非离子表面活性剂体系中基于SiO_2的介孔和复合纳米材料的制备及其药物控制释放
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.非离子表面活性剂Triton X-100胶束体系中SiO_2介孔材料的制备及其药物控制释放
     以非离子表面活性剂Triton X-100胶束为模板,正硅酸乙酯为硅源,利用N~0I~0机理合成了MSU型介孔SiO_2。系统研究了反应温度、催化剂以及助表面活性剂等因素对SiO_2介孔结构的影响。并以布洛芬为模型药物,将药物分子组装到介孔SiO_2的孔道中,制备出了以介孔SiO_2为载体的药物释放体系。利用XRD, SEM, FT-IR, N_2吸附脱附,元素分析以及热重分析等技术对药物装载前后介孔SiO_2进行表征。布洛芬体外释放研究结果表明,布洛芬药物的释放速率以及释放量与介孔SiO_2孔径大小以及药物分子的吸附状态相关。
     2.药物端基非离子表面活性剂胶束体系中SiO_2介孔材料的制备及其药物控制释放
     以布洛芬和聚乙二醇为原料,合成了布洛芬端基非离子型表面活性剂,以UV-vis, ~1H NMR, FT-IR, ITC,表面张力以及接触角等技术对产物的结构和性质进行了表征。结果表明具有羧基的布洛芬以酯键形式连接到PEG单体上,合成了两端分别为布洛芬分子和EO链的具有药物活性的非离子型表面活性剂,且具有较高的表面活性。此外,以该药物端基非离子表面活性剂胶束为模板通过一步法合成了介孔SiO_2-布洛芬药物释放体系。FT-IR,N_2吸附解吸,热重以及元素分析等研究结果表明布洛芬分布在SiO_2介孔孔道中。布洛芬体外释放研究结果表明,介孔SiO_2孔径以及释放介质的pH值对布洛芬的体外释放具有较大的影响。
     3.非离子表面活性剂Triton X-100微乳液体系中Ag, SiO_2复合纳米粒子的制备与表征
     以非离子表面活性剂Triton X-100形成的W/O型微乳液作为反应体系,水合肼作为Ag~+还原剂,通过TEOS的水解和缩聚合成得到了SiO_2核-Ag壳(160-210 nm)以及Ag核-SiO_2壳(100-120 nm)的核壳复合纳米粒子,并利用TEM, XRD以及UV-vis等技术对复合纳米粒子的形貌和性质进行了表征。此外,还讨论了Ag~+浓度、微乳液的组成、还原剂种类以及紫外光照等条件对Ag, SiO_2核壳纳米粒子形貌以及性质的影响,并对Ag, SiO_2核壳结构形成的机理进行了初步探讨。
1. Preparation of Mesoporous Silica using Nonionic Surfactant TritonX-100 and Its Drug Controlled-Release Property
     MSU-type mesoporous material SiOB2B was synthesized under N~0I~0 mechanism usingnonionic surfactant Triton X-100 and TEOS as the template and silica source,respectively. And some synthesis parameters including temperature, catalyst andco-surfactant were discussed. A model drug, ibuprofen was introduced into the channelsof mesoporous silica via a physical adsorption process which could be used as theMSU-type mesoporous silica-based drug controlled-release delivery system. XRD,SEM, FT-IR, NB2B adsorption-desorption, elemental analysis and thermogravimetircanalysis were used to characterize the structured properties of mesoporous silica and thedrug controlled-release system. The in vitro release studies of ibuprofen gave the ideathat the release rate was strongly depended on the pore diameter of the mesoporoussilica and the adsorption state of ibuprofen molecules on the silica particles.
     2. Preparation of Mesoporous Silica with Synthesized IbuprofenContaining Nonionic Surfactant and Its Drug Controlled-ReleaseProperty
     A novel nonionic surfactant containing ibuprofen at one end was synthesized usingibuprofen and poly (ethylene glycol) as the raw materials. Techniques such as UV-vis,~1H NMR, FT-IR, ITC, surface tension and contact angle were used to characterize thestructure and interface adsorption properties of the obtained products. The resultsshowed that ibuprofen was successfully grafted on PEG end by an esterifying reactionwith the hydroxyl end group, and the products presented as nonionic surfactant contained ibuprofen at one end and EO chain at the other end. Moreover, a drug controlled-release system of mesoporous silica/ibuprofen was synthesized under one step method with the ibuprofen containing nonionic surfactant as the template. The investigations of FT-IR, N_2 adsorption-desorption, elemental analysis and thermogravimetirc analysis indicated that the drug ibuprofen was distributed in the mesoporous channels. The in vitro release studies of ibuprofen showed that the pore size of mesoporous silica had a great influence on the release rate, and the rates varied when ibuprofen was released in different pH mediums.
     3. Preparation and Characterization of Ag , SiO_2 Core-Shell Nanocomposite Particles in Nonionic Surfactant Triton X-100 Microemulsions
     Silica core-Ag shell (160-210 nm) and Ag core-silica shell (100-120 nm) nanocomposite particles had been synthesized within nonionic surfactant Triton X-100 microemulsions via the reduction of Ag~+ and then the hydrolysis and condensation of metal alkoxide. The structure, size and morphology of the resulting composite particles were determined by TEM, XRD and FT-IR. Furthermore, the effects of other synthesis parameters, such as concentrations of original Ag~+, compositions of the microemulsions, reducing agent and the radiation under UV were discussed. Some possible mechanisms for the formation of the nanoparticles were also discussed.
引文
1. Kortan, A. R.; Hull, R.; Opila, R. L.; Bawendi, M. G.; Steigerwald, M. L.; Carroll, P.J.; Brus, L. E. J. Am. Chem. Soc. 1990, 112, 1327-1332.
    2. Yu, K. M. K.; Yeung, C. M. Y.; Thompsett, D.; Tsang, S. C. J. Phys. Chem. B 2003,107, 4515-4526.
    3. Chen, Z.; Wang, Z. L.; Zhan, P.; Zhang, J. H.; Zhang, W. Y.; Wang, H. T.; Ming, N. BLangmuir 2004, 20, 3042-3046.
    4. Wang, G. H.; Harrison, A. J. Colloid Interface Sci. 1999, 217, 203-207.
    5. Gao, X.; Yu, K. M.; Tam, K. Y.; Tsang, S. C. Chem. Commun. 2003, 2996-2999.
    6. Wang, J.; White, W. B.; Adair, J. H. J. Phys. Chem. B 2006, 110, 4679-4685.
    7. Stoeva, S. I.; Huo, F.; Lee, J. S.; Mirkin, C. A. J. Am. Chem. Soc. 2005, 127,15362-15363.
    8. Vestal, C. R.; Zhang, Z. J. J. Am. Chem. Soc. 2002, 124, 14312-14313.
    9. Yu, K. M. K.; Thompsett, D.; Tsang, S. C. Chem. Commun. 2003, 1522-1523.
    10. Jeong, U.; Wang, Y. L.; Ibsiate, M.; Xia, Y. N. Adv. Funct. Mater. 2005, 15,1907-1921.
    11. Liu, Q.; Xu, Z.; Finch, J. A.; Egerton, R. Chem. Mater. 1998, 10, 3936-3940.
    12. Hall, S. R.; Davis, S. A.; Mann, S. Langmuir 2000, 16, 1454-1456.
    13. Pastoriza-Santos, I.; Koktysh, D. S.; Mamedov, A. A.; Giersig, M.; Kotov, N. A.;Liz-Marzan, L. M. Langmuir 2000, 16, 2731-2735.
    14. Nann, T.; Mulvaney, P. Angew. Chem. Int. Ed. 2004, 43, 5393-5396.
    15. Liz-Marzan, L. M.; Giersig, M.; Mulvaney, P. Langmuir 1996, 12, 4329-4335.
    16. Hardikar, V. V.; Matijevic, E. J. Colloid Interface Sci. 2000, 221, 133-136.
    17. Li, T.; Moon, J.; Morrone, A. A.; Mecholsky, J. J.; Talham, D. R.; Adair, J. H.Langmuir 1999, 15, 4328-4334.
    18. Kobayashi, Y.; Katakami, H.; Mine, E.; Nagao, D.; Konno, M.; Liz-Marzán, L. M. J.Colloid Interface Sci. 2005, 283, 392-396.
    19. Liu, S.; Zhang, Z.; Han, M. Anal. Chem. 2005, 77, 2595-2600.
    20. Pol, V. G.; Srivastava, D. N.; Palchik, O.; Palchik, V.; Slifkin, M. A.; Weiss, A. M.; Gedanken, A. Langmuir 2002, 18, 3352-3357.
    21. Zhang, D. B.; Cheng, H. M.; Ma, J. M.; Wang, Y. P. J. Mater. Sci. Lett. 2001, 20, 439-440.
    22. Jiang, Z. J.; Liu, C. Y. J. Phys. Chem. B 2003, 107, 12411-12415.
    23. Hofmeister, H.; Miclea, P. T.; Morke, W. Part. Part. Syst. Charact. 2002, 19, 359-365.
    24. Hu, Y. H.; Rong, J. H.; Liu, Y. L.; Man, S. Q. Acta Chim. Sinica 2005, 63, 2189-2193.
    25. Wang, W.; Asher, S. A. J. Am. Chem. Soc. 2001, 123, 12528-12535.
    26. Kim, K.; Kim, H. S.; Park, H. K. Langmuir 2006, 22, 8083-8088.
    27. Pol, V. G.; Grisaru, H.; Gedanken, A. Langmuir 2005, 21, 3635-3640.
    28. Gong, J. L.; Jiang, J. H.; Liang, Y.; Shen, G. L.; Yu, R. Q. J. Colloid Interface Sci. 2006, 298, 752-756.
    29. Sun, X. M.; Li, Y. D. Langmuir 2005, 21, 6019-6024.
    30. Jeon, H. J.; Yi, S. C.; Oh, S. G. Biomaterial 2003, 24, 4921-4928.
    31. Sun, Y.; Tao, Z.; Chen, J.; Herricks, T.; Xia, Y. J. Am. Chem. Soc. 2004, 126, 5940-5941.
    32. Langford, J. A.; Wilson, A. J. C. J. Appl. Cryst. 1978, 11, 102-105.
    33. Caruso, R. A.; Antonietti, M. Chem. Mater. 2001, 13, 3272-3282.
    34. Kapoor, S. Langmuir 1998, 14, 1021-1025.
    35. Henglein A. J. Phys. Chem. 1993, 97, 5457-5471.
    36. Lazarides, A. A.; Schatz, G. C. J. Phys. Chem. B 2000, 104, 460-467.
    37. Zhang, J.; Liu, J.; Wang, S.; Zhan, P.; Wang, Z.; Ming, N. Adv. Funct. Mater. 2004, 14, 1089-1096.
    38. Barnickel, P.; Wokaun, A.; Sager, W.; Eicke, H. F. J. Colloid Interface Sci. 1992,148, 80-90.
    39. Barud, H. S.; Barrios, C.; Regiani, T.; Marques, R. F. C.; Verelst, M.; Dexpert-Ghys, J.; Messaddeq, Y.; Ribeiro, S. J. L. Mater. Sci. Eng., C 2008, 28, 515-518.
    40. Kocareva, T.; Grozdanov, I.; Pejova, B. Mater. Lett. 2001, 47, 319-323.
    41. Chen, D.; Liu, H. Y.; Liu, J. S.; Ren, X. L.; Meng, X. W.; Wu, W.; Tang, F. Q. Thin Solid Films 2008, in press.
    42. Johnston, F. J. Radiat. Res. 1978, 75, 286-295.
    43. Huang, Z. Y.; Mills, G.; Hajek, B. J. Phy. Chem. 1993, 97, 11542-11550.
    44. Lee, C. L. Wan, C. C.; Wang, Y. Y. Adv. Mater. 2001, 11, 334-347.
    45. Liu, H. Z.; Guo, C.; Yu, J.; Xin, J. M.; Chang, Z. D.; Guan, Y. P. Principle and Applications of Microemulsion Phase Extraction; Science press: 2005, p222-285.
    46. Mallick, K.; Mandal, M.; Pradhan, N.; Pal, T. Nano Lett. 2001, 1, 319-322.
    47. Mallick, K.; Wang, Z. L.; Pal, T. J. Photochem. Photobiol. A 2001, 140, 75-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700