可变气门驱动直喷汽油机缸内气流运动及燃油雾化混合的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了使用三效催化转换器降低排放,目前量产的直喷汽油机主要采用当量比燃烧模式,此时汽油直喷系统仍采用节气门控制负荷,泵吸损失依然存在,所以与气道喷射汽油机相比,该种汽油直喷系统的燃油经济性并没有显著提高。
     最近几年,可变气门驱动机构(VVA)技术的发展,使得泵吸损失明显减小成为可能,如果将其应用于当量比燃烧的直喷汽油机上,既可消除泵吸损失,降低发动机燃油消耗率,同时又可发挥直喷汽油机动力性等其它优势。由于机械式可变气门驱动机构的气门升程和正时是联动的,这必将使得发动机缸内流场明显不同,特别在低气门升程下,产生的高速气流对直喷汽油机的燃油雾化和混合产生直接影响。
     设计改造了一光学汽油直喷发动机,试验中光学发动机由电机拖动,转速为960r/min,采用粒子图像测速(PIV)技术,使用最大升程分别为6.8mm、2.5mm、2.0mm和1.7mm的四种进气凸轮轴,研究了不同气门升程下缸内气体流动特性以及其对燃油雾化和混合的影响。
     试验结果表明,直喷汽油机进气初期缸内呈现逆滚流,之后逆向滚流不能得以保持,缸内逐渐形成双涡结构;压缩冲程,进气门侧滚流不断受到挤压而衰减,速度场中可观测到一顺时针滚流形成的趋势。随着气门升程降低缸内平均速度减小,四种气门升程下滚流比差异不大。
     缸内涡流在进气冲程呈现出双涡流特征,并在压缩冲程演变为大尺度涡流。随着气门升程降低,涡流运动逐渐加强,小气门升程下涡流比增大明显,压缩冲程末期气门升程为1.7mm时的涡流比是6.8mm时的3倍。
     低通滤波分析发现湍流强度和湍动能随曲轴转角变化的趋势类似,都是在进气冲程随着曲轴转角增大而减小,在压缩冲程反而有逐渐增加的趋势。滚流测量面上,最大气门升程为6.8mm时的湍动能和湍流强度随曲轴转角变化不明显。气门升程为2.0 mm时变化最为突出,湍流强度的最大差值为3.3 m/s,湍动能最大差值为9 m2/s2。压缩冲程末期6.8mm升程的湍流强度和湍动能最大,分别为2.5 m/s和3.1 m2/s2,分别是1.7mm升程工况的1.7倍和3倍。涡流测量面上,四种气门升程下,在进气冲程湍流强度和湍动能的变化趋势非常相似;压缩冲程,随着气门升程的降低湍流强度和湍动能都增大。1.7mm升程的湍动能和湍流强度是6.8mm升程的2倍左右。
     均匀混合直喷汽油机在进气冲程早期喷射燃油有更充裕的时间和空气混合,高的喷油压力使液滴粒径更小,贯穿距更短,燃油雾化混合更为彻底。燃油液滴和空气混合过程中的相互影响使缸内形成了正向大尺度滚流运动,增大了燃油和空气的接触面积;随着最大气门升程的降低,燃油雾化混合更为充分和迅速。分析其成因,主要是由于单一方向滚流的形成和小气门升程下强的涡流运动和湍流强度使燃油雾化混合更加彻底。
In order to use Three-Way Catalyst to meet the the stringent emissionregulations, at present the production of direct-injection gasoline engine is mainlyHm-DISI engines. However, in order to maintain equivalence ratio of combustion, thethrottle is still being adopted, pumping loss is still in force. Compared with PFI engine,the fuel economyof Hm DISI engine has not improved significantly.
     In recent years, the development variable valve Actuation (VVA) technologycan reduce the pumping loss. If install VVAtechnology on Hm-DISI engine, not onlythe pumping loss can be eliminated and engine efficiency can be improved, but alsothe other advantages of direct injection gasoline engine can be preserved. But VVAcan influence the in-cylinder flow and oil atomization, especiallyat low valve lift.
     Designed a optical gasoline direct injection engine. The engine is dragged by amotor, speed of 960r/min. Fuor intake camshaft that life is 6.8mm、2.5mm、2.0mm、and 1.7mm are respectively adopted. A cross-correlation digital particle imagevelocimetry (PIV) system has been developed and applied to study the in-cylinderflow and the atomization of fuel in a single-cylinder DISI engine with variable valvelift.
     Study shows that during the intake stroke, in-cylinder formed a reverse tumbleat the initial intake.Then these two parts of flow generate two vortices in cylinder.Compression stroke, the tumble of intake valve side is compressed by piston. Then itwill disappear gradually. Velocity field can be observed the formation of a forwardtumble.The tumble ratio change is small as the maximum valve lift decreases.
     In the intake stroke showing double-vortex characteristics, then it will become alarge-scale vortex in the compression stroke. With the lower valve lift, vortexmovement gradually strengthened, and under the small valve lift significantlyincreased the swirl ratio. The end of compression stroke 1.7mm valve lift swirl ratio is3 times of 6.8mm valve lift.
     The analysis of low-pass filtering of turbulence intensity and turbulent kineticenergy with crank angle of the trend of change is similar in the intake stroke; however,as the crank angle decreased in the compression stroke, there is a growing trend.Tumble measurement surface, the turbulent kinetic energy and turbulent intensity ofthe 6.8mm valve lift did not change significantly with the crank angle. 2.0 mm valve lift has the most prominent change, turbulence intensity of the maximum differencefor the 3.3m/s, turbulent kinetic energy as the maximum difference 9 m2/s2. The endof compression stroke, the turbulence intensity and turbulent kinetic energy of6.8mm lift respectivelyis 2.5 m/s and 3.1 m2/s2, that are other working conditions 1.7times and 3 times. Swirl measurement surface, the intake stroke in the turbulenceintensity and turbulent kinetic energy of the four-valve lift is very similar to trends;compression stroke, with the valve lift of the lower turbulence intensity and turbulentkinetic energy are increased. The turbulent kinetic energy and turbulence intensity of1.7mm lift is 6.8mm lift about 2 times.
     Hm-DISI engine in the early intake stroke injection, the fuel will have sufficienttime and air mixing, high injection pressure make the droplet size smaller, moreshort-distance cross-cutting, more thorough mixing of fuel atomization. Fuel and airmixture in the process of mutual influence in the compression stroke cylinder make alarge-scale tumble forward movement formation, increasing the fuel and air in contactarea; with the reduction of lift-valve, fuel atomization more fully and rapidly mixed.Because a large-scale tumble formed; and under small valve lift, the strong vortexmovement and turbulence intensityenable more thorough mixing of fuel atomization.
引文
[1] www.ndrc.gov.cn/jjxsfx/t20090225_263398.htm
    [2] www.xcar.com.cn/bbs/redirect.php?tid=6203129&goto=lastpost
    [3]王建昕,高效汽油机技术进步,内燃机学报,2008,26:83~89
    [4]杨嘉林,车用汽油机节油潜力及高效汽油机的可行性,内燃机学报,2008 ,26:77~82
    [5]赵华,何邦全,乘用车高效低污染动力总成技术,内燃机学报,2008,26:68~76
    [6] R.A. Haslett, M.L. Monaghan,“Stratified charge engines,”SAE 760755, 1976
    [7] C.D Wood“Unthrottled open-chamber stratified charge engines,”SAE 780341,1978
    [8] I.N. Bishop and A. Simko,“A new concept of stratified charge combustion– theFord combustion process (FCP),”SAE 680041, 1968
    [9] A. Simko, M.A. Choma, and L.L. Repko,“Exhaust emission control by the Fordprogrammed combustion process– PROCO,”SAE 720052, 1972
    [10] A.J. Scussel, A.O. Simko, and W.R. Wade,“The Ford PROCO engine update,”SAE 780699, 1978
    [11] E. Mitchell, J.M. Cobb, and R.A. Frost,“Design and evaluation of a stratifiedcharge multifuel military engine,”SAE 680042, 1968
    [12] E. Mitchell, M. Alperstein, and J.M. Cobb,“Astratified charge multifuel militaryengine– aprogress report,”SAE 720051, 1972
    [13] T. Kume, Y. Iwamoto, and K. Lida,“Combustion control technologies for directinjection SIengines,”SAE 960600, 1996
    [14] K. Kuwahara, K. Ueda, and H. Ando,“Mixing control strategy for engineperformance improvement in a gasoline direct injection engine,”SAE 980158, 1998
    [15]T.Tomoda,S.Sasaki,D.Sawada,“Developmentofdirectinjectiongasolineengineand s?tudy of stratified mixture formation,”SAE 970539, 1997
    [16] J. Harada, T. Tomita, and H. Mizuno,“Development of a direct injection gasolineengine,”SAE 970540, 1997
    [17] A. Ranini and G. Monnier,“Turbocharging a gasoline direct injection engine,”SAE 2001-01-0736, 2001
    [18] M. Pontoppidan, G. Gaviani, and V. Rocco,“Enhanced mixture preparationapproachforleanstratifiedSI-combustionbyacombineduseofGDIandelectronicallycontrolled valve timing,”SAE 2000-01-0532, 2000
    [19]A. Nauwerck, J.Pfeil, andA.Velji,ABasic Experimental Studyof Gasoline DirectInjection at Significantly High Injection Pressures, Sae 2005-01-0098v001
    [20] Jialin Yang and Thomas Kenney, Some Concepts of DISI Engine for High FuelEfficiencyand Low Emissions, SAE 2002-01-2747
    [21]田国弘,王志等,汽油HCCI发动机燃烧相位及瞬态过程的研究,燃烧科学与技术,2008,14:50~54
    [22]高剑,蒋德明,缸内直喷(GDI)汽油机燃油喷雾和分层燃烧的数值研究,内燃机学报,2005,23(4):297~306
    [23]黄勇成,周龙保,缸内直喷周向分层燃烧系统火花塞附近油束发展历程的试验研究,内燃机学报,2001,19(6):497~501
    [24]杨迪,卓斌,杨世友,用三维计算研究喷油参数对汽油缸内直喷的影响,上海交通大学学报,2000,34(9):1158~1161
    [25]尚秀镜,江俊峰等,汽油机缸内直喷关键技术和发展现状,设计计算研究,2001,3:7~10
    [26] Jianwen Yi, Steve Wooldridge, Jeff McGee, et al, Understanding of Intake CamPhasing Effects on the Induction and Fuel–Air Mixing in a DISI Engine, SAE Paper2004-01-1947, 2004
    [27]RichardStone,EricKwan,VariableValveActuationMechanismsandthePotentialfor theirApplication, SAE Paper 890673, 1989
    [28] Thomas Dresner, Philip Barkan, A Review and Classification of Variable ValveTiming Mechanisms, SAE Paper 890674, 1989
    [29] Jeff Allen, Don Law, Production Electro-Hydraulic Variable Valve-Train for aNew Generation of I.C. Engines, SAE Paper 2002-01-11092002
    [30] Michael M Schechter, Michael B Levin, Camless Engine, SAE Paper 960581,1996
    [31] Chihaya Sugimoto, HisaoSakai,AtsushiUmemoto,etal,Studyon VariableValveTiming System Using Electromagnetic Mechanism, SAE Paper 2004-01-1869, 2004
    [32] Zheng Lou, Plymouth, MI, Variable Lift Actuator, Patent No.:US6584, 885 B2,Date of Patent: Jul.1, 2003.
    [33] Klaus B, Drexler G, Eder T, et al,BMW-Valvetronic全可变气门机构的新发展,国外内燃机,2007,(1):51~56
    [34]赵雨东,陆际清,实现汽车发动机可变气门相位的新方法,清华大学学报(自然科学版),1994,34(2):18~23.
    [35]李理光,苏岩,王云开,等,车用高速汽油机电控可变配气相位系统,汽车工程,2001,23(4):275~278.
    [36] Liguang Li, JianwuTao,YunkaiWang, et al, Effect of IntakeValve ClosingTiming on Gasoline Engine Performance and Emissions, SAE Paper2001-01-3564,2001
    [37]张玉倩,低气门升程下四气门汽油机缸内气体流动特性研究[硕士学位论文],天津;天津大学,2007
    [38] Y Li*, S Liu,An investigation of in-cylinder tumbling motion in a four-valvespark ignition engine,IMechE, 2001,215:273~284
    [39] Y Li, H Zhao, B Leach,Characterization of an in-cylinder flow structure in ahigh-tumble SI engine, IMechE, 2004,5:375~400
    [40] Terrence Alger, Matthew Hall and Matthews, Effects of Swirl and Tumble onIn-Cylinder Fuel Distribution in a Central Injected DISI Engine, SAE Paper2000-01-0533,2000
    [41] Y Li, H Zhao and T Ma, Flow and Mixture Optimization for a Fuel StratificationEngine Using PIV and PLIF Techniques”Second International Conference on Opticaland Laser Diagnostics, 2006, 45:59~68
    [42] K. H. Choi, J. H. Park and N. H. Lee, A Research on Fuel Spray and Air FlowFields for Spark-Ignited Direct Injection using Laser Measurement Technology, SAEPaper 1999-01-0503,1999
    [43] R. Flierl and M. Klüting, The Third Generation of Valvetrains– New FullyVariable Valvetrains for Throttle-Free Load Control, SAE Paper, 2000-01-1227, 2001
    [44] Yufeng Li, Hua Zhao, and Ben Leach, Optimisation of In-Cylinder Flow for FuelStratification in a Three-Valve Twin-Spark-Plug SIEngine, 2003-01-0635,2003
    [45] Yufeng Li, Hua Zhao, and Ben Leach, In-Cylinder Measurements of FuelStratification in a Twin-Spark Three-Valve SI Engine, SAE Paper,2004-01-1354,2004
    [46] K. Kuwahara, T. Watanabe, J. Takemura, Optimization of In-Cylinder Flow andMixing for a Center-Spark Four-Valve Engine Employing the Concept ofBarrel-Stratification, SAE Paper, 940986,1994
    [47] Martin Berckmüller, Nigel P. Tait, and Douglas A. Greenhalgh The Time Historyof the Mixture Formation Process in a Lean Burn Stratified-Charge Engine, SAEPaper, 961929, 1996
    [48] Terrence Alger, Matthew Hall and Ronald D. Matthews, Effects of Swirl andTumble on In-Cylinder Fuel Distribution in a Central Injected DISI Engine, SAEPaper, 2000-01-0533,2000
    [49] Jianwen Yi, Zhiyu Han and Jialian Yang, Modeling of the Interaction of IntakeFlow and Fuel Sprayin DISI Engines, SAE Paper, 2000-01-0656,2000
    [50] Jianwen Yi, Zhiyu Han and Nizar Trigui, Fuel-Air Mixing HomogeneityandPerformance Improvements of a Stratified-Charge DISI Combustion System, SAEPaper, 2002-01-2656, 2002
    [51] Jianwen Yi, Steve Wooldridge, Jeff McGee, Understanding of Intake CamPhasing Effects on the Induction and Fuel-Air Mixing in a DISI Engine, SAE Paper,2004-01-1947,2004
    [52] Holger Lienemann and John S. Shrimpton, In-Cylinder Tumble FlowCharacteristics and Implications for Fuel/Air Mixing in Direct Injection GasolineEngines, SAE Paper, 2003-01-3104, 2003
    [53] M. A. Wiles, D. M. Probst, J. B. Ghandhi, Bulk Cylinder Flowfield Effects onMixing in DISI Engines, SAE Paper, 2005-01-0096, 2005
    [54] K. H. Choi, J. H. Park, N. H. Lee, A Research on Fuel Spray and Air Flow Fieldsfor Spark-Ignited Direct Injection using Laser Measurement Technology, SAE Paper,1999-01-0503,1999
    [55] A. Arbeau, R. Bazile and G. Charnay, A New Application of the Particle ImageVelocimetry(PIV) to the Air Entrainment in Gasoline Direct Injection Sprays, SAEPaper, 2004-01-1948,2004
    [56] Henrik Nordgren, Leif Hildingsson and Bengt Johansson Comparison BetweenIn-Cylinder PIV Measurements, CFDSimulations and Steady-Flow Impulse TorqueSwirl Meter Measurements, SAE Paper, 2003-01-3147, 2003
    [57]M. RICHTER, B. AXELSSON, M. ALDéN, Investigation of the FuelDistribution and the In-cylinder Flow Field in a Stratified Charge Engine Using LaserTechniques and Comparison with CFD-Modelling, SAE Paper, 1999-01-3540,1999
    [58] David Clearyand Gerald Silvas, Unthrottled Engine Operation with VariableIntake Valve Lift, Duration, and Timing, SAE Paper, 2007-01-1282, 2007
    [59] Helbig,Grigo M,Audi公司新1.8 L-T-FSI 4缸汽油机,国外内燃机,2008,1:7~17
    [60]朱余清,一汽大众迈腾车1.8TSI发动机,汽车维护与修理,2008,1:64~67
    [61]汪洋,王雪雁,董明哲,用PIV技术研究汽油机的缸内气体流场,燃烧科学与技术. 2005, 6: 520-523
    [62]蒋德明,陈长佑,杨嘉林等,高等车用内燃机原理,西安:西安交通大学出版社2006,4
    [63]周龙保.内燃机学,北京:机械工业出版社,1998,10
    [64]张学恩,无节气门控制下汽油机缸内气流运动特性的试验研究[硕士学位论文],天津;天津大学,2007
    [65]刘大明,可变气门驱动对汽油机缸内气体流动特性及整机性能影响的研究[硕士学位论文],天津;天津大学,2007
    [66]王天友,刘大明,张学恩等,“可变气门升程下汽油机缸内气体流动特性的研究”,《内燃机学报》,2008,9(26):420~428

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700