石蜡圆管外相变蓄热与释热规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源、环境与节能是全球面临的紧迫和重要工作,要加强新能源与可再生能源的利用,减少常规能源的消耗。实施能量短期或长期蓄存以达到能量补充和再利用目的。相变蓄能技术具有蓄能密度高、易匹配、易控制的众多优点,相变蓄能的研究与应用得到广泛关注。本文将对石蜡相变材料的相变传热过程进行理论与实验研究。
     对相变传热数学模型和求解方法的研究。介绍对比一般的相变传热模型,研究几种求解方法的主要思想,本文研究圆管外相变材料的相变传热简化数学模型。
     圆管外石蜡相变蓄热熔化规律的实验研究。建立一个小型圆管外石蜡蓄热实验系统,研究石蜡在不同位置的相变规律,分析自然对流对熔化的影响,得出熔化时间与熔化厚度的优化值;研究不同加热水温与不同水流量对石蜡熔化规律的影响;研究单热源与双热源对石蜡熔化影响的不同。
     圆管外石蜡相变释热凝规律的实验研究。分析石蜡在圆管外不同位置的凝规律,自然对流对释热过程的影响;研究不同冷源温度影响凝过程的差异性,得出自然对流出现的临界启动温差;研究不同的流量对相变造成的不同影响;以及分析比较单冷源与双冷源造成凝过程的差别。
Energy, environment and energy saving have already been the world’s urgent and important work. New and renewable energy should be used to reduce conventional energy’s consumption. The short-term or long-term energy stored technique would be suitable method to supply and reuse energy. Due to the merits of high-density energy storage, easy to match and easy to control, the research and application of Phase Change Thermal Energy Storage (PCTES) technique has drawn more attention. This paper will research the heat transfer process of paraffin phase change in theoretical and experimental aspects.
     The mathematical models and methods of phase change heat transfer were studied. And a simplified heat transfer mathematical model of pipe outside phase change was researched in this paper.
     Experimental study on paraffin melting process’s law of phase change outside pipe was carried out in different locations and the impact of natural convection to melting process was analysed. The optimal melting time and paraffin thickness have been gained. Different impacts caused by different water temperature and flow to paraffin melting were researched. Contrast on different impacts to paraffin melting process between one heat source and two heat sources.
     In heat release experiment, the paraffin solidification law of phase change outside pipe was carried out in different locations and the impact of natural convection to solidification was analysed. By contrasting on the impacts of different water temperature, a critical temperature different activating natural convection has been gained. Comparing with one cold source, two cold sources would cause different effects to solidification.
引文
[1] T.Asashina, K.Tajiri, and M.Kosaka, Thermal properties of organic and inorganic thermal storage materials in direct contact with heat carriers, High Temperature and High Pressures, 1992, 24: 415~420
    [2] A.Abhat, Low temperature latent heat thermal energy storage: heat storage materials, Solar Energy, 1983, 30(4): 313~332
    [3]贺岩峰,张会轩,燕淑春,热能储存材料研究进展,现代化工,1994,4:8~11
    [4]付丰,陈之航,相变潜热蓄热,能源研究与信息,1991,3(4):10~13
    [5]培克曼,吉荆,蓄热技术及其应用[M],北京:机械工业出版社,1989
    [6]崔海亭,袁修干,侯欣宾,蓄热技术的研究进展与应用,化工进展,2002:21
    [7]刘玲,叶红卫,国内外蓄热材料发展概况,兰化科技,1998:168~171
    [8]张寅平,胡汉平,孔祥冬等,相变蓄能-理论和应用,中国科学技术大学出版社,1996
    [9] S.M.Hahnain, Review on Sustainable Thermal Energy Storage Technologies, Part1:Heat Storage Materials and Techniques Energy Convers, 1998, 39(11): 1127~1138
    [10] Garg, H.P. Solar Thermal Energy Storage, 1985
    [11] Hiroshi Kimura and Junjiro Kai, Phase change stability of CaC12-6H20, Solar Energy, 1984, 1: 49~55
    [12]孙志林,屈宗长,相变储热技术在太阳能热泵中的应用,制冷与空调,2006,6(6):44~48
    [13] W.Saman, F.Bruno and E.Halawa, Thermal performance of PCM thermal storage unit for a roof integrated solar heating system[M], Adelaide, Australia: Sustainable Energy Centre, University of South Australia, Mawson Lakes SA 5095, 2004
    [14]张洪济,相变热传导,重庆:重庆大学出版社,1991
    [15]阮得水等,相变蓄热材料的DSC研究,太阳能学报,1994,15(1):19~24
    [16]陈则韶,陈梅英,冰箱蓄冷器的设计要点,流体工程,1990
    [17] Chen Z et al, A research on measurement of melting point and heat of fusion of medium of accumulation of cold, Proc. of the 3rd Asian Thermophysical Properties Conf., Beijing, 1992: 516~520
    [18]秦鹏华,杨睿,张寅平,清华大学学报(自然科学版),2003,43(6):833~835
    [19]肖敏,龚克成,太阳能学报,2001,21(4):427~430
    [20] Helmut E.Feustel, Corina Stetiu, Thermal Performance of Phase Change Wallboard for Residential Cooling Application, Indoor Environment Program, Energy and Environment Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
    [21] D.Banu, D.Feldman, D.Hawes, Evaluation of Thermal Storage as Latent Heat in Phase Change Material Wallboard by Diferential Scanning Calorimetric and Large-scale Thermal Testing, Thermal chemical Acta 317, 1998: 39~45
    [22]丁剑红,王馨,张寅平等,一种新型相变高架地板实验及模拟研究,中国工程热物理学会第十一届学术会议论文集,2005:421~424
    [23]江邑,张寅平,徐继军等,板式相变储热器的储换热性能实验研究,太阳能学报,2000,21(4):358~363
    [24]林坤平,张寅平,肖伟等,相变蓄能建筑围护结构节能效果研究,中国工程热物理学会第十一届学术会议论文集,2005:536~541
    [25]杜雁霞,自然对流在融化传热中的强化作用试验研究,中国工程热物理学会第十一届学术会议论文集,2005:507~511
    [26]周素娟,三套管型相变储能装置蓄能过程动态模拟,中国工程热物理学会学术会议论文集,2006:249~254
    [27] M.Pinelli, S.Piva, Solid/Liquid phase change in presence of natural convection: a thermal energy storage case study, ASME J.Heat Transfer, 2003, 125
    [28]康艳兵,张寅平,朱颖秋,相变蓄热同心套管传热模型和性能分析,太阳能学报,1999,20(1):20
    [29]李震,张寅平,江邑,非理想相变特性材料热性能简化分析方法及适用条件,太阳能学报,2002,23(1):28~31
    [30]张月莲,石蜡相变材料在同心环隙管内的基本传热行为,北京化工大学学报,2006,33(2):5~8
    [31]钱吉裕,Lattice-Boltzmann方法计算固液相变问题,中国工程热物理学会第十一届学术会议论文集,2005:608~612
    [32]李晶,刘中良,马重芳,改善三水醋酸钠固液相变性能的实验研究,中国工程热物理学会第十一届学术会议论文集,2005:657~661
    [33]陈斌娇,C14H30C16H34混合相变材料热物性及互溶性研究,中国工程热物理学会第十一届学术会议论文集,2005:712~716
    [34]于士君,孟霜鹤,硬脂酸的热容及热力学性质研究,太阳能学报,2000,21(2):171~175
    [35]蒋宏利,有分散热源的矩形腔内自然对流和熔化传热研究,西安交通大学学报,1998,11期
    [36]周孑民,金属材料相变导热系数的研究—实验与数值模拟的结合,中国工程热物理学会会议论文集,1999:248~251
    [37] N.Shamsundar, E.M.Sparrow, Analysis of multidimensional condution phase change via the enthalpy model, J.Heat Transfer, 1975, 97: 333
    [38] N.W.Hale, Jr.and Viskanta R, Solid-liquid phase-change heat transfer and interface motion in materials cooled or heated from above or below, Int. J. Heat Mass Transfer, 1980, 23: 283
    [39]宋又王,用奇异摄动法解圆柱体的凝问题,工程热物理学报,1981,2(4):124~128
    [40]陈则韶,求解凝相变热传导问题的简便方法—热阻法,中国科学技术大学学报,1991,21(3):12~15
    [41] H.S.Greenside and W.M.Coughran, Jr., Nonlinear pattern formation near the onset of Rayleigh–Benard convection, Phys. Rev. A, 1984, 30: 398~409
    [42] D.Mukutmoni and K.T.Yang, Rayleigh–Benard convection in a small aspect ratio enclosure, Part II. Bifurcation to chaos, J. Heat Transfer, 1993,115: 367~379
    [43] D.Mukutmoni and K.T.Yang, Thermal convection in small enclosures:An atypical bifurcation sequence, Int. J. Heat Mass Transf, 1995, 38: 113~125

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700