放射性核素Eu(Ⅲ)、Th(Ⅳ)和重金属离子Pb(Ⅱ)、Ni(Ⅱ)在凹凸棒石上吸附研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用静态批式吸附法与微观表征(如FTIR、XRD、XPS等技术)相结合研究凹凸棒石粘土与Ni(Ⅱ)、Pb(Ⅱ)、Eu(Ⅲ)、Th(Ⅳ)作用机理和模式。本论文共分十章。
     第一章简要介绍了论文的选题背景、依据以及研究的基本内容和总体方案。
     第二章简要回顾了与-液界面吸附相关的一些基本概念和理论。
     第三章介绍了本工作的详细实验方法。
     第四章使用FTIR、XRD、XPS和酸碱滴定分别对凹凸棒石的结构、主要元素组成、官能团和表面“吸附位”进行了详细的表征,得出其本征酸度常数和“表面位”浓度等相关参数。
     第五、六章分别对Ni(Ⅱ)在Na-凹凸棒石粘土、柠檬酸铵改性凹凸棒石粘土上吸附进行了详细研究。结果表明Ni(Ⅱ)的凹凸棒石上的吸附作用受pH值、离子强度影响明显;在pH<8时,离子强度的影响强烈;而当pH>8时,Ni(Ⅱ)的吸附不受离子强度的影响。吸附一解吸实验研究表明当pH=6.0时,Ni(Ⅱ)的吸附是可逆的。pH<8时,离交换或外部络合是Ni(Ⅱ)在钠基凹凸棒石上吸附主要的机理;而pH>8时,主要是内部络合模式。腐殖酸的影响表明FA和HA对Ni(Ⅱ)的吸附均有一定抑制作用。温度影响表明温度升高有利于Ni(Ⅱ)在钠基凹凸棒石表面上吸附,且该吸附是一吸热、自发的过程。柠檬酸铵改性凹凸棒石后明显改善或提高了对金属离子Ni(Ⅱ)的吸附作用。在低pH值条件下受外来干扰离子影响明显,在较高pH值条件下却几乎不受外来离子干扰;柠檬酸铵改性凹凸棒石粘土提高了对Ni(Ⅱ)的吸附效果,但是高温处理的凹凸棒石(500℃)由于其结构遭到破坏而使吸附能力减弱。
     第七、八章分别讨论了Pb(Ⅱ)在高温活化凹凸棒石上吸附;Eu(Ⅲ)在Na-凹凸棒石上吸附研究;并采用FITEQL对Pb(Ⅱ)、Eu(Ⅲ)的吸附进行表面络合拟合,结果表明在低pH值下主要是“弱位”(=WOH)与金属离子Pb(Ⅱ)、Eu(Ⅲ)发生络合作用;在高pH值下则主要是“强位”(=SO~-)与金属离子Pb(Ⅱ)、Eu(Ⅲ)发生络合作用;且离子强度对吸附机理有一定影响。实验结果表明,HA对Eu(Ⅲ)的吸附有明显的影响:在pH<4时,腐殖酸HS对吸附影响不明显,当4<pH<6时,HS开始抑制Eu(Ⅲ)在Na-凹凸棒石上的吸附,在pH6-8时,吸附作用达到最低,当pH>8是,吸附又开始随pH值升高而逐渐增大。
     第九章研究了高温活化凹凸棒石对Th(Ⅳ)的吸附性能。pH值对Th(Ⅳ)在凹凸棒石粘土上的吸附有显著影响,而离子强度对吸附的影响却相对较弱;Th(Ⅳ)凹凸棒石表面主要发生内部络合,腐殖酸FA和HA对吸附有很大的促进作用;腐殖酸的加入次序对Th(Ⅳ)在凹凸棒石上吸附没有明显影响;另外提高反应温度有利于Th(Ⅳ)在高温活化凹凸棒石粘土上的吸附,实验结果表明Th(Ⅳ)在凹凸棒上吸附是自发吸热的过程;最后,高温活化凹凸棒石粘土对Th(Ⅳ)的吸附是不可逆的过程;但是在FA存在的吸附体系中,Th(Ⅳ)的吸附几乎是一个可逆的过程。
     第十章对本论文的研究结果进行总结,并对以后的研究提出一些设想。
     实验结果表明,凹凸棒石对重金属离子及放射性核素具有较强的吸附能力,其柠檬酸铵的有机改性凹凸棒石粘土对吸附高浓度重金属离子方面具有优势。一般凹凸棒石对Ni(Ⅱ)、Pb(Ⅱ)、Eu(Ⅲ)、Tb(Ⅳ)的吸附率随体系pH的增大而提高,随体系离子强度的增大而降低。土壤提取物FA/HA对凹凸棒石吸附性能的影响随金属离子种类的不同而不同,在不同的pH区段影响不同。重金属离子和放射性核素在凹凸棒石上的吸附热力学参数计算结果表明,在本实验条件下吸附是个自发的、反应限度很大、放热的过程。表面络合和离子交换是重金属离子和放射性核素在凹凸棒石上的主要吸附机理。
In this paper, the batch adsorption experiment and combining with micro-characterizing (such as Fourier Transform infrared sorption (FTIR), X-ray photoelectron spectroscopy(XPS), and XRD so on) were used to study the adsorption of Ni(II), Pb(II), Eu(III) and Th(IV) on attapulgite. The dissertation was divided into ten chapters.
     In the first chapter, the study background, basic content and sketch of experimental scheme were introduced in brief.
     In the second and third chapter, some basic concepts and principles related to adsorption on solid-liquid surface were described, and the methods, which were used in this paper, were introduced in detail.
     In the fourth chapter, the structure, elements of composition, function groups, and the adsorption sites of attapulgite was characterized by XPS, XRD, FTIR and Acid-Base titration, respectively; the relative parameters of acid constants, sites density and so on were calculated.
     In the fifth and sixth chapter, the adsorption of Ni(II) on Na-attapulgite and ACT-attapulgite were investigated, respectively; it indicated that the adsorption of Ni(II) was influenced strongly by pH and ionic strength. Compared with Na-attapulgite, the adsorption capacity of ACT-attapulgite to Ni(II) was improved significantly.
     In the seventh and eighth chapter, the adsorption of Pb(II) onto activated attapulgite and Eu(III) onto Na-attapulgite were studied respectively, and the FITEQL code and Surface Complexation Model(SCM) were used to simulated the adsorption data of Pb(II) and Eu(III) onto attapulgite; and found the main adsorption species of Pb(II) and Eu(III) onto attapulgite was weak sites(=WOH) at low pH values, however, was strong sites(=SO~-) at higher pH values. In addition, the adsorption species was influenced by ionic strength weakly.
     In the ninth chapter, the adsorption of Th(IV) on activated attapulgite was investigated.
     In the tenth chapter, the results were summarized and future study proposals were put forward.
     The results of this paper show that attapulgite has good adsorption ability to heavy metal ions and radionuclides, and its organic modified sample, i.e., ACT-attapulgite, has advantage in treating high concentration of heavy metal ions than attapulgite. The adsorption of Ni(II), Pb(II), Eu(III) and Th(IV) increased with increasing pH and decreasing ionic strength. The influence of soil HA/FA on adsorption of heavy metal ion and radiounclides varied with different typical of cations, and different effects of HA/FA on cations adsorption were also found at different pH values. The thermodynamic parameters (i.e.;△H~0,△S~0, and△G~0) of the heavy metals and radionuclides adsorption onto attapulgite were calculated from the temperature dependence, and the results suggested that the adsorption reaction was spontaneous and exothermic with a high affinity. The adsorption mechanism was interpreted from the batch and spectroscopic results, and indicated that surface complexation model and cation competition exchange were considered as the main mechanism
引文
[1]奚旦立,孙裕生,刘秀英,环境检测-2版(修订版).北京:高等教育出版社,1996.
    [2]陈长伦,2007.碳纳米管与放射性核素作用机理和模式.中国科学院博士毕业论文.
    [3]凌江等,水污染不容忽视.光明日报 1998年3月9日.
    [4]周祥,2006.蒙脱土表征和对重金属离子镍Ni(Ⅱ)的吸附研究.中国科学院硕士毕业论文.
    [5]王祥科,发展高放废料高效处理技术.中国科学院科学与技术预见系列报 告之一:“技术预见报告2005”(ISBN 7-03-015636-6),科学出版社.
    [6]国防科学技术工业委员会,高放废物地质处置研究开发规划指南,2006.
    [7]Iijima,S.,1991.Helical microtubules of graphic carbon.Nature(London)354,56-58.
    [8]Wang X.K.,Chen C.L.,Du J.Z.,Tan X.L.,Xu D.,Yu S.M.,2005.Effect of pH and aging time on the kinetic dissociation of~(243)Am(Ⅲ)from humic acid-coated γ-Al_2O_3:a chelating resin exchange study.Environ.Sci.Technol.39,7084-7088.
    [9]谈辉明,杨启文,1997.重金属废水处理技术的现状与展望.环境科学与技术 1,35-37.
    [10]陈勇生,孙启俊等,1997.重金属的生物吸附技术研究,环境科学进展 5,34-43.
    [11]王黎,孔昌俊,1999.重金属生物治理的新技术,辽宁城乡环境科 19,5-10.
    [12]吴涓,李清彪,1998.重金属生物吸附的研究进展.离子交换与吸附14,180-187.
    [13]格里姆著,许冀泉译,粘土矿物学(第一版)[M],北京:地质出版在,1960,pp42.
    [14]蔡龙飞,陈国树,2003.凹凸棒石粘土动态法分离钍(Ⅳ)的研究.江西科学21.84-87.
    [15]Singer,A.,1981.The texture of palygorskite from the Rift Valley,Southern Israel.Clay Minerals No.16.
    [16]Bradley,W.F.,1940.The structure scheme of attapulgite.American Mineralogist 25,405-410.
    [17]Preisinger,A.,1963.Sepiolite and related compounds:its.stability and application.Clay Clay Miner.10,365-371.
    [18]Chisholm,J.E.,1990.An X-ray powder-diffraction study of palygorskite.Can.Mineral.28,329-339.
    [19]Chisholm,J.E.,1992.Powder-diffraction Patterns and Structural Models for Palygorskite.Can.Mineral.30,61-73.
    [20]Artioli,G.,Galli,E.,Burattimi,E.,Cappuccio,G.,Simeoni,S.N.,1994.Jb.Miner.Mh.5,217-229.
    [21]Chiari,G.,Giustetto,R.,Ricchiardi,G.,2003.Crystal structure refinements of palygorskite and Maya Blue from molecular modelling and powder synchrotron diffraction.Eur.J.Mineral.15,21-33.
    [22]Fan,Q.H.,Shao,D.D.,Hu,J.,Wu,W.S.,Wang,X.K.,2008.Comparison of Ni~(2+)sorption to bare and ACT-graft attapulgite:Effect of pH,temperatures and foreign ions.Surface Science 602,778-785.
    [23]Haden,W.L.,Schwint,Jr.I.A.,1967.Attapulgite:its properties and applications.Ind.Eng.Chem.59,58-69.
    [24]Giustetto,R.,Xamena,F.X.L.,Ricchiardi,G.,Bordiga,S.,Damin,A.,Gobetto,R.,Chierotti,M.R.,2005.Maya Blue:A computational and Spectroscope Study.J.Phys.Chem.B 109,19360-19368.
    [25]栾兆坤,马钢平等.1998改性凹凸棒氧化膜吸附剂的除氟性能.大连铁道学院学报 19,27-31.
    [26]袭祖楠等,1993.凹凸棒石在水处理中的应用与研究.化工时刊 10,16-17.
    [27]Gerstl,Z.,Yaron,B.,1978.Adsorption and Desorption of Parathion by Attapulgite as Affected by the Mineral Structure.J.Agric.Food Chem.,26,569-573.
    [28]Huang,J.H.,Wang,X.G.,Jin,Q.Z.,Liu,Y.F.,Wang,Y.,2007.Removal of phenol from aqueous solution by adsorption onto OTMAC-modified attapulgite J.Environ.Manag.84,229-236.
    [29]刘天齐,林肇信,刘逸农,环境保护概论[M],北京:人民教育出版社,1982,pp13.
    [30]Alvarez-Ayuso,E.,Garcia-Sanchez,A.,2003.Palygorskite as a feasible amendment to stabilize heavy metal polluted soils.Environ.Pollut.125,337-344.
    [31]Liu,P.,Guo,J.S.,2006.Polyacrylamide grafted attapulgite(PAM-ATP)via surface-initiated atom transfer radical polymerization(SI-ATRP)for removal of Hg(Ⅱ)ion and dyes.Colloids and Surf.A.282-283,498-503.
    [32]黄德荣,温力,封文彬,2001.用改性粘土的吸附混凝去除Zn~(2+).南京化工大学学报 23,62-65.
    [33]宋金如,龚冶湘,罗明标,肖恺,1998.凹凸棒石粘土吸附铀的性能研究及应用.华东地质学院学报 21,265-272.
    [34]Murray,H.H.,2000.Traditional and new applications for kaolin,smectite,and palygorskite:a general overview.Appl.Clay Sci.17,207-211.
    [35]于柞斌等,1994.五种消毒剂消毒饮用水后形成三卤甲烷的研究.中国给水10,4-7.
    [36]昊景贵等,1997.土壤腐殖质的分析化学研究进展.分析化学 25,1221-1227.
    [37]梁咏梅,刘伟,马军,2003.pH和腐殖酸对高铁酸盐水除水中铅、镉的影响.哈尔滨工业大学学报 35,545-548.
    [38]Dzombak,A.D.,Fish,W.,Morel,F.M.,1986.Metal-Humate Interactions.1.Discrete Ligand and Continuous DistributionModels Environ.Sci.Technol.20,669-675.
    [39]Sposito,G.,1986.Sorption of trace metals by humic materials in soils and natural waters.CRS,Crit Rev Environ Ctrl,16,193-227
    [40]Tao,S.,Lin,B.,2000.Water soluble organic carbon and its measurement in soil and sediment.Water Res.34,1751-1755.
    [41]Fairhurst,A.J.,Warwick,P.,1998.The influence of humic acid on europium-mineral interactions.Colloids Surf.A.,145,229-234.
    [42]Bonne-Wall,N.,Moulin,V.,Vilarem,J.P.,1997.Retention properties of humic substances onto amorphous silica:Consequences for the sorption of cations.Radiochim.Acta 79,37-49.
    [43]Reiller,P.,Casanova,F.,Moulin,V.,2005.Influence of addition order and contact time on thorium(Ⅳ)retention by hematite in the presence of humic acids.Environ.Sci.Technol.39,1641-1648.
    [1]Sposite,G.,The surface Chemistry of soils,chapter 4,Oxford University press.New York,1984.
    [2]Hayes,K.E.,Leckie,J.O.,1987.Modeling ionic strength efects on cation adsorption at hydrous oxide/solution interface.J.Collide Interf.Sci.115564-572.
    [3]Wang,X.K.,Chen,C.L.,Hn,W.P.,Ding,A.P.,Xu,D.,Zhou,X.,2005.Sorption of ~(243)Am(Ⅲ)to multiwall carbon nanotubes.Environ.Sci.Technol.39,2856-2860.
    [4]Chen,C.L.,Wang,X.K.,2006.Adsorption of Ni(Ⅱ)from aqueous solution using oxidized multiwall carbon nanotubes.Ind.Eng.Chem.Res.45,9144-9149.
    [5]Chen,C.L.,Wang,X.K.,2007.Sorption of Th(Ⅳ)to silica as a function of pH,humic/fulvic acid,ionic strength,electrolyte type.Appl.Radiat.Isot.65,155-163.
    [6]Chen,C.L.,Li,X,L.,Zhao,D.L.,Tan,X.L.,Wang,X.K.,2007.Adsorption kinetic,thermodynamic and desorption studies of Th(Ⅳ)on oxidized multi-wall carbon nanotubes.Colloids Surf.A 302,449-454.
    [7]Chen,C.L.,Wang,X.K.,2007.Influence of pH,soil humic/fulvic acid,ionic strength and foreign ions on sorption of thorium(Ⅳ)onto γ-Al_2O_3.Appl.Geochem.22,436-445.
    [8]Chen,C.L.,Li,X.L.,Wang,X.K.,2007.Application of oxidized multi-wall carbon nanotubes for Th(Ⅳ)adsorption.Radiochim.Acta 95,261-266.
    [9] Tan, X.L., Wang, X.K., Fang, M., Chen, C.L., 2007. Sorption and desorption of Th(IV) on nanoparticles of anatase studied by batch and spectroscopy methods. Colloids Surf. A 296, 109-116.
    [10] Xu, D., Tan, X.L., Chen, C.L., Wang, X.K., Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes. J. Hazard. Mater. 154, 407-416.
    [11] Xu, D., Chen, C.L, Tan, X.L., Hu, J., Wang, X.K., 2007. Sorption of Th(IV) on Na-rectorite: Effect of HA, ionic strength, foreign ions and temperature. Appl. Geochem. 22, 2892-2906.
    [12] Murray, D.J., Healy, T.W., 1975. The inteaction of metal ions at the manganes dioxide-solution interface. Geochim. Cosmochim. Acta 39, 505-519.
    [13] Hansen, A.M., Maya, P., 1997. Adsorption-desorption behaviors of Pb and Cd in lake chapala, Mexio. Environment International 23, 554-564.
    [14] James, R.O., Healy, T.W., 1972. Adsorption of hydrolyzable metal ions at the oxide-water interface, III. A thermodynamic model of adsorption. J. Colloid Interface Sci. 40, 65-81.
    [15] Shi, B., Allen, H.E., Grassi, M.T., Ma, H.Z., 1998. Modeling copper partitioning in surface waters. Water Res. 32,3756-3764.
    [16] Lee, S.Z., Allen, H.E., Huang, C.P., Sparks, D.S., Sanders, P.F., Peijnenburg, W.J.GM., 1996. Predicting soil/water partition coeficients for cadmium. Environ. Sci. Technol. 30, 3418-3424.
    [17] Staunton, S., 1994. Adsorption of radio caesium in various soils: interpretation and consequences of the effects of soil: solution ratio and solution composition on the distribution coefficient. European Journal of Soil Science 45, 409-418.
    [18] Chen, C.L., Li, X.L., Zhao, D.L., Tan, X.L., Wang, X.K., 2007. Adsorption kinetic, thermodynamic and desorption studies of Th(IV) on oxidized multi-wall carbon nanotubes. Colloids surf. A 302,449-454.
    [19] Langmuir, I., 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40,1361-1403.
    [20] Freundlich, H., Kapillarchemie: eine Darstellung der Chemie der Kolloide and verwandter Gebiete. Leipzig: Akademische Verlagsge-sellschaf. 1909.
    
    [21] 傅献彩,沈文霞,姚天扬, 物理化学,北京:高等教育出版社 1994,966-967.
    [22] Sanchez, A.G, Ayuso, E.A., De Blas, O.J., 1999. Sorption of heavy metal from industrial waste water by low-cost mineral silicates. Clay Miner. 34, 469-477.
    [23] Orsetti, S., Quiroga, M.M., Andrade, E.M., 2006. Binding of Pb(II) in the system humic acid/goethite at acidic pH. Chemosphere 65, 2313-2321.
    [24] Tao, Z.Y., Chu, T.W., 2000. On the application of the langmuir equation to estimation of adsorption equilibrium constants on a powdered solid from aqueous solution. J. Colloid Interface Sci. 231, 8-12.
    [25] Koretsky, C, 2000. The significance of surface complexation reactions in hydrologic systems: a geochemist's perspective. Journal of Hydrol. 230,127-174.
    [26] Sposito, G, The Chemistry of Soils, Oxford University Press, Oxford, 1989.
    [27] Voegelin, A., Vulava, V., Kretzschmar, R,. 2001. Reaction-based model describing competitive sorption and transport of Cd, Zn, and Ni in acidic soil. Environ. Sci. Technol. 35, 1651-1657.
    [28] Stamm, W., Chemistry of the solid-water interface: Processes at the mineral-water and particle-water interface in natural systems. Stumm W.(eds.), New York: Wiley, 1992.
    [29] Fletcher, P.W., Sposito, G, 1989. The chemical modeling of clay/electrolyte interactions for montmorillonite. Clay Miner. 24,375-391.
    [30] Stumn, W., Huang, C.P., Jenkins, S.R., 1970. Specific chemical interaction affecting the stability of dispersed systems. Croat. Chem. Acta. 42,223-244.
    [31] Schindler, P.W., Gamsjager, H., 1972. Acid-base-reactions TiO_2 (anatase)-water interface and the point of zero charge of TiO_2 suspensions. Kolloid-Z Z Polym. 250,759-763.
    [32] Manning, B.A., Goldberg, S., 1997. Adsorption and stability of arsenic(III) at the clay mineral-water interface. Environ. Sci. Technol. 31,2005-2011.
    [33] Angove, M.J., Johnson, B.B., Wells, J.D., 1998. The influence of temperature on the Adsorption of cadmium(II) and cobalt(II) on kaolinite. J. Colloid Interface Sci. 204, 93-103.
    [34] Tessier, A., Fortin, T., Belzile, N., Devitre, R.R., Leppard, GG, 1996. Trace metal-sediment interactions in two shield lakes. Geochim. Cosmochim. Acta 60, 387-404.
    [35] Yates, D.E., Levine, S., Healy, T.W., 1974. Site-binding model of the electrical double layer at the oxide/water interface. Journal of the Chemical Society, Faraday Transactions I. 70, 1807-1818.
    [36] Davis, J.A., James, R.O., Leckie, J.O., 1978. Surface ionization and complexation at the oxide/water interface. I. Computation of electrical double layer properties in simple electrolytes. J. Colloid Interface Sci. 63, 480-499.
    [37] Sahai, N., Sverjensky, D.A., 1997. Evaluation of internally consisitent parameters for triple layermodel by the systematic analysis of oxide surface titration data. Geochim. Cosmochim. Acta 61,2801-2826.
    [38] Westall, J.C., Hohl, H., 1980. A comparison of electrostatic models for the oxide: solution interface. Adv. Colloid Interface Sci. 12, 265-294.
    [39] Weerasooriya, R., Dharmasena, B., Aluthpatabendi, D. 2001. Copper-gibbsite interactions: an application of 1-pK surface complexation model. Colloids Surf. A170,65-77.
    [40] Davis, J.A., Kent, D.B., 1990. Surface complexation modeling in aqueous geochemistry. In: Hochella Jr. M.F., White A.E.(eds.) Mineral water interface Geochemistry, reviews in mineralogy, Mineralogical Society of America, Washington D.C. 23,177-260.
    [41] Wen, X.H., Du, Q., Tang, H.X., 1998, Surface complexation model for the heavy metal adsorption on natural sediment. Environ. Sci. Technol. 32, 870-875.
    [42] Charmas, R., Piasechi, W., Rudzinsi, W, 1995. Four layer complexiation model for ion adsorption at electrolyte/oxide interface: theoretical foundations. Langmuir 11,3199-3210.
    [43] Charmas, R., Piasechi, W., 1996. Four layer complexiation model for ion adsorption at electrolyte/oxide interface: Interrelation of model parameters. Langmuir 12, 5458-5465.
    [44] Westall J. C., FITEQL : a computer program for the determination of chemical equilibrium constants from experimental data. Report. 82-01. Department of Chem, Oregon State University, Corvallis(1982)
    [1]Gerstl,Z.,Yaron,B.,1978.Adsorption and desorption of parathion by attapulgite as affected by the mineral structure.J.Agric.Food Chem.,26,569-573.
    [2]黄德荣,温力等,2001.用改性粘土的吸附混凝去除Zn~(2+).南京化工大学学报 23,62-65.
    [3]宋金如,龚冶湘,罗明标,肖恺,1998.凹凸棒石粘土吸附铀的性能研究及应用.华东地质学院学报 21,265-272.
    [4]Wu,W.S.;Fan,Q.H.;Lu,S.;Niu,S.;Wang,X.,2006.Effect of Humic Acid on the Sorption and Kinetic Desorption of Radiocaesium Ions on/from Na-Rectorite Studied by the Batch Technique and a Chelating Resin.Adsorption Science and Technology 24,601-610.
    [5]Fan,Q.H.,Shao,D.D.,Hu,J.,Wu,W.S.,Wang,X.K.,2008.Comparison of Ni2+sorption to bare and ACT-graft attapulgite:Effect of pH,temperatures and foreign ions.Surface Science 602,778-785.
    [6]刘文新,1999.不同来源天然伊利石理化性质的对比研究,中国科学院环境生态研究中心博士论文.
    [7]储昭生,2003.中国黄土的表面特征及其与金属离子的作用机理和模式,中国科学院环境生态研究中心博士论文.
    [8]Du,Q.,Sun,Z.X.,Forsling,W.,Tang,H.X.,1997.Acid-Base Properties of Aqueous Illite Surfaces.J.Colloid Interf.Sci.187,221-231.
    [9]Tournassat,C.,Greneche,J.M.,Tisserand,D.,Charlet,L.,2004.The titration of clay minerals Ⅰ.Discontinuous backtitration technique combined with CEC measurements.J.Colloid Interf.Sci.273,224-233.
    [10]Tournassat,C.,Ferrage,E.,Poinsignon,C.,Charlet,L.,2004.The titration of clay minerals Ⅱ.Structure-based model and implications for clay reactivity.J.Colloid Interf.Sci.273,234-246.
    [11]Liu,W.X.,Sun,Z.X.,Forsling,W.,Du,Q.,Tang,H.X.,1999.A coparative study of surface acid-base charactierstic of nature illites from different origins.J.Colliod Interf.Sci.,219,48-61.
    [12]陈长伦,2007.碳纳米管与放射性核素作用机理和模式.中国科学院博士毕业论文.
    [13]李竹云,2002.偶氮氯膦(Ⅲ)分光光度法测定微量铅的研究.食品科学 23,93-96.
    [14]任安平,2006.蒙脱土及改性蒙脱土吸附重金属离子的研究.合肥工业大学硕毕业论文.
    [1]Stumm,W.,Morgan,J.J.,Aquatic chemistry:Chemical Equilibria and rates in natural waters-3rded.New York:John Wiley & Sons,1996.
    [2]储昭生,2003.中国黄土的表面特征及其与金属离子的作用机理和模式,中国科学院环境生态研究中心博士论文.
    [3]Stamm,W.,Chemistry of the solid-water interface:Processes at the mineral-water and particle-water interface in natural systems.Stumm W(eds.),New York:Wiley,1992.
    [4]Soosito,G.,1998.Point of zero of charge.Environ.Sci Technol.32,2815-2819.
    [5]魏俊峰,吴大清,2000.矿物-水界面的表面离子化和络合反应模式,地球科学进展 15,90-96.
    [6]刘逊芬,1999.凹凸棒石的改性及其对流变性能的影响.合肥工业大学硕士学位论文.
    [7]Bond,A.M.,Miao,W.,Raston,C.L.,2000.Mercury(Ⅱ)immobilized on carbon nanotubes:Synthesis,characterization,and redox properties.Langmuir 16,6004-6012.
    [8]Wagner,C.D.,Riggs,W.M.,Davis,L.E.,Moulder,J.F.,Muilenberg,G.E.,Eds.,Perkin-Elmer Corp.,Handbook of X-ray Photoelectron Spectroscopy;Physical Electronics Division:Eden Prairie,MN,1979.
    [9]Haden,W.L,Schwint,Jr.I.A.,1967.Attapulgite:its properties and applications.Ind.Eng.Chem.59,58-69.
    [10]Cao,E.,Bryant,R.,Willianms,D.J.A.,1996.Electrochemical properties of Na-palygorskite.J.Colloids Interf.Sci.179,143-150.
    [11]Zhao,D.,Zhou,J.,Liu,N.,2007.Surface characteristics and photoactivity of silver-modified palygorskite clays coated with nanosized titanium dioxide particles.Mater.Charact.58,249-255.
    [12]Giustetto,R.,Xamena,F.X.L.,Ricchiardi,G.,Bordiga,S.,Damin,A.,Gobetto,R.,Chierotti,M.R.,2005.Maya Blue:A computational and Spectroscope Study.J.Phys.Chem.B 109,19360-19368.
    [13]Boyd,S.A.,Lee,J.F.,Mortland,M.M.,1988.Attenuating organic contaminant mobility by soil modification.Nature 333,345-347.
    [14]Xu,S.,Boyd,S.A.,1994.Cation exchange chemistry of hexadecyltrimethylammonium in a subsoil containing vermiculite.Soil Sci.Soc.Am.J.58,1382-1391.
    [15]Potgieter,J.H.,Potgieter-Vermaak,S.S.,Kalibantonga,P.D.,2006.Heavy metals removal from solution by palygorskite clay.Miner.Eng.19,463-470.
    [16]刘文新,1999.不同来源天然伊利石理化性质的对比研究,中国科学院环境生态研究中心博士论文.
    [17]Chu,Z.S.,Liu W.X.,Tang H.X.,2002.Surface acid-base behaviors of Chinese loess.J.Colloid Interf.Sci.252,426-432.
    [18]Liu,W.X.,Sun,Z.X.,Forsling,W.,Tang,H.X.,1999.A comparative study of Acid-base characteristics of natural illites from different origins.J.Colloid Interf.Sci.219,48-61.
    [19]刘文新,储昭生,汤鸿霄,钱天伟,李书绅,李祯庭,武贵宾,2003.黄土表面酸碱性质研究.环境科学学报 23,6-10.
    [20]周祥,2006.蒙脱土表征和对重金属离子镍Ni(Ⅱ)的吸附研究.中国科学院硕士毕业论文.
    [21]Du,O.,Sun,Z.X.,Forsling,W.,Tang,H.X.,1997.Acid-base properties of aqueous illte surface.J.Colloid Interf.Sci.187,221-231.
    [22]Tournassat,C.,Ferrage,E.,Poinsignon,C.,Charlet,L.,2004.The titration of clay minerals Ⅱ.Structure-based model and implications for clay reactivity.J.Colloid Interf.Sci.273,234-246.
    [23]Davis,J.A.,Coston,J.A.,Kent,D.B.,Fuller,C.C.,1998.Application of the Surface Complexation Concept to Complex Mineral Assemblages.Environ.Sci.Technol.32,2820-2828.
    [24] Herbelin, A. L., Westall, J. C, 1994. FITEQL, A Computer Program for Determination of Chemical Equilibrium Constants from Experimental Data, ver. 3.1; Department of Chemistry, Oregon State University.
    [25] Appelo, C.A.J., Postma, D., 1999. A consistent model for surface complexation on birnessite (dd-MnO2) and its application to a column experiment. Geochim. Cosmochim. Acta 63,3039-3048.
    [26] Pretorius, P.J., Linder, P.W., 2001. The adsorption characteristics of d-manganese dioxide: a collection of diffuse double layer constants for the adsorption of H~+, Cu~(2+), Ni~(2+), Zn~(2+), Cd~(2+) and Pb~(2+). Appl. Geochem. 16, 1067-1082.
    [27] Schindler, P. W., Stumm, W., in "Aquatic Surface Chemistry" (Stumm, W., Ed.), pp. 83-107. Wiley-Interscience, New York, 1987.
    [28] Weng, C.H., 2004. Modeling Pb(II) adsorption onto sandy loam soil. J. Colloid Interf. Sci. 272, 262-270.
    [29] Pretorius, P.J., Linder, P.W., 2001. The adsorption characteristics of d-manganese dioxide: a collection of diffuse double layer constants for the adsorption of H~+, Cu~(2+), Ni~(2+), Zn~(2+), Cd~(2+) and Pb~(2+). Appl. Geochem. 16, 1067-1082.
    [30] Westall, J. C, "FITEQL: A Program for the Determination of Chemical Equilibrium Constants from Experimental Data, Version 2.0," Report 82-02. Department of Chemistry, Oregon State University, Corvallis, OR, 1982.
    [31] Baeyens, B., Bradbury, M.H., 1997. A mechanistic description of Ni and Zn sorption on Na-montmorillonite Part I: Titration and sorption measurements, Journal of Contaminant Hydrology, 27,199-222.
    [32] Duc, M., Gaboriaud, F., Thomas, F., 2005. Sensitivity of the acid-base properties of clays to the methods of preparation and measurement 2. Evidence from continuous potentiometric titrations. J. Colloid Interf. Sci. 289,148-156.
    [33] Heidmann, I., Christl, I., Leu, C, Kretzschmar, R., 2005. Competitive sorption of protons and metal cations onto kaolinite: experiments and modeling. J. Colloid Interf. Sci. 282, 270-282.
    [1]王祥科,发展高放废料高效处理技术,中国科学院科学与技术预见系列报告之一:“技术预见报告2005”(ISBN 7-03-015636-6),科学出版社.
    [2]Abollino,O.,Aceto,M.,Malandrino,M.,Sarzanini,C.,Mentasti,E.,2003.Adsorption of heavy metals on Na-montmorillonite:Effect of pH and organic substances.Water Research 37,1619-1627.
    [3]Parab,H.,Joshi,S.,Shenoy,N.,Lali,A.,Sarma,U.S.,Sudersanan,M.,2006. Determination of kinetic and equilibrium of Co(Ⅱ),Cr(Ⅲ),and Ni(Ⅱ)onto coirpith.Process Biochem.41,609-615
    [4]Wang,X.S.,Huang,J.,Hu,H.Q.,Wang,J.,Oin,Y.,2007.Determination of kinetic and equilibrium parameters of the batch adsorption of Ni(Ⅱ)from aqueous solutions by Na-mordenite.J.Hazard.Mater.142,468-476
    [5]Mendes,F.D.,Martins,A.H.,2004.Selective sorption of nickel and cobalt from sulphate solutions using chelating resins.Int.J.Miner.Process.74,359-371.
    [6]Tahir,S.S.,Rauf,N.,2003.Thermodynamic studies of Ni(Ⅱ)adsorption onto bentonite from aqueous solution.J.Chem.Thermodyn.35,2003-2009.
    [7]Oliveira,E.A.,Montanher,S.F.,Andrade,A.D.,Nobrega,J.A.,Rollemberg,M.C.,2005.Equilibrium studies for the sorption of chromium and nickel from aqueous solutions using raw rice bran.Process Biochem.40,3485-3490.
    [8]Strathmann,T.J.,Myneni,S.C.B.,2005.Effect of soil Fulvic acid on Nickel(Ⅱ)sorption and bonding at the aqueous-boehmite(γ-AlOOH)interface.Environ.Sic.Technol.39,4027-4034.
    [9]Stumm,W.,Chemistry of the Slid-Water Interface:Processes at the Mineral-Water and Particle-Water Interface in Natural System;John Wily and Sons:New York,1992.
    [10]Sparks,D.L.,Scheidegger,A.M.,Strawn,D.G.,Scheckel,K.G.,Kinetics and mechanisms of metal sorption at the mineral-water interface.In Mineral-Water Interfacial Reactions:Kinetics and Mechanisms;Sparks,D.L.,Grundl,T.J.,Eds.;American Chemistry Society:Washington,DC,1998;pp 108-135.
    [11]Wu,W.S.,Fan,Q.H.,Xu,J.Z.,Niu,Z.W.,Lu,S.S.,2007.Sorption-desorption of Th(Ⅳ)on attapulgite:Effects of pH,ionic strength and temperature.Appl.Radiat.Isot.65,1108-1114.
    [12]Cao,E.,Bryant,R.,Willianms,D.J.A.,1996.Electrochemical properties of Na-palygorskite.J.Colloids lnterf.Sci.179,143-150.
    [13]周祥,2006.蒙脱土表征和对重金属离子镍Ni(Ⅱ)的吸附研究.中国科学院硕士毕业论文.
    [14]Fan,Q.H.,Wu,W.S.,Song,X.P.,Xu,J.Z.,Hu,J.,Niu,Z.W.,2008.Effect of humic acid,fulvic acid,pH and temperature on the sorption-desorption of Th(Ⅳ)on attapulgite.Radiochim.Acta 96,159-165.
    [15]Chang,P.P.,Wang,X.K.,Yu,S.M.,Wu,W.S.,2007.Sorption of Ni(Ⅱ)on Na-rectorite from aqueous solution:Effect of pH,ionic strength and temperature.Colloids Surface A.302,75-81.
    [16]Xu,D.,Shao,D.D.,Chen,C.L.,Ren,A.P.,Wang,X.K.,2006.Effect of pH and fulvic acid on sorption and complexation of cobalt onto bare and FA bound MX-80 bentonite.Radiochim.Acta 94,97-102.
    [17]Chen,C.L.,Wang,X.L.,2006.Adsorption of Ni(Ⅱ)from Aqueous Solution Using Oxidized Multi-walled Carbon Nanotubes.Ind.Eng.Chem.Res.45,9144-9149.
    [18]Potgieter,J.H.,Potgieter-Vermaak,S.S.,Kalibantonga,P.D.,2006.Heavy metals removal from solution by palygorskite clay.Minerals Engineering.19,463-470.
    [19]Demirba,E.,Kobya,M.,Oncel,S.,2002.Removal of.Ni(Ⅱ)from aqueous solution by adsorption onto hazelnut shell activated. Carbon: equilibrium studies. Bioresource Technol. 84, 291-293.
    [20] Kadirvelu, K., Thamaraiselvi, K., Namasivayam, C, 2001. Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from coirpith. Separation Purification Technol. 24, 497-505.
    [21] Echeverria, J., Indurain, J., Churio, E., Garrido, J., 2003. Simultaneous effect of pH, temperature, ionic strength, and initial concentration on the retention of Ni on illite. Colloid Surf. A. 218,175-187.
    [22] Dzombak, D.A., Morel, F.M.M., Surface complexation modeling: Hydrous Ferric oxide; John Wiley & Sons: New York, 1990.
    [23] Kowal-Fouchard, A., Drot, R., Simoni, E., Ehrhardt, J.J., 2004. Use of spectroscopic techniques for uranium(VI)/montmorillonite interaction modeling. Environ. Sci. Technol. 38,1399-1407.
    [24] Wang, X.K., Liu, X.P., 2004. Effect of pH and concentration on the diffusion of radiostrontium in compacted bentonite — a capillary experimental study. Appl. Radiat. Isotopes 61,1413-1418.
    [25] Wang, X.K., Chen, C.L., Zhou, X., Tan, X.L., Hu, W.P., 2005c. Diffusion and sorption of U(VI) in compacted bentonite studied by a capillary method. Radiochim. Acta 93, 273-278.
    [26] Wang, X.K., Tan, X.L., Chen, C.L., Chen, L., 2005d. The concentration and pH dependent diffusion of ~(137)Cs in compacted bentonite by using capillary method.J. Nucl. Mater. 345,184-191.
    [27] Baeyens, B., Bradbury, M.H., 1997. A mechanistic description of Ni and Zn sorption on Na-montmorillonite. Part I: Titration and sorption measurements. J. Contam. Hydrol. 27,199-222.
    [28] Hayes, K.F., Redden, G, Ela, W, Leckie, J.O., 1991. Surface complexation models: An evaluation of model parameter estimation using FITEQL and oxide mineral titration data. J. Colloid Interface Sci. 142, 448-469.
    [29] Wang, X.K., Rabung, Th., Geckeis, H., Panak, P.J., Klenze, R., Fanghaenel, Th., 2004. Effect of humic acid on the sorption of Cm(III) onto γ-Al_2O_3 studied by the time resolved laser fluorescence spectroscopy. Radiochim. Acta 92, 691-695.
    [30] Chen, C.L., Li, X.L., Zhao, D.L., Tan, X.L., Wang, X.K., Adsorption kinetic, thermodynamic and desorption studies of Th(IV) on oxidized multi-wall carbon nanotubes. Colloids and surf. A. 2007,302: 449-454.
    [31] Genc-Fuhrman, H., Tjell, J.C., Mcconchie, D., 2004. Adsorption of arsenic from water using activated neutralized red mud. Environ. Sci. Technol. 38, 2428-2434.
    [32] Chen, C.L., Wang, X.K., Jiang, H., Hu, W.P., 2007. Direct observation of macromolecular structures of humic acid by AFM and SEM. Colloid Surf. A. 302,121-125.
    [1] Krishna, B.S., Murty, D.S.R., Prakash, B.S.J., 2001. Surfactant-modified clay as adsorbent for chromate. Appl. Clay Sci. 20, 64-71.
    [2] Bouberka, Z., Kacha, S., Elmaleh, M., Elmaleh, S., Derriche, Z., 2005. Sorption study of an acid dye from an aqueous solutions using modified clays, J. Hazard. Mater. 119,117-124.
    [3] Filho, N.L.D., Carmo, D.R.D., 2006. Study of an organically modified clay: selective adsorption of heavy metal ions and voltammetric determination of mercury(II). Talanta 68, 919-927.
    [4] Liu, P., Guo, J., 2006. Polyacrylamide grafted attapulgite (PAM-ATP) via surface-initiated atom transfer radical polymerization (SI-ATRP) for removal of Hg(II) ion and dyes. Colloid Surface A 282-283, 498-503.
    [5] Filho, N.L D., Gushikem, Y., Polito, W.L., 1995. 2-Mercaptobenzothiazole-clay as matrix for sorption and preconcentration of some heavy metals from aqueous solution. Anal. Chim. Acta 306, 167-172.
    [5] Chisholm, J.E., 1992. Powder-diffraction patterns and structural models for palygorskite. Can. Miner. 30, 61-73.
    [6] Shirvani, M., Shaiatmadari, H., Kalbasi, M., Nourbakhsh, F., Najafi, B., 2006a. Sorption of cadmium on palygorskite, sepiolite and calcite: Equilibria and organic ligand affected kinetics. Colloid Surface A. 287,182-190.
    [7] Serratosa, C.L., 1978. Surface Properties of Fibrous Clay Mineral (palygorskite and Sepiolite): In Proc. 6th Inter. Clay Conf. Oxford, M.M. Mortland and V.C. Farmer, eds., Elsevier Amsterdam, 99-109.
    [8] Shirvani, M., Kalbasi, M., Shariatmadari, H., Nourbakhsh, F., Najafi, B., 2006b. Sorption-desorption of cadmium in aqueous palygorskite, sepiolite, and calcite suspensions: Isotherm hysteresis. Chemosphere 65, 2178-2184.
    [9] Giustetto, R., Xamena, F.X.L., Ricchiardi, G., Bordiga, S., Damin, A., Gobetto, R., Chierotti, M.R., 2005. Maya blue: a computational and spectroscope study. J. Phys. Chem. B 109,19360-19368.
    [10] Huang, J., Liu, Y., Jin, Q., Wang, X., Yang, J., 2007. Adsorption studies of a water soluble dye, Reactive Red MF-3B, using sonication surfactant-modified attapulgite clay. J. Hazard. Mater. 143,541-548.
    
    [11] Lei, Z., Zhang, Q., Wang, R., Ma, G, Jia, C, 2006. Clean and selective Baeyer-Villiger Oxidation of ketones with hydrogen peroxide catalyzed by Sn-palygorskite. J. Organometallic Chem. 691,5767-5773.
    
    [12] Li, A., Wang, A., 2005. Synthesis and properties of clay-based superabsorbent composite. Eur. Polym. J. 41,1630-1637.
    [13] Haden, W.L., Schwint, Jr.I.A., 1967. Attapulgite: its properties and applications. Ind. Eng. Chem. 59, 58-69.
    [14] Cao, E., Bryant, R., Willianms, D.J.A., 1996. Electrochemical properties of Na-palygorskite. J. Colloid Interface Sci. 179,143-150.
    [15] Zhao, D., Zhou, J., Liu, N., 2007. Surface characteristics and photoactivity of silver-modified palygorskite clays coated with nanosized titanium dioxide particles. Mater. Charact. 58, 249-255
    [16] Fan, Q.H., Shao, D.D., Hu, J., Wu, W.S, Wang, X.K., 2008. Comparison of Ni2+ sorption to bare and ACT-graft attapulgite: Effect of pH, temperatures and foreign ions. Surface Science 602, 778-785.
    [17] Wang, X.S., Huang, J., Hu, H.Q., Wang, J., Qin, Y., 2007. Determination of kinetic and equilibrium parameters of the batch adsorption of Ni(II) from aqueous solutions by Na-mordenite. J. Hazard. Mater. 142,468-476
    [18] Wang, X.K., Chen, C.L., Du, J.Z., Tan, X.L., Xu, D., Yu, S.M., 2005. Effect of pH and aging time on the kinetic dissociation of ~(243)Am(III) from humic acid coated γ-Al_2O_3: A chelating resin exchange study. Environ. Sci. Technol. 39, 7084-7088.
    [19] Wang, X.K., Chen, C.L., Hu, W.P., Ding, A.P., Xu, D., Zhou, X, 2005, Sorption of ~(243)Am(III) to Multi-wall Carbon Nanotubes, Environ. Sci. Technol. 39, 2856-2860.
    
    [20] Hanif, M.A., Nadeem, R., Zafar, M.N., Akhtar, K., Bhatti, H.N., 2007. Kinetic studies for Ni(II) biosorption from industrial wastewater by Cassia fistula (Golden Shower) biomass. J. Hazard. Materials, 145, 501-505.
    [21] Boyd, S.A., Lee, J.F., Mortland, M.M., 1988. Attenuating organic contaminant mobility by soil modification. Nature, 333, 345-347.
    [22] Xu, S., Boyd, S.A., 1994. Cation exchange chemistry of hexadecyltrimethylammonium in a subsoil containing vermiculite. Soil Sci. Soc. Am. J. 58,1382-1391.
    [23] Wang, X.K., 2006. Adsorption of Ni(II) from aqueous solution using oxidized multiwall carbon nanotubes. Ind. Eng. Chem. Res. 45, 9144-9149.
    [24] Chang, P., Wang, X., Yu, S., Wu, W., 2007. Sorption of Ni(II) on Na-rectorite from aqueous solution: Effect of pH, ionic strength and temperature. Colloid Surface A. 302, 75-81.
    [25] Potgieter, J.H., Potgieter-Vermaak, S.S., Kalibantonga, P.D., 2006. Heavy metals removal from solution by palygorskite clay. Miner. Eng. 19,463-470.
    [26] Dzombak, D.A., Morel, F.M.M., Surface complexation modeling: Hydrous ferric oxide; John Wiley & Sons: New York, 1990.
    [27] Kowal-Fouchard, A., Drot, R., Simoni, E., Ehrhardt, J.J., 2004. Use of spectroscopic techniques for uranium(VI)/montmorillonite interaction modeling. Environ. Sci. Technol. 38,1399-1407.
    [28] Wang, X.K., Chen, C.L., Zhou, X., Tan, X.L., Hu, W.P., 2005. Diffusion and sorption of U(VI) in compacted bentonite studied by a capillary method. Radiochim. Acta 93, 273-278.
    
    [29] Wang, X.K., Tan, X.L., Chen, C.L., Chen, L., 2005d. The concentration and pH dependent diffusion of ~(137)Cs in compacted bentonite by using capillary method. J. Nucl. Mater. 345,184-191.
    
    [30] Wang, X.K., Rabung, Th., Geckeis, H., Panak, P.J., Klenze, R., Fanghaenel, Th., 2004. Effect of humic acid on the sorption of Cm(III) onto γ-Al_2O_3 studied by the time resolved laser fluorescence spectroscopy. Radiochim. Acta 92, 691-695.
    [31] Chen, C.L, Wang, X.K., 2007. Influence of pH, soil humic/fulvic acid, ionic strength and foreign ions on sorption of thorium(IV) onto γ-Al_2O_3. Appl. Geochem. 22,436-445.
    [32] Echeverria, J., Indurain, J., Churio, E., Garrido, J., 2003. Simultaneous effect of pH, temperature, ionic strength, and initial concentration on the retention of Ni on illite. Colloid Surf. A. 218,175-187.
    [33] Genc-Fuhrman, H., Tjell, J.C., Mcconchie, D., 2004. Adsorption of arsenic from water using activated neutralized red mud. Environ. Sci. Technol. 38,2428-2434.
    [34] Nusinelli, M., Cascisri, E, Businelli, D., Gigliotti, G, 2003. Mechanisms of Pb(II) sorption and desorption at some clays and goethite-water interfaces. Agronomie, 23,219-225.
    [1] Mellah, A., Chegrouche, S., 1997. The removal of Zinc from aqueous solutions by natural bentonite. Wat. Res. 31, 621-629.
    [2] Fiol, N., Villaescusa, I., Mart'inez, M., Miralles, N., Poch, J., Serarols, J., 2006. Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste. Separation Purification Technol. 50,132-140.
    [3] Rouff, A.A., Reeder, RJ., Fisher, N.S., 2002. Pb(II) sorption with calcite: A radiotracer study. Aquatic Geochem. 8,203-228.
    [4] Zhuang, J., Yu, G.R., 2002. Effects of surface coatings on electrochemical properties and contaminant sorption of clay minerals. Chemosphere 49, 619-628.
    [5] Wang, X.K., Tan, X.L., Chen, C.L., Chen, L., 2005a, The concentration and pH dependent diffusion of 137Cs in compacted bentonite by using capillary method. J. Nucl. Mater. 345,184-191.
    [6] Weng, C.H., 2004. Modeling Pb(II) adsorption onto sandy loam soil. J. Colloids Interf. Sci. 272, 262-270.
    [7] Stumm, W., Chemistry of the Solid-Water Interface: Processes at the Mineral-Water and Particle-Water Interface in Natural Systems, Wiley, New York, 1992.
    [8] Xu, D., Chen, C.L., Tan, X.L., Wang, X.K., 2007. Sorption of Th(IV) on Na-rectorite: effect of HA, ionic strength, foreign ions and temperature. Appl. Geochem. 22, 2892-2906.
    [9] Sauve, S., Martinez, C.E., McBride, M.B., Hendershot, W.H., 2000. Adsorption of free lead by pedogenic oxides, ferrihydrite and leaf compost. Soil Sci. Soc. Am. J. 64, 595-599.
    [10] Kabata-Pendias, A., Pendias, H., Trace elements in soils and Plants CRC Press, London, 1992, p365.
    [11] Ponizovsky, A.A., Tsadilas, C.D., 2003. Lead retention by Alfisol and clinoptilolite: catioin balance and pH effect. Geoderma 115, 303-312.
    [12] Elzinga, E.J., Sparks, D.L., 2001. Reaction Condition Effects on Nickel Sorption Mechanisms in Illite-Water Suspensions, Soil Sci. Soc. Am. J. 65, 94-101.
    [13] Businelli, M., Casciari, F., Businelli, D., Gigliotti, G., 2003. Mechanisms of Pb (II) sorption and desorption at some clays and goethite-water interfaces. Agronomie 23, 219-225.
    [14] Ho, Y.S., Mckay, G., 1999. The sorption of lead ions on peat. Water Res. 33, 578-584.
    [15] Weng, C.H., 2004. Modeling Pb(II) adsorption onto sandy loam soil. J. Colloids Interf. Sci. 272, 262-270.
    [16] Stumm, W., Chemistry of the Solid-Water Interface: Processes at the Mineral-Water and Particle-Water Interface in Natural Systems, Wiley, New York, 1992.
    [17] Westall, J. C, "FITEQL: A Program for the Determination of Chemical Equilibrium Constants from Experimental Data, Version 2.0," Report 82-02. Department of Chemistry, Oregon State University, Corvallis, OR, 1982.
    [18] Wang, X.K., Chen, Y.X., Wu, Y.C., 2004. Diffusion of Eu(III) in compacted bentonite—Effect of pH, solution concentration and humic acid. Appl. Radiat. Isot. 60,963-969.
    [19] Xu, D., Wang, X.K., Chen, C.L., Zhou, X., Tan, X.L., 2006, Influence of Soil Humic Acid and Fulvic Acid on Sorption of Thorium(IV) on MX-80 Bentonite. Radiochim. Acta 94, 429-434.
    [20] Wang, X.K., Chen, C.L., Zhou, X., Tan, X.L., Hu, W.P., 2005. Diffusion and sorption of U(VI) in compacted bentonite studied by a capillary method. Radiochim. Acta 93, 273-278.
    [21] Montavon G., Markai S., Andres Y., Grambow B., 2002. Complexation studies of Eu(III) with alumina-bound polymaleic acid: effect of organic polymer loading and metal ion concentration, Environ. Sci. Technol. 36,3303-3309.
    [22] Wauters J., Cremers A., 1996. Effect of Particle Concentration and Fixation on Radiocesium Sorption, Environ. Sci. Technol. 30,2892-2898.
    [23] Neaman, A., Singer, A., 2000. Rheological Properties of Aqueous Suspensions of Palygorskite. Soil Sci. Soc. Am. J. 64,427-436.
    [24] Kowal-Fouchard, A., Drot, R., Simoni, E., Ehrhardt, J.J., 2004. Use of spectroscopic techniques for uranium(VI)/montmorillonite interaction modeling. Environ. Sci. Technol. 38,1399-1407.
    [25] Chen, C, Coleman, M., Katz, L., 2006. Bridging the Gap between Macroscopic and Spectroscopic Studies of Metal Ion Sorption at the Oxide/Water Interface: Sr(II), Co(II), and Pb(II) Sorption to Quartz. Environ. Sci. Technol. 40,142-148.
    [26] Christl, I., Kretzschmar, R., 1999. Competitive sorption of copper and lead at the oxide-water interface: Implications for surface site density. Geochim. Cosmochim. Acta 63,2929-2938.
    [27] Hizal, J., Apak, R. 2005. Modeling of copper(II) and lead(II) adsorption on kaolinite-based clay minerals individually and in the presence of humic acid. J.Colloid Interf. Sci. 295,1-13.
    [28] Chang, P., Wang, X., Yu, S., Wu, W., 2007. Sorption of Ni(II) on Na-rectorite from aqueous solution: Effect of pH, ionic strength and temperature. Colloid Surf. A: Physicochem. Eng. Aspects 302, 75-81.
    [29] Genc-Fuhrman, H., Tjell, J.C., Mcconchie, D., 2004. Adsorption of arsenic from water using activated neutralized red mud. Environ. Sci. Technol. 38, 2428-2434.
    [30] Tahir, S.S., Rauf, N., 2003. Thermodynamic studies of Ni(II) adsorption onto bentonite from aqueous solution. J. Chem. Thermodynamics 35, 2003-2009.
    [31] Potgieter, J.H., Potgieter-Vermaak, S.S., Kalibantonga, P.D., 2006. Heavy metals removal from solution by palygorskite clay. Minerals Engineering. 19,463-470.
    [32] Shirvani, M., Shaiatmadari, H., Kalbasi, M., Nourbakhsh, F., Najafi, B., 2006. Sorption of cadmium on palygorskite, sepiolite and calcite: Equilibria and organic ligand affected kinetics. Colloid Surf. A: Physicochem. Eng. Aspects 287,182-190.
    [1]Naveau,A.,Monteil-Rivera,F.,2005.Sorption of europium on a goethite surface:infulence of background electrolyte.J.Cont.Hydrol.77,1-16.
    [2]Wang,X.K.,Zhou,X.,Du,J.Z.,Hu,W.P.,Chen,C.L.,Chen,Y.X.,2006,Using of chelating resin to study the kinetic desorption of Eu(Ⅲ)from humic acid-Al_2O_3 colloid surfaces.Surf.Sci.600,478-483.
    [3]Wang,X.K.,Dong,W.M.,Dai,X.X.,Wang,A.X.,Du,J.Z.,Tao,Z.Y.,2000.Sorption and desorption of Eu and Yb on alumina:Mechanisms and effect of fulvic acid.Appl.Radiat.Isot.52,165-173.
    [4]Takahashi,Y.,Kimura,T.,Minai,Y.,2002.Direct observation of Cm(Ⅲ)-fulvic acid-montmorillonite hybrid by laser-induced fluorescence spectroscopy.Geochim.Cosmochim.Acta 66,1-12.
    [5]Bradbury,M.H.,Baeyens,B.,Geckeis,H.,Rabung,Th.,2005.Sorption of Eu(Ⅲ)/Cm(Ⅲ)on Ca-montmoillonite and Na-illite.Part 2:Surface complexation modeling.Geochim.Cosmochim.Acta 69,5403-5412.
    [6]Tertre,E.,Berger,G.,Simoni,E.,Castet,S.,Giffaut,E.,Loubet,M.,Catalette,H.,2006.Europium retention onto clay minerals from 25 to 150℃:Experimental measurements,spectroscopy features and sorption modeling.Geochim.Cosmochim.Acta 70,4563-4578.
    [7]Murray,H.H.,2000.Traditional and new applications for kaolin,smectite,and palygorskite: a general overview. Appl. Clay Sci. 17,207-211.
    [8] Alvarez-Ayuso, E., Garcia-Sanchez, A., 2003. Palygorskite as a feasible amendment to stabilize heavy metal polluted soils. Environ. Pollut. 125, 337-344.
    [9] Wu, W.S., Fan, Q.H., Xu, J.Z., Niu, Z.W., Lu, S.S., 2007. Sorption-desorption of Th(IV) on attapulgite: effects of pH, ionic strength and temperature. Appl. Radiat. lost. 65,1108-1114.
    [10] Fan, Q.H., Shao, D.D., Hu, J., Wu, W.S., Wang, X.K., 2008. Comparison of Ni~(2+) sorption to bare and ACT-graft attapulgite: Effect of pH, temperatures and foreign ions. Surf. Sci. 602, 778-785.
    [11] Schindler, P. W., and Stumm, W., in "Aquatic Surface Chemistry" (Stumm, W., Ed.), pp. 83-107. Wiley-Interscience, New York, 1987.
    [12] Pretorius, P.J., Linder, P.W., 2001. The adsorption characteristics of d-manganese dioxide: a collection of diffuse double layer constants for the adsorption of H~+, Cu~(2+), Ni~(2+), Zn~(2+), Cd~(2+) and Pb~(2+). Appl. Geochem. 16, 1067-1082.
    [13] Dzombak, D.A., Morel, F.M.M., Surface complexation modeling: Hydrous Ferric oxide; John Wiley & Sons: New York, 1990.
    [14] Cao, E., Brayant, R., Williams, J.D.J.A., 1996. Electrochemical properties of Na-attapulgite. J. Colloid Interf. Sci. 179,143-150.
    [15] Neaman, A., Singer, A., 2000. Rheological Properties of Aqueous Suspensions of Palygorskite. Soil Sci. Soc. Am. J. 64, 427-436.
    [16] Kowal-Fouchard, A., Drot, R., Simoni, E., Ehrhardt, J.J., 2004. Use of spectroscopic techniques for uranium(VI)/montmorillonite interaction modeling. Environ. Sci. Technol. 38,1399-1407.
    
    [17] Sinitsyn, V.A., Aja, S.U., Kulik, D.A., Wood, S.A., 2000. Acid-base surface chemistry and sorption of some lanthanides on K~+-saturated Marblehead illite: I. Results of an experimental investigation. Geochim. Cosmochim. Acta 64, 185-194.
    
    [18] Beall, GW, Ketelle, B.H., Haire, R.G, O'kelley, GG, 1979. Sorption behavior of trivalent actinides and rare earths on clay minerals. In Radioactive Waste in Geologic Storage (ed. S. Fried). P. 201-203. ACS Sympoium Series 100.
    [19] Xu, D., Ning, Q.L., Zhou, X, Chen, C.L., Tan, X.L., Wu, A.D., Wang, X.K., 2005. Sorption and desorption of Eu(III) on alumina. J. Radioanal. Nucl. Chem. 266,419-424.
    [20] Bradbury, M.H., Baeyens, B., 2002. Sorption of Eu on Na- and Ca-montmorillonites: Experimental investigations and modelling with cation exchange and surface complexation. Geochim. Cosmochim. Acta 66, 2325-2334.
    [21] Kosmulski, M., 1997. Adsorption of trivalent cations on silica. J. Colloid Interf. Sci. 195, 395-403.
    [22] Rabung, Th., Geckeis, H., Kim, J., Beck, H.P., 1998. Sorption of Eu(III) on natural hematite: Application of a surface complexation model. J. Colloid Interf. Sci. 208,153-161.
    [23] Bauer, A., Rabung, T., Claret, F., Schafer, T., Buckau, G., Fanghanel, T., 2005. Infulence of temperatures on sorption of europium onto smectite: The role of organic contaminants. Appl. Clay Sci. 30,1-10.
    [24] Stumpf, T., Bauer, A., Coppin, F., Kim, J., 2001. Time-resolved laser fluoresence spectrocopy study of the sorption of Cm(III) onto smectite and kaolinite. Environ. Sci. Technol. 35, 3691-3694.
    [25] Geckeis, H., Rabung, Th., Ngomanh, T., Kim, J.I., Beck, H.P., 2002. Humic colloid-borne natural polyvalent metal ions: Dissociation Experiment. Environ. Sci. Technol. 36,2946-2952.
    [26] Fairhurst, A.J., Warwick, P., 1998. The influence of humic acid on europium-mineral interactions. Colloid Surf. A145, 229-234.
    [27] Takahashi Y., Minai, Y., Kimura, T., Tominaga, T., 1998. Adsorption of europium(III) and americium(III) on kaolinite and montmorillonite in presence of humic acid-Influence of pH and salt concentration. J. Radioanal. Nucl. Chem. 234, 277-282.
    [28] Takahashi Y., Minai, Y., Ambe, H., Makide, Y., Ambe, F., 1999. Comparison of adsorption behavior of multiple inorganic ions on kaolinite and silica in the presence of humic acid using the multitracer technique. Geochim. Cosmochim. Acta 63, 815-836.
    [29] Hizal, J., Apak, R. 2005. Modeling of copper(II) and lead(II) adsorption on kaolinite-based clay minerals individually and in the presence of humic acid. J. Colloid Interf. Sci. 295,1-13.
    [30] Westall, J. C., "FITEQL: A Program for the Determination of Chemical Equilibrium Constants from Experimental Data, Version 2.0," Report 82-02. Department of Chemistry, Oregon State University, Corvallis, OR, 1982.
    [31] Mercier. F., Alliot, C., Bion, L., Thromat, N., Toulhoat, P., 2006. XPS study of Eu(III) coordination compounds: Core levels binding energies in solid mixed-oxo-compounds Eu_mX_xO_y. Journal of Electron Spectroscopy and Related Phenomena 150, 21-26.
    [32] Bond, A.M., Miao, W., Raston, C.L., 2000. Mercury(II) immobilized on carbon nanotubes: Synthesis,characterization, and redox properties. Langmuir 16, 6004-6012.
    [33] Okpalugo, T.I.T., Papakonstantinou, P., Murphy, H., McLaughlin, J., Brown, N.M.D., 2005. High resolution XPS characterization of chemical functionalized MWCNTs and SWCNTs. Carbon 43,153-161.
    [34] Park, S.J., Kim, Y.M., 1997. Influence of anodic treatment on heavy metal ion removal by activated carbon fibers. J. Colloid Interf. Sci. 278, 276-281.
    [35] Wang, Y.Q., Viswanathan, H., Audi, A.A., Sherwood, P.M.A., 2000. X-ray photoelectron spectroscopic studies of carbon fiber surfaces. 22. Comparison between surface treatment of untreated and previously surface-treated fibers. Chem. Mater. 12,1100-1107.
    [1]丁国清,张茂林,吴王锁,2006.几种有机物对Al2O3吸附Eu(Ⅲ)和Am(Ⅱ)的影响.核化学与放射化学 8,40-243.
    [2]蔡龙飞,陈国树,2003.凹凸棒石粘土动态法分离钍(Ⅳ)的研究.江西科学21,84-87.
    [3]Xu,D.,Wang,X.K.,Chen,C.L.,Zhou,X.,Tan,X.L.,2006.Influence of soil humic acid and fulvic acid on sorption of thorium(Ⅳ)on MX-80 bentonite.Radiochim.Acta,94,429-434.
    [4]Reiller,P.,Casanova,F.,Moulin,V.,2005.Influence of addition order and contact time on thorium(Ⅳ)retention by hematite in the presence of humic acids.Environ.Sci.Technol.39,1641-1648.
    [5]郑自立,宋绵新,易发成,李虎杰,田煦,1997.中国坡缕石[M].p33-34.
    [6]宋金如,龚冶湘,罗明标,肖恺,1998.凹凸棒石粘土吸附铀的性能研究及应用.华东地质学院学报 21,265-272.
    [7]Murray,H.H.,2000.Traditional and new applications for kaolin,smectite,and palygorskite:a general overview.Appl.Clay Sci.17,207-211.
    [8]Alvarez-Ayuso,E.,Garcia-Sanchez,A.,2003.Palygorskite as a feasible amendment to stabilize heavy metal polluted soils.Environ.Pollut.125,337-344.
    [9]Zev Gerstl,Bruno Yaron,1978.Adsorption and desorption of parathion by attapulgite as affected by the mineral structure.J.Agric.Food Chem.26,569-573.
    [10]Cao,E.,Bryant,R.,Willianms,D.J.A.,1996.Electrochemical properties of Na-palygorskite.J.Colloids Interf.Sci.179,143-150.
    [11]Chen,C.L.,Wang,X.K.,2006.Adsorption of Ni(Ⅱ)from Aqueous Solution Using Oxidized Multiwall Carbon Nanotubes.Ind.Eng.Chem.Res.45,9144-9149.
    [12]Hanif,M.A.,Nadeem,R.,Zafar,M.N.,Akhtar,K.,Bhatti,H.N.,2007.Kinetic studies for Ni(Ⅱ)biosorption from industrial wastewater by Cassia fistula (Golden Shower)biomass.J.Hazard.Materials 145,501-505.
    [13]Osthols,E.,Bruno,J.,Grenthe,I.,1994.On the influence of carbonate on mineral dissolution:Ⅲ.The solubility of microcrystalline ThO_2 in CO_2-H_2O media.Geochim.Cosmochim.Acta 58,613-623.
    [14]Xu,D.,Wang,X.K.,Chen,C.L.,Zhou,X.,Tan,X.L.,2006.Influence of soil humic acid and fulvic acid on sorption of thorium(Ⅳ)on MX-80 bentonite[J].Radiochim.Acta 94,429-434.
    [15]Yu,S.M.,Chen,C.L.,Chang,P.P.,Wang,T.T.,Lu,S.S.,Wang,X.K.,2007.Adsorption of Th(Ⅳ)onto Al-pillared rectorite:Effect of pH,ionic strength, temperature,soil humic acid and fulvic acid.Applied Clay Sci.38,219-216.
    [16]Wang,X.K.,Chen,C.L,Du,J.Z.,Tan,X.L.,Xu,D.,Yu,S.M.,2005.Effect of pH and aging time on the kinetic dissociation of ~(243)Am(Ⅲ)from humic acid coated γ-Al_2O_3:A chelating resin exchange study.Environ.Sci.Technol.,39,7084-7088.
    [17]王祥科,郑善良,2005.荧光衰减光谱法研究Eu(Ⅲ)在氧化铝表面的化学形态.核化学与放射化学 27,108-112.
    [18]Chen,C.L.,Li,X.L.,Zhao,D.L.,Tan,X.L.,Wang,X.K.,2007.Adsorption kinetic,thermodynamic and desorption studies of Th(Ⅳ)on oxidized multi-wall carbon nanotubes.Colloids and surf.A 302,449-454.
    [19]Shirvani,M.,Shaiatmadari,H.,Kalbasi,M.,Nourbakhsh,F.,Najafi,B.,2006.Sorption of cadmium on palygorskite,sepiolite and calcite:Equilibria and organic ligand affected kinetics.Colloids Surf.A 287,182-190.
    [20]Davis,J.A.,1984.Complexation of trace metals by adsorbed natural organic matter Geochim.Cosmochim.Acta 48,679-691.
    [21]Wang,X.K.,Rabung,Th.,Geckeis,H.,Panak,P.J.,Klenze,R.,Fanhanel,Th.,2004.Effect of humic acid on the sorption of Cm(Ⅲ)onto γ-Al_2O_3 studied by the time resolved laser fluorescence spectroscopy.Radiochim.Acta 92,691-695.
    [22]Strathmann,T.J.,Myneni,S.C.B.,2005.Effect of soil Fulvic acid on Nickel(Ⅱ)sorption and bonding at the aqueous-boehmite(γ-AlOOH)interface.Environ.Sci.Technol.39,4027-4034.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700