蛋白质固液界面吸附的分子模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质的界面吸附是一类基本的现象,也是解决界面科学、生命科学及工程技术领域中许多问题的关键,对蛋白质界面吸附问题的研究有着重要的理论和实际意义。由于蛋白质同界面间相互作用的复杂性使得单纯依靠实验方法无法得到吸附的完整信息。利用分子模拟方法,从微观水平上对蛋白质界面吸附进行研究,有助于深入地了解蛋白质界面吸附的机理。本论文采用CHARMM22力场和TIP3P水分子模型,在NVT条件下,对聚十赖氨酸分子在金属铂(Pt)、无机非金属氧化锌(ZnO)及有机高分子聚乙烯(PE)界面上的吸附过程分别进行了分子模拟(MD)。考察了不同界面性质、水溶液、力场参数等因素对吸附的影响。对聚十赖氨酸分子的构象变化、能量及运动等特性进行了分析,对蛋白质分子的固液界面吸附机理进行了探讨。
     模拟结果表明,在不同性质的界面上,经过吸附后,聚十赖氨酸分子主链构象发生了变化,分子的α-螺旋结构有不同程度的减少。PE界面上的吸附作用强于Pt及ZnO界面,更易使聚十赖氨酸分子发生变性。在晶格结构界面上,界面原子排列密度越大对聚十赖氨酸分子的作用越强;界面原子排布规则的晶体界面对聚十赖氨酸分子构象的影响较无规则界面强。体界面的组成性质及界面形态对蛋白质的吸附起到重要的影响作用。
     对具有不同范德华参数和电荷的Pt界面上的聚十赖氨酸吸附体系进行的MD计算表明,范德华作用和静电作用在吸附中均对聚十赖氨酸分子构象产生影响,相对而言,静电力的作用影响更为显著,在吸附过程中起主导作用。
     吸附过程中,水溶液在界面和聚十赖氨酸分子之间起到了重要的过渡媒介作用,聚十赖氨酸同界面的相互作用是聚十赖氨酸分子、体界面及水溶液之间共同相互作用的结果,因此,界面的亲疏水性在蛋白质吸附中起着非常重要的作用。
     采用分子模拟方法获得的结果,可以为蛋白质界面吸附的机理研究提供理论基础,对相关领域技术的发展起到促进作用。
Protein adsorption on interface is a common phenomena and a key to settle problems of surface science、biological science and engineering systems which is of great fundamental and practical importance. The complexity interaction between protein and surface make it impossible to get complete adsorption information only using experiment method. It is helpful to grasp protein adsorption mechanism using molecular simulation at the molecular level research. In this work, we focus on poly-ten-lysine interactions with several interfaces by MD techniques in which protein is modeled with the CHARMM22 parameter set, water molecules are described by the transferable intermolecular potentials with three-site point charge model (TIP3P), under NVT condition and the surfaces were platinum (Pt), znic oxide (ZnO) and polyethylene (PE). The influences of properties studied include the interface properties (interface structural and electrostriction nature), dynamic behavior of aqueous and different force field factors’influence during adsorption. Analyze the conformation, energy and motion of poly-ten-lysine. Discuss the mechanisms of poly-ten-lysine adsorption on solid-liquid interface.
     Results reveal the interaction between poly-ten-lysine and interfaces make theα-helix conformation of poly-ten-lysine decrease to different extent. More distinct decrease even denatured happened on PE interfaces than Pt and ZnO interfaces. Besides, interface structural has important influence on adsorption. On different crytral lattic Pt interfaces, the more impact arrangement it is, the more stronger interaction between interface and poly-ten-lysine. The interaction between the protein and crystal interface is stronger than amorphous interface.
     MD simulations on interfaces with different van der Waals parameters and charge show that interface interaction is to be dominated by electrostatic force interactions and van der Waals relatively weaker though they all affected adsorption conformation of poly-ten-lysine.
     The interaction between the poly-ten-lysine and ZnO interface is mediated by aqueous. Interface interaction is the result of mutual interaction of the constituent elements of system, poly-ten-lysine, water and interface. Accordingly, hydrophobic nature of interface play an important role during adsorption, hydrophobic PE interfaces have stronger affection on protein conformation than hydrophilic interface.
     Moreover, energy compositions and atom parameter of force field play an important role in simulation.
     The molecular simulating results could offer theoretical basic for protein adsorption on interface and promote the development of related technology.
     To better analyze results, another force field is used to the same interface condition which indicate that atom parameters of force field and energy items are the important factors that influence the simulation.
引文
[1] G 沃尔什著,蛋白质生物化学与生物技术 (王恒,谭天伟,苏国富等译),北京:化学工业出版社,2006
    [2] 来鲁华等,蛋白质的结构预测与分子设计,北京:北京大学出版社,1993
    [3] 阎隆飞,孙之荣,蛋白质分子结构,北京:清华出版社,1999
    [4] 沈同,王镜岩,生物化学 (上) 第二版,北京:高等教育出版社,1990
    [5] 陶慰孙,李惟,姜涌明,蛋白质分子基础(第二版) ,北京:高等教育出版社,1995
    [6] 耿信笃,白泉,王超展,蛋白质折叠液相色谱法,北京:科学出版社,2006
    [7] 赵振国,吸附作用原理,北京:化学工业出版社,2006
    [8] Nakanishi K, Sakiyama T, Imamura K. On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon, Journal of Bioscience and Bioengineering, 2001, 91(3): 233–244
    [9] He L, Dexter A F, Middelberg A P J. Biomolecular engineering at interfaces, Chemical Engineering Science, 2006, 61(3): 989–1003
    [10] Gray J J, The interaction of proteins with solid surfaces, Current Opinion in Structural Biology, 2004, 14(1): 110–115
    [11] 张辉,钟博,邓玉福,生命单元表面行为的物理表征,北京:科学出版社,2006
    [12] 司士辉,生物传感器,北京:化学工业出版社,2002
    [13] S L Burkett, M J Read. Adsorption-induced conformational changes of α-Helical peptides, Langmuir, 2001, 17: 5059–5065
    [14] Simon O, Lumsdon, John Green, et al. Adsorption of hydrophobin proteins at hydrophobic and hydrophilic interfaces, Langmuir, 2005, 21: 8385–8388
    [15] 陈百万,生物医学工程学,北京:科学出版社,1997
    [16] 耿信笃,计量置换理论及应用,北京:科学出版社,2004,25
    [17] 贺小贤,现代生物工程技术导论,北京:科学出版社,2005,303–305
    [18] J L Brash, T A Horbett, T A Horbett. Proteins at interfaces: physicochemical and biochemical studies, Washington DC, American Chemical Society, 1987
    [19] Imamura K, Mimura T, O M, et al. Adsorption behavior of amino acids on a stainless steel surface, Journal of Colloid and Interface Science, 2000, 29(1): 237–246
    [20] E A Vogler. Structure and reactivity of water at biomaterial surfaces, Advances in Colloid and Interface Science, 1998, 74(1-3): 69-117
    [21] C E Giacomelli, W Norde. Conformational changes of the amyloid peptideβ-(1-40) adsorbed on solid surfaces, Macromolecular Bioscience, 2005, 5: 401–407
    [22] DR Lu, SJ Lee, K Park. Calculation of salvation interaction energies for protein adsorption on polymer surfaces, Journal of Biomaterials Science Polymer Edition, 1991, 3(2): 127-147
    [23] K Matsuno, R V Lewis, C R Middaugh. The interaction of γ-crystallins with model surfaces, Archives of Biochemistry and Biophysics, 1991, 291(2): 349–355
    [24] Roth CM, Lenhoff AM. Electrostatic and van der waals contributions to protein adsorption: computation of equilibrium constants, Langmuir, 1993, 9:962-972
    [25] V Hlady, Jos Buijs. Protein adsorption on solid surfaces, Current Opinion in Biotechnology, 1996, 7: 72–77
    [26] Igal Szleifer. Polymers and proteins: interactions at interfaces, Current Opinion in Solid State & Materials Science, 1997, 2: 337–344
    [27] G Raffaini, F Ganazzoli. Protein adsorption on the hydrophilic surface of a glassy polymer: a computer simulation study, Physical Chemistry Chemical Physics, 2006, 8: 2765–2772
    [28] K Makrodimitris, E J Fernandez, T B Woolf, et al. Mesoscopic simulation of adsorption of peptides in a hydrophobic chromatography system, Analytical Chemistry, 2005, 77: 1243–1252
    [29] T Zoungrana, G H Findenegg, Willem Norde. Structure, Stability, and activity of adsorbed enzymes, Journal of Colloid and Interface Science, 1997, 190: 437–448
    [30] Olga Santos, Tommy Nylander, Karin Schillen, et al. Effect of surface and bulk solution properties on the adsorption of whey protein onto steel surfaces at high temperature, Journal of Food Engineering, 2006, 73: 174–189
    [31] Fang Fang, I Szleifer. Kinetics and thermodynamics of protein adsorption: a generalized molecular theoretical approach, Biophysical Journal, 2001, 80: 2568–2589
    [32] M Nyberg, J H, O Karis, et al. The electronic structure and surface chemistry of glycine adsorbed on Cu (110), Journal of Chemical Physics, 2000, 112: 5420–5427
    [33] B S M, K K J, Haq S. A study of glycine adsorption on a Cu (110) surface using reflection adsorption infrared spectroscopy, Surface Science, 1998, 401(3): 322–335
    [34] 张辉,钟博,邓玉福,生命单元表面行为的物理表征,北京:科学出版社,2006
    [35] S D Chakarova, A E Carlsson. Model study of protein unfolding by interfaces, Physical Review E, 2004, 69: 021907/1–021907/9
    [36] Robert G, Chapman, Emanuele O, et al. Surveying for surfaces that resist the adsorption of proteins, Journal of the American Chemical Society, 2000, 122: 8303–8304
    [37] A Ball, R A L Jones. Conformational changes in adsorbed proteins, Langmuir, 1995, 11: 3542–3548
    [38] F H, J V, M Rodahl, et al. A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,Colloids and Surfaces B: Biointerfaces, 2002, 24: 155–170
    [39] George B, Sigal, Milan Mrksich, et al. Effect of Surface Wettability on the Adsorption of Proteins and Detergents, Journal of the American Chemical Society, 1998, 120: 3464–3473
    [40] Calonder C, Tie Y, Van Tassel P R. History dependence of protein adsorption kinetics, Proceeding of the National Academy of Sciences, 2001, 98: 10664–10669
    [41] Christian F, Wertz, Maria M, et al. Effect of surface hydrophobicity on adsorption and relaxation kinetics of albumin and fibrinogen: single-species and competitive behavior, Langmuir, 2001, 17: 3006–3016
    [42] Christian F, Wertz, Maria M, et al. Adsorption and reorientation kinetics of lysozyme on hydrophobic surfaces, Langmuir, 2002, 4(18): 1190–1199
    [43] Sharp J S, Forrest J A, Jones R A. Surface denaturation and amyloid fibril formation of insulin at model lipid–water interfaces, Biochemistry, 2002, 41:15810–15819
    [44] Tarasevich Y I, Monakhova L I. Interaction between globular proteins and silica surfaces, Colloid Journal, 2002, 64: 482–487
    [45] Horbett TA, Lew K R. Residence time effects on monoclonal antibody binding to adsorbed fibrinogen, Journal of Biomaterials Science Polymer Edition, 1994, 6:15–33
    [46] Horbett TA, Cooper KW, Lew KR, et al. Rapid postadsorptive changes in fibrinogen adsorbed from plasma to segmented polyurethanes, Journal of Biomaterials Science Polymer Edition, 1998, 9: 1071–1087
    [47] J A McCammon, B R G Martin Karplus. Dynamics of folded proteins, Nature, 1977, 267: 585–590
    [48] Norde W. Behavior of proteins at interfaces, with special attention to the role of the structure stability of the protein molecule, Clinical Materials, 1992, 11(1-4): 85–90
    [49] Lin J H, Baumgaertner A. Molecular dynamics simulations of hydrophobic and amphiphatic proteins interacting with a lipid bilayer membrane, Computationaland Theoretical Polymer Science, 2000, 10 (1-2): 97–102
    [50] Dastidar S G, Mukhopadhyay C. Structure, dynamics, and energetics of water at the surface of a small globular protein: a molecular dynamics simulation, Physical Review E, 2003, 68 (21): 021921/1–021929/9
    [51] Bevan D R, Garst J F, Osborne C K, et al. Application of molecular modeling to analysis of inhibition of kinesin motor proteins of the BimC subfamily by monastrol and related compounds,Chemistry and Biodiversity, 2005, 2(11): 1525–1532
    [52] Jian Zhou, Shengfu Chen, Shaoyi Jiang. Orientation of adsorbed antibodies on charged surfaces by computer simulation based on a united-residue model, Langmuir, 2003, 19: 3472–3478
    [53] Victoria Castells, Shaoxiong Yang, Paul R, et al. Surface-induced conformational changes in lattice model proteins by Monte Carlo simulation, Physical Reviewe E , 2002, 65: 031912/1–031912/8
    [54] A H Juffer, P Argos, J Dd Vlieg. Adsorption of Proteins onto Charged Surfaces: A Monte Carlo Approach with Explicit Ions, Journal of Computational Chemistry, 1996, 17(16): 1783–1803
    [55] Da Song, Daniel Forciniti. Monte Carlo simulations of peptide adsorption on solid surfaces, Journal of Chemical Physics, 2001, 115(17): 8089–8100
    [56] Aaron M Bujnowski, William G Pitt. Water structure around enkephalin near a PE surface:a molecular dynamics study, Journal of Colloid and Interface Science, 1998, 203: 47–58
    [57] Aaronm, Bujnowski, W Pitt. Water structure around enkephalin near a GeO2 surface: a molecular dynamics study, Journal of Biomaterials Science Polymer Edition, 2002, 13(8): 885–906
    [58] C H Yua, M A Normana, S Q Newtona, et al. Molecular dynamics simulations of the adsorption of proteins on clay mineral surfaces, Journal of Molecular Structure, 2000, 556: 95–103
    [59] G Raffaini, F Ganazzoli. Simulation study of the interaction of some albumin subdomains with a flat graphite surface, Langmuir, 2003, 19: 3403–3412
    [60] G Raffaini, F Ganazzoli. Molecular dynamics simulation of the adsorption of a fibronectin module on a graphite surface, Langmuir, 2004, 20: 3371–3378
    [61] G Raffaini, F Ganazzoli. Adsorption of charged albumin subdomains on a graphite surface, Journal of Biomedical Materials Research - part A, 2006, 3(76): 638–645
    [62] F Ganazzoli, G Raffaini. Computer simulation of polypeptide adsorption on model biomaterials, Physical Chemistry Chemical Physics, 2005, 7: 3651–3663
    [63] Samuel J, Lee, Kinam P. Protein interaction with surfaces: separationdistance-dependent interaction energies, Journa of Vacuum Science and Technology, 1994, 12(5): 2949–2955
    [64] Thomas A, Knotts IV, N Rathore, et al. Structure and stability of a model three-helix-bundle protein on tailored surfaces, Proteins:Structure, Function, and Bioinformatics, 2005, 61: 385–397
    [65] M Agashe, V Raut, S J Stuar, et al. Molecular simulation to characterize the adsorption behavior of a fibrinogen ?-Chain fragment, Langmuir, 2005, 21: 1103–1117
    [66] K Nishiyama, T Watanabe, T Hoshino, et al. Analysis of Interactions between Luciferase and Si Substrates Using Molecular Dynamics Simulations, Japanese Journal of Applied Physics, 2006, 45(2): 1021–1025
    [67] Alastair N, Cormack, R Jess Lewis, et al. Computer simulation of protein adsorption to a material surface in aqueous solution:biomaterials modeling of a ternary system,Journal of Physical Chemistry B, 2004, 108: 20408–20418
    [68] V P Raut, M A Agashe, S J Stuart, et al. Molecular dynamics simulations of peptide-surface interactions, Langmuir, 2005, 21: 1629–1639
    [69] Gulshat T, Ibragimova, Rebecca C, et al. Importance of explicit salt ions for protein stability in molecular dynamics simulation, Biophysical Journal, 1998, 74: 2906–2911
    [70] Troy Wymore, Tuck C Wong. Molecular dynamics study of substance P peptides in a biphasic membrane mimic, Biophysical Journal, 1999, 76: 1199–1212
    [71] Craig M Shepherd, Kristine A Schaus, Hans J Vogel, et al. Molecular dynamics study of peptide-bilayer adsorption, Biophysical Journal, 2001, 80: 579–596
    [72] Emanuele O, Lin Yan, George M, et al. The interaction of proteins and cells with self-assembled monolayers of alkanethiolates on gold and silver, Colloids and Surfaces B: Biointerfaces, 1999, 15:3–30
    [73] C E Nordgren, D J Tobias, M L Klein, et al. Molecular dynamics simulations of a hydrated protein vectorially oriented on polar and nonpolar soft surfaces, Biophysical Journal, 2002, 83: 2906–2917
    [74] Jie Zheng, Lingyan Li, Shenfu Chen, et al. Molecular simulation study of water interactions with oligo (Ethylene Glycol)-terminated alkanethiol self-assembled monolayers, Langmuir, 2004, 20: 8931–8938
    [75] N Kantarci, C Tamerler, M Sarikaya, et al. Molecular dynamics simulations on constraint metal binding peptides, Polymer, 2005, 46: 4307–4313
    [76] E E Oren, C Tamerler, M Sarikaya. Metal recognition of septapeptides via polypod molecular architecture, Nano Letters, 2005, 3(5): 415–419
    [77] M Srikaya, C Tamerler, A K Y Jen. Molecular biomimitics: nanotechnology through biology, Nature Materials, 2003, 2: 577–584
    [78] Robert A, Latour Jr. Molecular modeling of biomaterial surfaces, Current Opinion in Solid State and Materials Science, 1999, 4: 413–417
    [79] 陈凯先,蒋华良,嵇汝运,计算机辅助药物设计-原理、方法及应用,上海:上海科学技术出版社,2000
    [80] 杨小震,分子模拟与高分子材料,北京:科学出版社,2002
    [81] 徐筱杰,侯廷军,乔学斌,等,计算机辅助药物分子设计,北京:化学工业出版社,2004
    [82] M Jr A D, Bashford D, et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins, Journal of Physical Chemistry B, 1998, 102(18): 3586–3616
    [83] S Ravichandran, J D Madura, J Talbot. A brownian dynamics study of the initial stages of hen egg-white Lysozyme adsorption at a solid interface, Journal of Physical Chemstry B, 2001, 105: 3610-3613
    [84] Jian Zhou, Shengfu Chen, Shaoyi Jiang. Orientation of adsorbed antibodies on charged surfaces by computer simulation based on a united-residue model, Langmuir, 2003, 19: 3472-3478
    [85] I Bitsanis, G Hadziioannou, Molecular dynamics simulations of the structure and dynamics of confined polymer melts, Journal of Chemistry Physics, 1990, 92: 3827-3847
    [86] 顾家林,杨志刚,邓海金等,材料科学与工程概论,北京:清华大学出版社,2005
    [87] 张留成,瞿雄伟,丁会利,高分子材料,北京:化学工业出版社,2002
    [88] 周家驹,王亭,药物设计中的分子模型化方法,北京:科学出版社,2001
    [89] B L Frey, C E Jordan, S Komguth T, et al. Control of the specific adsorption of proteins onto gold surfaces with poly (L-lysine) monolayers, Analytical Chemistry, 1995, 67: 4452–4457
    [90] Jon K West, Robert Latour Jr, Larry L Hench. Molecular modeling study of adsorption of poly-L-lysine onto silica glass, Journal of Biomedical Materials Research, 1997, 37 (4): 585–591
    [91] L R-M, A F-N, A F-B. Dynamic light scattering from high molecular weight poly-L-lysine molecules, Colloids and Surfaces A, 2005, 270-271: 335–339
    [92] 阎隆飞,孙之荣,蛋白质分子结构,北京:清华出版社,1999
    [93] William L Jorgensen, Jayaraman C, Jeffry D M, et al. Comparison of simple potential functions for simulating liquid water, The Journal of Chemical Physics, 1983, 79(2): 926-935
    [94] Olivella M, Deupi X, Govaerts C, et al. Influence of the environment in the conformation of α-helices studied by protein database search and molecular dynamics simulations,Biophysical Journal, 2002, 82 (6): 3207–3213

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700