液滴现象在大气腐蚀过程中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气腐蚀是金属材料在大气环境下发生的一种电化学腐蚀过程。金属材料的大气腐蚀机制主要是材料受到大气中所含的水份、氧气和腐蚀性介质的联合作用引起的电化学破坏。当金属表面存在吸湿性较强的固体沉积物时,它能够从大气中吸附水份,促进金属表面薄液膜的形成,诱发和加剧电化学腐蚀过程。
     微液滴现象是在大气腐蚀初期出现的一种实验现象。在合适的相对湿度下,大气中的水汽会在金属表面凝聚吸附形成水膜而诱发大气腐蚀。沉积的无机盐颗粒会增强水汽的凝聚和吸附过程从而使其更容易发生潮解形成液滴,当潮解形成的液滴与金属形成的组合体系具有腐蚀性时,那么,在潮解液滴的周围将会有大量微米直径的微液滴形成并向四周扩展。但是如果潮解液滴对金属材料不具有腐蚀性,微液滴将不会形成。由此可见,微液滴现象与大气腐蚀密切相关。
     本论文采用电化学技术结合显微镜在线观察方法,对微液滴的形成特征、形成动力、形成途径等进行了研究,探讨了微液滴现象与大气腐蚀发展行为的相关性,并建立了微液滴的形成机理。
     研究发现自然环境条件下,合适的环境相对湿度、氧气环境和腐蚀性的组合体系是微液滴形成的必备条件。只有当环境相对湿度高于同温度下主液滴饱和溶液的相对湿度值时,微液滴才能形成;并且微液滴只在有氧环境下和腐蚀性组合体系中才能形成。
     采用电化学极化方法对微液滴的形成动力进行了探讨。发现主液滴边缘的三相界面区性质对微液滴形成能够产生重要影响。通过改变界面区的电化学界面状态,发现即使在较低的环境相对湿度下,无氧环境下以及非腐蚀性组合体系中,只要通过电化学极化使金属表面的剩余电荷达到一定程度,微液滴现象也能出现。电化学界面状态是微液滴形成的决定性条件,即形成动力。
     显色实验表明微液滴是由主液滴蒸发出的水气通过气相环境再在金属表面吸附凝聚形成。三相界面区接触角实验反映了电化学极化会导致液/固界面能的降低。
     根据以上实验结果,微液滴的形成机理可以描述如下:电化学极化不仅降低了液/固界面能,使三相界面微区的水分子打破平衡状态而从主液滴逸出,导致微区环境相对湿度增大达到过饱和状态;同时,电化学极化产生电流,由于Peltier效应的影响,使阴极区温度降低。三相界面微区局部水气过饱和以及阴极区温度降低,这都将促使水汽在阴极区发生凝聚形成众多小液滴,即微液滴形成。
     最后,显微镜连续在线观察实验结果表明,微液滴能够促进金属表面薄液膜的形成,促使金属表面不同部位的液膜扩展和交联,形成大面积连续液膜,从而促进腐蚀过程的发展。
The atmospheric corrosion of metals is usually electrochemical corrosion process, and which is the interaction result of water vapour, oxygen and corrosive media contained in the atmosphere. Air contaminant such as hygroscopic particles deposited on metal surface could absorb water molecules and promote formation of thin electrolyte layers. The formation of thin electrolyte layer on metal surface could accelerate the development of atmospheric corrosion.
     The micro-droplets formation on metal surfaces, an important phenomenon closely related to atmospheric corrosion, can be described as follows. Under suitably relative humidity, salt particles deposited on metals surface can absorb water molecules to form electrolyte droplet (primary-droplet) and when this primary-droplet can corrode the metal substrate, then, there will be a large amount of tiny water droplets with 1~10μm in diameter formed (micro-droplets) around primary-droplet, which have a closely relationship to the atmospheric corrosion initiation.
     In this paper, the behavior characteristics of micro-droplets were studied in the climate chamber, and the role of micro-droplets in the atmospheric corrosion process were also investigated using microscope observation method and electrochemical polarization techniques.
     It was found out that micro-droplets could only form in a corrosive combination of metal and electrolyte droplet, namely, the metal substrate could be corroded for the primary-droplet, and appeared easier at higher relative humidities (RH), while lower RH and oxygen-free atmosphere were helpless for the micro-droplets formation.
     Formation power of micro-droplets was systematically studied by electrochemical polarization method. The results show that electrochemical polarization of the three-phase boundary was the critical condition for micro-droplets formation. Cathodic polarization accelerated micro-droplets formation and anodic polarization reduced the formation of micro-droplets, independent of metal type, electrolyte species, composition of air, and environmental humidity. That is to say that the electrochemical interface state was the key condition for micro-droplets formation on metal surfaces.
     Phenolphthalein test proved that the micro-droplets came from the adsorption and condensation of the water vapor around the primary-droplet through the gas phase, instead of through surface spread from the primary-droplet. Contact angle test reflected electrochemical polarization could lead to the decrease of liquid-metal interfacial energy.
     Based on the above-mentioned results, negatively charged three-phase boundary could caused a decrease in local surface tension of liquid/metal interface and cooling of the metal surface near to the three-phase boundary, which led to the local liquid evaporating and condensing again on the nearby metal surface were regarded as the mechanism of micro-droplets formation.
     In addition, the in situ observations indicated that micro-droplets could intensify metal surface wetting capacity and promote formation and spreading of thin electrolyte layer. Meanwhile, micro-droplets could accelerate thin electrolyte layers distributed on various locations merging together to form continuous thin film. The formation of thin electrolyte layer on metal surface means that atmospheric corrosion steps in the rapid development stage.
引文
[1]肖纪美腐蚀总论——材料的腐蚀及其控制方法北京:化学工业出版社,1994
    [2]王光雍等自然环境的腐蚀与防护-大气·海水·土壤北京:化学工业出版社,1997
    [3]屈庆,严川伟,等金属大气腐蚀实验技术进展腐蚀科学与防护技术,2003,15(4):216.221
    [4]李兴濂我国大气腐蚀网站试验研究回顾及发展建议材料保护,2000,33(1):20-22
    [5]柯伟主编中国腐蚀调查报告北京:化学工业出版社,2003
    [6]张学元,韩恩厚,等中国酸雨对材料腐蚀的经济损失估算中国腐蚀与防护学报,2002,22(5):316-319
    [7]陈跃良,于继真某型飞机结构腐蚀失效分析飞机设计,2002,3:12-16
    [8]张学元,安百刚,等酸雨对材料腐蚀,冲刷研究现状腐蚀科学与防护技术,2002,14(3):157-160
    [9] Stigliani, W.M.,Jaffe,P.R., Anderberg, Environmental Science Technology, 1993, 27:786-793
    [10] I.Odnevall Wallinder, C.Leygraf, et al. Atmospheric corrosion of zinc-based materials:runoff rates,chemical speciation and ecotoxicity effects, corrosion science, 2001, 43:809-816
    [11]谢绍东,周定,等酸沉降对非金属建筑材料腐蚀机理的探讨环境科学研究,1998,11(2):15-17
    [12] F. Corvo, R. Mendoza, et al. Role of water adsorption and salt concent in atmospheric corrosion products of steel. Corrosion science, 1997, 39(4): 815-820
    [13]吴荫顺金属腐蚀研究方法冶金工业出版社,1993
    [14]朱惠斌,黄燕萍海洋大气环境中钢铁表面的防腐蚀全面腐蚀控制,2003,17(4):26
    [15] K P Trethewey, J Chamberlain. Corrosion for science engineering. Second edition, England: Associated Companies throughout the world. 1995
    [16]夏兰廷,黄桂桥,张三平,等.金属材料的海洋腐蚀与防护北京:冶金工业出版社,2003,3
    [17] F. Corvo, C. Haces, et al. Atmospheric corrosivity in the Caribbean area. Corrosion science,1997,39(5): 823-833
    [18] E. Almeida, M. Morcillo, B. Rosales, Atmospheric corrosion of mild steel, Part 11-Marineatmospheres. Materials and Corrosion, 2005, 51: 865-874
    [19] Sehumacher M. Seawater Corrosion Handbook. USA, New Jersey: Park Ridge, 1979, 2
    [20]刘刚,张奎志,曲政,等.某滨海电厂钢结构腐蚀防护.腐蚀与防护,2004,25(9):400
    [21] L.L. Shreir, R.A. Jarman, G.T. Burstein. Corrosion (3rd Edtion), Oxford, ButterworthHeinemann, 1994,2:40
    [22] U.R. Evans. Electrochemical mechanism of atmospheric rusting. Nature, 1965 (206):980-982
    [23]u.R.Evens,金属的腐蚀与氧化(华保定译)北京:机械工业出版社,1976:401-430
    [24] U.R. Evens. An Introduction to Metallic Corrosion (Third Edition), Edward Arnold Ltd.,1982:13-24
    [25] Yanliang Huang, Yongyan Zhu. Hydrogen ion reduction in the process of iron rusting.Corrosion Science, 2005,47(6): 1545-1554
    [26] F. Mansfeld and J.V. Kenkel. Electrochemical monitoring of atmospheric corrosionphenomena. Corrosion Science, 1976, 16(3): 111-112
    [27] F. Mansfeld and S. Tsai. Laboratory studies of atmospheric corrosion—(I) Weight loss andelectrochemical measurements. Corrosion Science, 1980, 20(7):853-872
    [28] F. Mansfeld, M.W. Kandig, S. Tsai. Corrosion kinetics in low conductivity media—(I) Ironin natural waters. Corrosion Science, 1982, 22(5) : 455-471
    [29] M. Stratmann. The investigation of the corrosion properties of metals, covered withadsorbed electrolyte layers—Anew experimental technique. Corrosion Science, 1987, 27(8):869-872
    [30] M. Stratmann, H. Streckel. On the atmospheric corrosion of metals which are covered withthin electrolyte layers—(I) Verification of the experimental technique. Corrosion Science,1990, 30(6/7): 681-696
    [31] M. Stratmann, H. Streckel. On the atmospheric corrosion of metals which are covered withthin electrolyte layers—(II) Experimental results. Corrosion Science, 1990, 30(6/7) :697-714
    [32] M. Stratmann, J. Miller. The mechanism of the oxygen reduction on rust-covered metalsubstrates. Corrosion Science, 1994, 36(2) : 327-359
    [33]王佳,水流彻使用Kelvin探头参比电极技术进行薄液层下电化学测量中国腐蚀与防腐学报,1995,15(3):173-179
    [34]王佳,水流彻使用Kelvin探头参比电极技术研究液层厚度对氧还原速度的影响中国腐蚀与防腐学报,1995,15(3):180-188
    [35] K. Kaneko, K Inouye. The mechanism of chemisorption of SO2 on iron (III) hydroxide oxides. Corrosion Science, 1981, 21(9/10) : 639-646
    [36] M.A. Arshadi, J.B. Johnson, G.C. Wood. The influence of an isobutane-SO2 pollutantsystem on the earlier stages of the atmospheric corrosion of metals. Corrosion Science,1983, 23(7): 763-769
    [37] I. Dehri, B. Yazici, M. Erbil, H. Galip. The effects of SO2 and NH3 on the atmosphericcorrosion of galvanized iron sheet. Corrosion Science, 1994, 36(12): 2181-2191
    [38] H. C. Shih, J. H. Wang, Y. S. Chang, et al. The corrosion mechanisms of carbon steel andweathering steel in SO2 polluted atmospheres. Corrosion Science, 1997, 47(1): 1-8
    [39] M. Ozcan, I. Dehri, M. Erbil. EIS study of the effect of high levels of SO2 on the corrosionof polyester-coated galvanised steel at different relative humidities. Progress in OrganicCoatings, 2002,44(4): 279-285
    [40] Qing Qu, Chuanwei Yan, Ye Wan, et al. Effects of NaCl and SO2 on the initial atmosphericcorrosion of zinc. Corrosion Science, 2002, 44(12): 2789-2803
    [41]严川伟,史志明,林海潮,等Zn在S02环境中大气腐蚀初期表面特性研究腐蚀科学与防护技术,2000:12(3):151-153
    [42]严川伟,何毓番,林海潮,等Cu在S02大气中腐蚀初期规律和机理中国有色金属学报,2000,1O(5):645-648
    [43]屈庆,严川伟,白玮,等NaCI在A3碳钢大气腐蚀中的作用中国腐蚀与防腐学报,2003,23(3):160-163
    [44] J.E. Svensson, L. G. Johansson. A laboratory study of the initial stages of the atmospheric corrosion of zinc in the presence of NaCl: influence of SO2 and NO2. Corrosion Science, 1993,34(5): 721-740
    [45]王佳无机盐微粒沉积和大气腐蚀的发生和发展中国腐蚀与防腐学报,2004,24(3):155-158
    [46] M. Morcillo, B. Chico, L. Mariaca, et al. Salinity in marine atmospheric corrosion: itsdependence on the wind regime existing in the site. Corrosion Science, 2000, 42(1): 91-104
    [47] R. Lindstrom, J.E. Svensson, L.G. Johansson. The atmospheric corrosion of zinc in thepresence of NaCl: the influence of carbon dioxide and temperature. Journal of TheElectrochemical Society, 2000, 147(5) : 1751-1757
    [48] Z.Y. Chen, S. Zakipour, D. Person, et al. Effect of sodium chloride particles on theatmospheric corrosion of pure copper. Corrosion, 2004, 60(5): 479-491
    [49] G.O. Ilevbare, o. Schneider, R.G. Kelly, et al. Scully. In situ confocal laser scanningmicroscopy of AA2024-T3 corrosion metrology—(I) Localized corrosion of particles.Journal of The Electrochemical Society, 2004, 151(8): B453-B464
    [50] G.O. Ilevbare, O. Schneider, R.G. Kelly,et al. In situ confocal laser scanning microscopy ofAA2024-T3 corrosion metrology—(II) Trench formation around particles. Journal of TheElectrochemical Society, 2004, 151(8) : B465-B472
    [51] T Ohtsuka, M. Matsuda. In situ Raman spectroscopy for corrosion products of zinc inhumidified atmosphere in the presence of sodium chloride precipitate. Corrosion, 2003,59(5): 407-413
    [52] H. Masuda. Effect of magnesium chloride liquid thickness on atmospheric corrosion of pureiron Corrosion, 2001, 57(2): 99-109
    [53] T Nishimura, K. Noda, T Kodama. Corrosion behavior of tungsten-bearing steel in awet-dry environment containing chloride ions. Corrosion, 2001, 57(9): 753-758
    [54] S. Feliu, M. Morcillo, B. Chico. Effect of distance from sea on atmospheric corrosion rate.Corrosion, 1999,55(9): 883-891
    [55] E. Almeida, M. Morcillo, B. Rosales. Atmospheric corrosion of zinc—Part II: Marineatmospheres. British Corrosion Journal, 2000, 35(4): 289-296
    [56]王风平,张学元,杜元龙大气腐蚀研究动态与进展腐蚀科学与防护技术,2000,2(12).104.108
    [57] V.Kucera. D.Kno tkova. J.Gunman. Corrosion of structural ural metals in atmospheres with different corrosivity at 8 years' exposure in Sweden and Czechoslovakia. Defence Research &. Development Organisation, 10th International Congress on Metallic Corrosion. India: 1987.167-177
    [58] C .R .Shastry, J.J.Friel. H.E.Townsend. Sixteen-year atmospheric corrosion performance ofweathering steels in marine, rural, and industrial environments. ASTM Comm G-l onCorrosion of Metals. Degradation of Metals in the Atmosphere. Philadelphia USA:Publ byASTM. 1988. 5-13
    [59] S.J.Bullard . S.D.Cramer, B.S.Covino. Corrosion prevention and remediationstrategies for reinforced concrete coastal bridges. ISIJ International, 2002, 42(12): 101-117
    [60] L.Maldonado, L.Veleva, P.Quintana. Electrochemical gravimetric and x-ray characterizationof low carbon steel corrosion rate and products after atmospheric exposure in theCaribbean area. Corrosion Reviews, 2001, 19 (5-6): 435-451
    [61] J .Tidblad. C.Leygraf Atmospheric corrosion effects of SO2 and NO2 a comparison oflaboratory and field-exposed copper. Journal of the Electrochemical Society, 1995.142(3):749-756
    [62] J .Tidblad. C.Leygraf. Atmospheric corrosion effects of SO2 and O3 on laboratory-exposedcopper. Journal of the Electrochemical Society, 1995. 142(3):757-760
    [63] V.Lopez. J.A.Gonzalez. E.Otero. Atmospheric corrosion of bare and anodized aluminium ina wide range of environmental conditions. Part I: Visual observations and gravimetric results.Surface and Coatings Technology, 2002,153(2-3): 225-234
    [64] V.Lopez. J. A .Gonzalez. E.Otero. Atmospheric corrosion of bare and anodised aluminium in a wide range of environmental conditions. Part II: Electrochemical responses. Surface and Coatings Technology, 2002,153(2-3): 235-244
    [65]王光雍.舒启茂.材料在大气、海水、土壤环境中腐蚀数据积累及腐蚀与防护研究的意义与进展中国科学基金.1992,6(1):40—45
    [66]粱彩风.侯文泰.环境因素对钢的大气腐蚀的影响中国腐蚀与防护学报.1998.18(1):1-6
    [67]侯文泰.于敬敦.粱彩风.钢的大气腐蚀性4年调杳及其机理研究腐蚀科学与防护技术.1994,6(2):137-142
    [68]王振尧.陈鸿川.于国才海南省的大气腐蚀性调查中国腐蚀与防护学报.1996.16(3):225—229
    [69]王振尧.郑逸苹.刘寿荣.锌在sOO污染环境中的腐蚀规律中国腐蚀与防护学报.1994,8(2):156—160
    [70]严谨.熊长清.含铜低合金钢耐大气腐蚀性能研究中国腐蚀与防护学报.1986,6(1):1-14
    [71]屈诅玉.王光雍.李长荣.材料大气腐蚀数据库系统中国腐蚀与防护学报.1991,11(4):373-377
    [72]汪轩义.王光雍.屈诅玉环境因素对碳钢和低合金钢大气腐蚀的影响中国腐蚀与防护学报.1995,1 5(2):124_128
    [73]汪轩义.王光雍.屈诅玉我国典型地区大气腐蚀性的综合评价腐蚀科学与防护技术.1996,8(1):79-83
    [74]蔡建平.柯伟应用人工神经网络预测碳钢、低合金钢的大气腐蚀中国腐蚀与防护学报.1997,17(4):.303—306
    [75]唐其环低合金钢大气腐蚀数据拟合及预测腐蚀科学与防护技术.1995,7(3):210—213
    [76]粱彩风.侯文泰统计方法分析合金元素对碳钢和低合金钢大气腐蚀的影响腐蚀科学与防护技术.1995,7(3):216—217
    [77]金蕾.唐其环大气腐蚀的模拟加速试验方法研究腐蚀科学与防护技术.1995,7(3):214—215
    [78] J.E.Svensson, L.G.Johansson. The temperature-dependence of the SOi-induced atmospheric corrosion of zinc; A laboratory study. Corrosion Science. 1996, 38:2225-2233
    [79] T.Falk, J.E.Svensson. L.G.Johansson. Influence of CO 2 and NaCl on the atmospheric corrosion of zinc. A laboratory study, Journal of the Electrochemical Society, 1998,145:2993-2999
    [80]王风平,张学元,雷良才,等二氧化碳在A3钢大气腐蚀中的作用2000,36(1):55—59
    [81]张正LYl2cz铝合金在模拟大气及海水环境中腐蚀行为的研究:[博士学位论文]天津:天津大学.2004:22
    [82] Walter G W . Laboratory simulation of atmospheric corrosion by SO2—II. Electrochemical mass loss comparisons. Corrosion Science, 1991, 32(12) : 1331-1338
    [83]赵永涛,吴建华,陈范才.等薄层缓蚀剂液膜对907A钢防蚀效果的电化学测量技术电化学,2002,8(3):295—297
    [84] A. Cox, S. B. Lyon. An electrochemical study of the atmospheric corrosion of mild steel-I. Experimental method . Corrosion Science, 1994, 36(7): 1167-1180
    [85] Cheng Y L, Zhang Z, Cao F H, et al. A study of the corrosion of aluminum alloy 2024-T3 under thin electrolyte layers. Corrosion Science, 2004, 46(7): 1649-1655
    [86]张学元,柯克,杜元龙金属在薄液层下的电化学腐蚀电池的设计中国腐蚀与防护学报.2001,21(2):117—121
    [87]李明齐,何晓英,蔡铎昌薄层液膜下金属电化学腐蚀电池的设计腐蚀科学与防护,2005,17(5):355—360
    [88] zhang S H, Lyon S B. Anodic processes on iron covered by thin dilute electrolyte layers(II )-A.C. impedance measurements. Corrosion Science, 1994, 36(8): 1309-1315
    [89] Nishikata A, Ichihara Y, Tsuru T. Electrochemical impedance spectroscopy of metalscovered with a thin electrolyte layer. Electrochimica Acta, 1996,41: 1057-1065
    [90] Nishikata A, Ichihara Y,Tsuru T. An application of electrochemical impedance spectroscopyto atmospheric corrosion study. Corrosion Science, 1995, 37(6): 897-907
    [91] Vera Cruz R P, Nishikata A, Tsuru T AC impedance monitoring of pitting corrosion ofstainless steel under a wet-dry cyclic condition in chloride-containing environment.Corrosion Science, 1996,38(8): 1397-1404
    [92] Nishimura T, Katayama H, Noda K, et al. Electrochemical behavior of rust formed oncarbon steel in a wet/dry environment containing chloride ions. Corrosion, 2000, 56(9):935-944
    [93] Budevski E, Obretenov W, Bostanov W, et al. Noise analysis in metaldeposition-expectation and limits. Electrochimica Acta, 1989, 34(8): 1023-1030
    [94] Pistorius P C. Design aspects of electrochemical noise foruncoated metals electrode size andsampled rate. Corrosion, 1997, 53(4): 273-280
    [95] Xiao H, Han L T, Lee G C, et al. Collection of electrochemical impedance and noise data forpolymet -coated steel from remote test sites. Corrosion, 1997, 53(5): 412-420
    [96] Flis J, Dawson J L, Gill J, et al. Impedance and electrochemical noise measurements on ironand iron-carbon alloys in hot caustic soda. Corrosion Science, 1991, 32(8): 877-884
    [97]程英亮铝合金在本体溶液以及薄层液膜下的腐蚀电化学研究:[博士学位论文]浙江大学,2003:20
    [98] Yanyan Shi, Zhao Zhang, Jianqing Zhang. Electrochemical noise study on 2024-T3 Aluminum alloy corrosion in simulated acid rain under cyclic wet-dry condition.Electrochimica Acta, 2006, 51: 4977-4984
    [99] Qingdong Zhong. Study of behaviour of mild steel and copper in thin film salt solution using the wire beam electrode. Corrosion Science, 2002, 44: 909-1008
    [100]王燕华,张涛,王佳,等Kelvin探头参比电极技术在大气腐蚀研究中的应用中国腐蚀与防护学报,2004,24(1):59-69
    [101] S.Zakipour, J.Tidblad, C.Leygraf Atmospheric corrosion effects of SO2 NO2 and O3.Journal of the Electrochemical Society, 1997. 144(10): 3513-3517
    [102] S.P.Sharma. Reaction of copper and copper oxide with H2S. Journal of the ElectrochemicalSociety, 1980. 127(1): 21-26
    [103]严川伟.高大柱.林海潮NaCl对锌在含sO2环境条件中大气腐蚀影响研究金属学报.2000,36(3):272-274
    [104] S.Zakipour, C.Leygraf. Quartz crystal microbalance applied to studies of atmosphericcorrosion of metals. British Corrosion Journal. 1992. 27 (4):295-298
    [105] M.Forslund. C.Leygraf. In-situ weight gain rates on copper during outdoor exposures.Journal of the Electrochemical Society, 1997. 144(1):113-120
    [106] R.Schubert, G.G.Neuburger. Rapid determination of corrosion chamber uniformity. Journalof the Electrochemical Society, 1990, 137(4): 1048-1051
    [107] E.Johansson. C.Leygraf,B.Rendahl. Characerisation of corrosivity in indoor atmosphereswith different metals and evaluation techniques. British Corrosion Journal. 1998.33(1)59-66
    [108] T.Aastrup, C.Leygraf. Simultaneous infrared reflection absorption spectroscopy and QCMmeasurements for in-situ studies of the metal/atmosphere interface. Journal of theElectrochemical Society, 1997. 144(9): 2986-2990
    [109] Eugin. Tiefnig. Method and apparatus for determining corrosivity of fluids on metallicmaterials. US. 5583426. 1996-12
    [110]宋诗哲,万小山,郭英磁阻探针腐蚀检测技术的应用化工学报,2001,52(7):622-625
    [111] J. Wang, T. Tsuru. Potential distribution and micro-droplets formation on the metal with salt particle deposition. The 204th Meeting of the Electrochemical Society, Orlando: The Electrochemical Society, Inc., 2003, D2: 472
    [112] Tooru Tsuru, Ken-Ichiro Tamiya, Atsushi Nishikata. Formation and growth ofmicro-droplets during the initial stage of atmospheric corrosion. Electrochimica Acta.2004(49): 2709
    [113] Jibiao Zhang, Jia Wang, Yanhua Wang. Electrochemical investigations of micro-dropletsformed on metals during the deliquescence of salt particles in atmosphere.Electrochemistry Communications 2005 (7) :443
    [114] Zhang JiBiao. Wang Jia and Wang YanHua. Phenomenon of Micro-droplets Formation onMetals during the Deliquescence of Salt Particles in Atmosphere.物理化学学报2005.21(9): 993
    [115]张际标,王佳,王燕华大气腐蚀起始过程中的微液滴现象研究装备环境工程,2005,2(5):14
    [116]张际标大气腐蚀起始过程中的微液滴现象研究:[博士毕业论文]青岛:中国科学院海洋研究所,2005
    [117]张际标,王燕华,姜应律,等微液滴现象与大气腐蚀-I.微液滴的形成与扩展中国腐蚀与防护学报,2006,26(4):207-210
    [118]张际标,王燕华,姜应律,等微液滴现象与大气腐蚀-II.微液滴现象的电化学特征中国腐蚀与防护学报,2006,26(5):282-285
    [119]张际标,王佳,王燕华海洋粒子沉积下碳钢的大气腐蚀初期行为.微液滴现象的电化学特征海洋科学,2005,29(7):17-20
    [120] Li Bian, Yongji Weng , Xiangyi Li. Observation of micro-droplets on metal surface in early atmospheric corrosion. Electrochemistry Communications, 2005 (7): 1033-1038
    [121] Jian Chen, Jianqiu Wang , Enhou Han, et al. In situ observation of formation and spreading of micro-droplets on magnesium and its alloy under cyclic wet-dry conditions. Corrosion Science, 2007(49): 1625
    [122] Claeys W, Quintard V, Dilhaire S, et al. Early detection of ageing in solderjoints through laser probe thermal analysis of the Peltier effect. Qiial. Reliab. Eng.Int., 1994? 10(4): 289-295.
    [123] P. A. Thiel, T.E. Madey. The interaction of water with solid surfaces: Fundamental aspects. Surface Science Reports, 1987(7): 211-385
    [124] M.A. Henderson. The interaction of water with solid surfaces: Fundamental aspects revisited.Surface Science Reports, 2002 (46): 1-308

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700