活性炭吸附—微波诱导氧化处理苯酚废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文建立了以颗粒活性炭为催化剂微波诱导氧化工艺(Microwave Induced Oxidation Process,简称MIOP)和活性炭吸附-微波辐照活性炭再生工艺处理苯酚废水,并深入开展了相关基础研究。基于活性炭对有机污染物的吸附能力和对微波的强吸收能力,利用微波能量实现对有机物的分解和炭化。
     本文首先以苯酚废水为处理对象,建立了活性炭为催化剂MIOP工艺。通过实验确定了MIOP最佳处理条件,50ml浓度为68.5mg·L-1的苯酚溶液,溶液pH<9,活性炭用量2.0g,100W微波辐照10min,对其去除率为96%,苯酚浓度增大到420mg·L-1,去除率仍可达85%左右。活性炭经过6次重复使用后,对苯酚的去除率可保持在80%以上。反应动力学研究表明,该过程符合一级动力学规律,动力学常数k=0.3231min-1,半衰期t1/2=2.15min。通过对比实验和微波辐照前后溶液进行的紫外扫描分析可知,MIOP对苯酚降解彻底。
     以吉林某化工厂有机废水为处理对象,建立了活性炭吸附-微波辐照活性炭再生工艺。通过实验表明JX-206型果壳炭对废水处理效果最好,最佳吸附工艺条件:100ml废水,pH=3,加30g活性炭,作用2h达到吸附平衡,COD去除率为90.17%,活性炭经过9次重复使用后对废水COD去除率为80%左右。修正后的Freundlich吸附等温模型能更好地定量描述其吸附过程。活性炭再生的最佳工艺条件:功率为400W的微波辐照1.67min,活性炭表面为600℃,再生后活性炭碘值可达到900mg·g-1左右,活性炭燃烧的损失不足2%。
     在工艺研究的基础上进行了活性炭吸附-微波辐照活性炭再生工艺的相关基础研究。对不同条件下活性炭吸附苯酚的速率常数ka、吸附活化能E以及液相有效扩散系数Di进行了估算。利用Langmuir参数计算了吸附标准热力学函数△G 0、△H 0、△S0。结果表明,在pH5.35和pH10.30时,△G 0<0。但在低pH时,吸附速率常数大,吸附活化能小,有效扩散系数大,吸附量大,苯酚分子在活性炭表面呈直立取向,该过程放热较多,熵增较小。活性炭是很好的吸收微波物质,功率为600W的微波辐照2min,活性炭表面温度可达1000℃,含水率由54%降至15%。经验公式T=c1×exp(c2/t)可以近似定量描述活性炭在微波场内的升温过程。与辐照前活性炭相比,辐照后的活性炭表面pH值由4.82增加到6.82。活性炭比表面积、孔容积都增加了100%左右,且微波主要作用于直径小于5nm的活性炭孔。
Microwave Induced Oxidation Process (MIOP) with Granular Activated Carbon (GAC) as catalyst and GAC adsorption-GAC regeneration under microwave irradiation were introduced into the treatment of phenol wastewater. Furthermore, corresponding theoretical investigation was performed. Upon the basis of adsorption of organic pollutants on GAC and intensive absorption of MV by GAC, organic pollutants were decomposed and carbonized under microwave irradiation.
     Firstly, this paper was concentrated on the treatment of phenole wastewater, MIOP with GAC as catalyst was established. Through the experiment it concluded that the removal rate of phenol was over 96% under the optimal treatment conditions: 50ml phenol wastewater of 68.5mgL-1; pH<9, GAC addition amount of 2.0g; 10min under MV of 100W. When phenol wastewater concentration was up to 420mg·L-1, the removal rate of phenol reached about 85%. After six times repeated utilization of GAC, the removal rate of phenol was still above 80%. Kinetics of phenol wastewater treatment was studied and the results showed that the process was fist-order kinetics reaction, the kinetics rate constant k= 0.3231 min-1, the half-life period t1/2= 2.15 min. It concluded that MIOP decomposed phenol completely from contrastive experiments and the ultraviolet spectra of phenol before and after MW irradiation.
     And then, aimed at organic wastewater of certain chemical plant in Jilin, GAC adsorption and GAC regeneration under microwave irradiation were established. Through experiment, it indicated that JX-206 fruit shell carbon was provided with the best wastewater treatement effect, the removal rate of COD was 90.17% and adsorption equilibrium was reached after 2h treatment under the optimal adsorption process: 1000mL wastewater; pH=3; GAC addition amount of 30.0g. After nine times repeated utilization of GAC, the removal rate of COD was still about 80%. Modified Freundlich adsorption isotherm model could be used to formulate the adsorption behavior of organic pollutants on GAC quantificationally. Iodine values of the regenerated GAC could reach about 900mg·g-1, the mass loss of GAC is less than 2% resulted from combustion under the optimal GAC-regenerated conditions: 1.67min under microwave irradiation of 400W; 600℃of GAC surface temperature.
     Based upon process research, the theory research of GAC adsorption-GAC regeneration under microwave irradiation was performed. Phenol adsorption kinetics rate constant ka, activation energy E and liquid effective diffusion coefficient Di of GAC adsorption under different conditions were estimated. Besides, standard free energy△G0、enthalpy△H0 and entropy△S0 of adsorption were calculated from Langmuir parameters. The results showed that when pH=5.35 and pH=10.30,△G0<0. However, the molecules of phenol may be adsorbed vertically, when pH was lower, ka, Di, adsorption amount and heat emission were higher, and E smaller. In this process the molecules of phenol may be adsorbed vertically, heat emission was higher, entropy enhancement lower. As result of intensive absoption of microwave by GAC, GAC surface temperature could reach to 1000℃, water- contained content increased from 54% to 15% under 2min MV irradiation of 600W. Moreover, temperature rising behavior could be described approximately quantificationally with experienced equation T=c1×exp(c2/t). Compared with GAC before microwave irradiation, after microwave irradiation pH of GAC surface increased from 4.82 to 6.82, the specific area and pore volume of regenerated GAC both increased 100%, microwave play a major role in GAC with pore less than 5nm.
引文
1奚旦立,孙裕生,刘秀英.环境监测.高等教育出版社, 2002:19
    2刘彤.含油废水深度处理与回用技术的中试研究.哈尔滨工业大学博士论文. 2003:2~5
    3甘萍.浅析我国水资源污染状况及处理技术.江西化工. 2006, (4): 82~83
    4高廷耀,陈洪斌,夏四清等.我国水污染控制的思考.给水排水. 2006, 32(5): 9~13
    5徐新华,宋爽.工业废水中专项污染物处理手册.化学工业出版社, 2000: 175
    6 M. W. Jung, K. H. Ahn. Adsorption Characteristics of Phenol and Chlorophenols on Granular Activated Carbons (GAC). Microchemical Journal. 2001, 70: 123~131
    7杨明平,刘跃进,罗娟等.有机膨润土吸附处理焦化含酚废水的研究.煤化工. 2006, 2: 42
    8李慎文.用离心萃取器处理硝基酚废水.化工环保. 1994, (14): 111
    9钟华文,李晓明,何东升.曝气生物滤池处理炼油生产废水.工业用水与废水. 2003, 5(34): 42
    10王志仁.双塔萃取法处理高浓度含酚废水的研究.中国环境科学. 1987, 7(6): 56~59
    11胡金凌,管玉江.含酚废水的回收性处理技术.辽宁化工. 1999, 28(5): 182~184
    12项远.脂吸附法处理含酚工业废水.境污染与防治. 1994, 16(5): 47~50
    13 N. Guessan, L. Adeola, Levitt, et al. Remediation of Benzo(a)-pyrene in Contaminated Sediments Using Peroxy-acid. Chemosphere. 2004, 5(10): 1413 ~1418
    14韦朝海,侯轶.难降解毒性有机污染物废水高级氧化技术.环境保护. 1998,(11): 29~31
    15杜红章.焦化污水催化湿式氧化净化技术.工业水处理. 1996, 16(6): 27~32
    16杨琦,单立志,钱易.国外对污水湿式催化氧化处理的研究进展.环境科学研究. 1998, 11(4): 62~64
    17 X. Hu., L. L. Chen, P. L. G.and Yue. On the Degradability of Printing andDyeing Wastewater by Wet Air Oxidation.Water Res. 2001, 35(8):2078~2080
    18毕晓伊,王鹏,姜虹等.微波诱导二氧化氯氧化处理水中苯酚.辽宁石油化工大学学报. 2006(4): 44~46
    19张洪林.难降解有机物的处理技术进展.水处理技术. 1998, 24(5): 259~263
    20 S. J. Wang, K.C. Loh. Growth Kinetics of Pseudomonas Putida in Cometabolism of Phenol and 4-Chlorophenol in the Presence of a Conventional Carbon Source. Biotechnol. Bioeng. 2000, 68(4): 437~447
    21王增玉,王敬东.难生物降解有机废水处理技术现状与展望.工业水处理. 2002, 22(12): 1~4
    22 D. M. Mingos, D. R. Baghurst. Application of Microwave Dielectric Heating Effects to Synthetic Problems in Chemistry. Chemical Society Reviews.1991, (20):1~47
    23钱鸿森.微波加热技术及应用.黑龙江科学技术出版社, 1985: 23~26
    24 G. Giovanni, F. Francesco, R. Francesco, et al. Efficient Synthesis of 3-carboxylate Pyrroles Using Microwave Irradiation. Tetrahedron Letters. 2005, 46(7): 1061~1062
    25 D. Anshu, A. Kapil, S. Meha, et al. Green Chemical Synthesis of Fluorinated 1,3,5-triaryl-s-triazines in Aqueous Medium under Microwaves as Potential Antifungal Agents. Journal of Fluorine Chemistry. 2004, 125(9): 1273~1277
    26孙萍,肖波,杨家宽等.微波技术在环境保护领域的应用.化工环保. 2002, 22(2): 71~72
    27 B. C. Perez, F. Albores, F. Gomez, et al. Use of Microwave Single Extractions for Metal Fractionation in Sewage Sludge Sample. Analytical Chimica Anta. 2001, 4(31): 209~218
    28 Y. Shu, M. Y. Ko, Y. S. Chang. Microwave-assisted Extraction of Ginsenosides from Ginseng Root. Microwave Journal. 2003,(74):131~139
    29 Q. H. Jin, F. Liang, H. Q. Zhang, et al. Application of Microwave Techniques in Analytical Chemistry. Trends in Analytical Chemistry. 1999, 18(7): 479~484
    30 D. A. Jones, T. P. Lelyveld, S. D. Mavrofidis, et al. Microwave Heading Application in Environmental Engineering-a review. Resources, Conservation and Recycling. 2002, (34): 75~90
    31张达欣,于爱民,金钦汉.微波-炭还原法处理二氧化硫(SO2)的研究.微波学报. 1998, 14(4): 341~346
    32马文,王新强,倪炳华.微波催化法分解硫化氢的研究.石油与大然气化工. 1997, 26(1): 37~41
    33 J. Tang, T. Zhang, D. Liang. Direct Decomposition of NO by Microwave Heating over Fe/Na2SM-5. Appl. Catal. B: Environ. 2002, (36):1~7
    34 C. J. G. Jou. Application of Activated Carbon in a Microwave Radiation Field to Treat Trichloroethylene. Carbon. 1998, 36(11):1643~1648
    35 A. Marek, P. Wojtowicz, F. Miknis, et al. Control of Nitric Oxide, Nitrous Oxide, and Ammonia Emissions Using Microwave Plasmas. Journal of Hazardous Materials. 2000,(74):81~89
    36 D. Martin. New Method for Removal of SO2 and NOx from Combustion Flue Gases. Journal of Microwave Power and Electro Magnetic Energy. 1997, 32(4): 215~218
    37 C. G. Jou, H. S. Tai. Application of Granular Activated Carbon Packed-bed Reactor in Microwave Radiation Field to Treat BTX. Chemosphere. 1998, 37(4): 685~698
    38 L. Campanella, R. Cresti, M. P. Sammartino. Microwave Assisted Ptohodegradation of Pollutants. Part of the SPIE. Conference on Environmental Monitoring and Remediation Technologies. Massachusetts, 1998: 34~35
    39 Y. L. Liu, P. Liu. Effects of Microwave in Selective Oxidation of Toluene to Benzoic Acid over a V2O5/TiO2 System. Applied Catalysis A: General. 1998, (170): 207~241
    40 M. T. Radoiu, M. Hajek. Effect of Solvent, Catalyst Type and Catalyst Activation on the Microwave Transformation of 2-ter-butylphenol. Journal of Molecular Catalysis A: Chemical. 2002, (16): 121~126
    41 S. Horikoshi, H. Hisao, S. Nike. Environmental Remediation by an Integrated Microwave/UV-illumination Method (I) Microwave-assisted Degradation of Rhodamine-B dye in Aqueous TiO2 Dispersions. Environmental Science & Technology. 2002, 36(6): 1357~1366
    42 S. Horikoshi, H. Hidaka, N. Serpone. Environmental Remediation by an Integrated Microwave/UV-Illumination Method (II) Characteristics of a Novel UV-VIS-Microwave Integrated Irradiation Device in Photodegradation Processes. Photoch. Photobio. A:Chemistry. 2002, 153:185~189
    43 S. Horikoshi, H. Hidaka. Environmental Remediation by an IntegratedMicrowave/UV-Illumination Technique (Ⅲ) A Microwave-powered Plasma Light Source and Photoreactor to Degrade Pollutants in Aqueous Dispersions of TiO2 Illuminated by the Emitted UV/visible Radiation. Environ. Sci.&Technol. 2002, 36: 5229~5237
    44 R. A. Abramovith, B. Z. Huang, M. Davis, et al. Decomposition of PCBs and other Polychlorinated Aromatics in Soil Using Microwave Energy. Chemosphere. 1998, (37): 1427~1436
    45 R. A. Abramovith, B. Z. Huang, D. A. Abramovith, et al. In Situ Decomposition of PCBs in Soil Using Microwave Energy. Chemosphere. 1999a, (38): 2229~2236
    46傅大放,蔡明元,华建良等.水厂污泥微波处理试验研究.中国给水排水. 1999, 15(6): 56~57
    47傅大放,邹路易,蔡元明.微波加热对污泥肥效和卫生指标的影响.中国给水排水. 2001, 17(6): 20~23
    48闫玉虎,白志鹏.疗垃圾管理与处置方法研究.环境导报. 2000, (3): 19~21
    49 C. Werner. Hospitals Using New Medical Waste Disposal Methods to Save Money. Hospital Materials Management. 1993, 18(7): 10~13
    50赵振国.吸附作用应用原理.化学工业出版, 2005:191~199 326~327
    51 G. PiotrA, P. A. Terzyk, G. Rychlicki, et al.Thermodynamic Properties of Benzene Adsorbed in Activated Carbons and Multi-walled Carbon Nanotubes. Chemical Physics Letters. 2006,(421):409~414
    52吴奕.活性炭的再生方法.化工生产与技术. 2005, 1(12): 20~21
    53 R. M. Narbaitz, J. Cen. Alternative Methods for Determining the Percentage Regeneration of Activated Carbon. Water Research. 1997,31(10): 2535~2542
    54 I. Dobrevski. Biological Regeneration of Activated Carbon. Water Science Technology. 1998, 21(1): 141~143
    55陈岳松,陈玲,赵建夫.湿式氧化再生活性炭研究进展.上海环境科学.1998,17(9): 5~7
    56陈皓,向阳,赵建夫.超临界二氧化碳萃取再生活性炭技术研究进展.上海环境科学. 1997, 16(12): 26~28
    57 J. Rivera-Utrilla, M. A. Ferro-Garcia, I. Bautist Toledo, et al. Regeneration of Ortho-chlorophenol-exhausted Activated Carbon with Liquid Water at High Pressure and Temperature.Water Research. 2003, (37): 1905~1911
    58戴猷元,张瑾.有机废水萃取处理技术.化学工业出版社, 2003: 4
    59 S. Tanjore, T. Viraraghavan. Pentachlorophenol-Water Pollution Impacts Andremoval Technologies. International Journal of Environmental Studies. 1994,45: 155~164
    60朱志军.含酚废水的处理与应用.一重技术. 2005, (5):64
    61张国宇,王鹏,姜思朋等.微波诱导氧化处理雅格素红BF-3B150%染料废水的研究.环境科学. 2004, (25): 52~55
    62王琳,王宝贞.饮用水深度处理技术.化学工业出版社, 2000: 156
    63刘希涛.典型有机污染物的活性炭吸附/微波再生方法与特性.大连理工大学博士论文. 2004: 65
    64赵振国.苯的衍生物在活性炭/水界面上的吸附标准自由能及与其分子结构的关系.环境科学学报. 2001, 1(21): 29~34
    65张耀斌.微波辅助湿式空气氧化水中难降解有机物的研究.大连理工大学博士论文. 2005: 98
    66王鹏.环境微波化学技术.化学工业出版社, 2003: 4~7
    67王宝庆,陈亚雄,宁平.微波解吸技术及其应用.环境污染治理技术与设备.2004,5(3):80~82
    68张国宇,王鹏,姜思朋等.微波辐照处理酯化废水的工艺技术研究.给水排水. 2004, 30(8): 61~64
    69傅大放,邹宗柏,曹鹏.活性炭的微波辐照再生试验.中国给水排水. 1997, 13(5): 7~9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700