jimenez, Modeling of microemulsion phase diagrams from excess Gibbs energy models, Chemical Engineering Journal,2001,84,257-274.
    [31]V.C. Santanna, F.D.S. Curbelo, Microemulsion flooding for enhanced oil recovery, Journal of Petroleum Science and Engineering,2009,66,117-120.
    [32]M. J. Lawrence, G. D. Rees, Microemulsion-based media as novel drug delivery systems,, Advanced drug delivery reviews,2000,45,89-121.
    [33]Th. F Vandamme, Microemulsions as ocular drug delivery systems:recent developments and future challenges, Progress in Retinal and Eye Research,2002,21, 15-34.
    [34]Jun, L. Weilie, Z. Charles, J. O'C, Formation of ordered arrays of gold nanoparticles from CTAB reverse micelles. Materials Letters,2001,49,282-286.
    [35]Clifford, Y. T., Bor Yuan, H., Hsien, Yi. Ch. Preparation of silazane grafted yttria-stabilized zirconia nanocrystals via water/CTAB/hexanol reverse microemulsion. Materials Letters,2007,61,834-836.
    [36]Jean Marie Aubry, Waldemar Adam, Dark singlet oxygenation of organic substrates in single-phase and multiphase microemulsion systems, Tetrahedron,2006, 62,10753-10761.
    [37]Wu MM, Long JB, Huang AH, Microemulsion-Mediated Hydrothermal Synthesis and Characterization of Nanosize Rutile and Anatase Particles, Langmuir, 1999,15(26):8822-8825.
    [38]A. S. Chhatre, R. A. Joshi, B. D. Kulkarni, Microemulsions as Media for Organic Synthesis:Selective Nitration of Phenol to ortho-Nitrophenol Using Dilute Nitric Acid, J. Colloid Interface Sci.,1993,158,183-187.
    [39]J. O. Stoffer, T. Bone, Polymerization in Water in Oil Microemulsion Systems Containing Methyl Methacrylate,1980,1,37-54.
    [40]D. Tjandra, M. Lade, The Kinetics of an Interfacial Reaction in a Microemulsion, Chem. Eng. Technol.,1999,21,666-670.
    [41]R. L. Misiorowski, M. A. Wells, The Activity of Phospholipase A2 in Reversed Micelles of Phosphatidylcholine in Diethyl Ether:Effect of Water and Cation,1974, 13,4621-4627.
    [42]M. Karali, A. Xenakis, Lipase biocatalytic processes in surfactant free microemulsion-like ternary systems and related organogels, Enzyme Microb. Technol.,2006,39(4):531-539.
    [43]F. Lopez, G. Cinelli, Role of the cosurfactant in water-in-oil microemulsion: interfacial properties tune the enzymatic activity of lipase, Colloids Surf. A,2004,237: 49-59.
    [44]T.N. Castro Dantas, A.A. Dantas Neto, M.C.P.A. Moura, et al Heavy metals extraction by microemulsions, Water Research 2003,37,(11):2709-2717.
    [45]Yang Shu, Dehong Cheng, Xuwei Chen, et al A reverse microemulsion of water/AOT/1-butyl-3-methylimidazolium hexafluorophosphate for selective extraction of hemoglobin, Separation and Purification Technology,2008,64(2): 154-159.
    [46]周富荣,杜金平,李忠铭等.微乳液膜萃取废水中酚的研究[J].江汉大学学报(自然科学版),2005,33(1):26-28.
    [47]杜巧云,王建革,张桂英等.H2R2 Y/氯仿系统萃取铅的研究[J].化学试剂,2005,27(6):358-360.
    [48]杜巧云,黄华鸣,王建革.H2R2 Y萃取汞的研究[J].分析实验室,2004,23(7):44-46.
    [49]Bowcott J. E., Schulmanm J. H. Z. Elecktrochem.,1955,59,283-290.
    [50]K. S. Birdi, Microemulsions:Effect of alkyl chain length of alcohol and alkane, Colloid and Polymer Scicnce,1982,26,628-631.
    [51]Gerbacia W, Rosane R L. Microemulsions:Formation and Stabilization. J Colloid and Interface Science,1973,44(2):242-248.
    [52]闫龙成,李干佐等.醇从油相转移到AEO-9微乳液液滴界面自由能的研究.山东大学学报(自然科学版),1998,33:422-426.
    [53]Mauro Giustini, Gerardo Palazzo, Microstructure and Dynamics of the Water-in-Oil CTAB/n-Pentanol/n-Hexane/Water Microemulsion:A Spectroscopic and Conductivity Study, J. Phys. Chem.,1996,100(8):3190-3198.
    [54]Gerardo Palazzo, Francesco Lopez, Mauro Giustini, et al Role of the Cosurfactant in the CTAB/Water/n-Pentanol/n-Hexane Water-in-Oil Microemulsion.1. Pentanol Effect on the Microstructure, J. Phys. Chem. B,2003,107:1924-1931.
    [55]Sarraguca JMG, Pais AACC, Linse P, Structure of Microemulsion-ABA Triblock Copolymer Networks, LANGMUIR,2008,24(19):11153-11163.
    [56]冯广卫,SDS/正丁醇/正庚烷/水微乳液体系结构参数测定,化学与生物工程,2006,23(10):52-54.
    [57]李成海,周立亚,龚福忠,OP-7/醇/正庚烷/盐酸体系形成的微乳液的结构参数计算和电镜观测,广西大学学报(自然科学版),2001,26(1):40-43.
    [58]Ochhkin AV, Zh. Fiz. Khm,1960,54:1862.
    [59]Natalia I. Gerhardt and Stephanie R. Dungan, Changes in Microemulsion and Protein Structure in IgG-AOT-Brine-Isooctane Systems, J. Phys. Chem. B 2004, 108(23):9801-9810.
    [60]徐光宪,王文清,吴瑾光等。萃取化学原理,上海科学技术出版社,1984.
    [61]Jiafu Fang and Raymond L. Venable, Journal of Colloid and Interface Science, 1987,116(1):269-277.
    [62]LEE M S, AHN J G, LEE E C. Solvent extraction separation of indium and gallium from sulphate solutions using D2EHPA. Hydrometallurgy,2002,63 (3): 269-276.
    [63]GUPTA B, MUDHAR N, Tandon S N. Extraction and Separation of Gallium Using Cyanex 301:Its Recovery from Bayer's Liquor. Industrial and Engineering Chemistry Research,2005,44 (6):1922-1927.
    [64]GUPTA B, MUDHAR N, BEGUM Z, et al. Extraction and recovery of Ga(Ⅲ) from waste material using Cyanex 923. Hydrometallurgy,2007,87 (1-2):18-26.
    [65]DANTAS T N C, NETO M H D, NETO A A D, et al. New surfactant for gallium and aluminum extraction by microemulsion. Industrial and Engineering Chemistry Research,2005,44(17):6784-6788.
    [66]DANTAS T N C, NETO M H D, NETO A A D. Gallium extraction by microemulsions. Talanta,2002,56(6):1089-1097.
    [67]SAIDIA M, KHALAFB H. Using microemulsion for recovery of uranium from phosphoric acid of Annaba (Algeria). Hydrometallurgy,2004,74(1-2):85-91.
    [68]WANG J S, CHIU K H. Metal extraction from solid matrices using a two-surfactant microemulsion in neat supercritical carbon dioxide. Microchimica Acta,2009,167(1-2):61-65.
    [69]钟涛,乐长高.微乳液在萃取分离中的应用研究.化工时刊,2008,22(10):56-58.
    [70]陈国珍,黄贤智,刘文远等,紫外—可见光分光光度法(下册),1987,北京,P.178-186.
    [71]陈国珍,黄贤智,刘文远等,紫外—可见光分光光度法(下册),1987,北京,P.11-23.
    [72]R. A. Kumbasa, O. Tutkun, Selective Separation of Gallium from Acidic Leach Solutions by Emulsion Liquid Membranes, Sep. Sci. Technol.,2006,41,2825-2847.
    [73]D. F. C. Morris, B. D. Andrews, E. L. Short,1966. Extraction of gallium (Ⅲ) chloride by tri-n-butyl phosphate. J. Inorg. Nucl. Chem.,28,2436-2437.
    [74]M. Baaden, M. Burgard, G. Wipff, TBP at the Water-Oil Interface:The Effect of TBP Concentration and Water Acidity Investigated by Molecular Dynamics Simulations, J. Phys. Chem. B,2001,105,11131-11141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700