微纳尺度下铜化合物的结晶形态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜化合物微纳米材料是一类重要的功能材料,因具有许多特殊的性质和广阔的应用前景而倍受关注。本论文以六种铜化合物(氧化亚铜、碱式磷酸铜、碱式碳酸铜、碱式钼酸铜、硫氰酸亚铜和钼酸铜铵)为研究对象,探索溶液相化学合成复杂结构微纳米材料的新方法。对铜化合物微纳米材料生长机理和结晶形态进行深入研究,获得了一些对铜化合物微纳米材料生长规律的初步认识,在一定程度上实现了对六种铜化合物微纳米结构的控制合成。
     EDTA还原法制备氧化亚铜(Cu_2O)微晶,其结晶形态展示了立方晶系中的五种枝晶生长方式。该合成体系中,EDTA具有鳌合作用、还原作用和选择性吸附作用。通过改变实验条件,可以对氧化亚铜结晶形态进行有效控制。采用水热法合成了六种结晶形态的碱式磷酸铜(Cu_2(OH)PO_4)。单晶、孪晶以及各种新颖的碱式磷酸铜复杂结构可以通过改变实验条件来控制合成。碱式磷酸铜晶体具有沿着c轴方向生长的趋势,并具有旋转孪晶生长的习性,这是能够形成不同结晶形态碱式磷酸铜的内因。
     水热条件下制备出新颖球形等级结构的碱式碳酸铜(Cu_2(OH)_2CO_3)和毛刺状空心等级结构的碱式钼酸铜(Cu_3(OH)_2(MoO_4)_2)微晶材料。碱式碳酸铜球形等级结构是由大量平行于球表面的二维薄片构成,其形成过程是逐层生长机理,在一定范围内,球的直径随着反应时间的增加而逐渐增大。碱式钼酸铜空心等级结构的形成过程中,奥氏熟化起到关键作用。对碱式碳酸铜和碱式钼酸铜样品分别进行热处理,可以得到相应的氧化铜和钼酸铜等级结构材料。
     采用室温液相法在铜基片上制备出硫氰酸亚铜(β-CuSCN)阵列和钼酸铜铵((NH_4)_2Cu(MoO_4)_2)纳米片,该方法利用铜片作为反应物和基底,使制备工艺大大简化。硫氰酸亚铜阵列中,每一个基元的结晶形态是倒立锥体,且均匀分部在铜片表面。硫氰酸亚铜晶体具有沿着c轴方向生长的习性,这是能够形成硫氰酸亚铜阵列的内因。钼酸铜铵纳米片近似垂直于铜片表面生长,片与片之间相互啮合形成纳米沟槽形态。该合成体系中,甲酰胺不仅促进了铜片氧化,而且选择性吸附在晶体表面改变了晶体生长的微观环境,从而影响了硫氰酸亚铜和钼酸铜铵的结晶形态。
As one kind of inorganic functional materials,copper-based micro/nanomaterials present some novel properties and wide applications.In this dissertation,copper compounds (i.e.,cuprous oxide,copper hydroxyphosphate,malachite,lindgrenite,cuprous thiocyanate, and ammonium copper molybdate) were investigated.The aim is to explore the synthesis of complex micro/nanostructure copper compounds by solution routes.Their growth mechanisms and crystal shapes were investigated.
     Cuprous oxide(Cu_2O) was selected in this study to elucidate the shape evolution in the cubic crystal system.A wide range of novel cuprous oxide microcrystals(based on the five branching growth patterns) has been prepared through an EDTA reduction route by employing EDTA molecule as chelating reagent,reductant,and sorbent.The morphology of these microcrystals has a strong dependence on the reaction conditions,which implies vast possibilities of designing new crystal morphologies.Copper hydroxyphosphate(Cu_2(OH)PO_4) with complex architectures has been successfully synthesized through a hydrothermal route. Single-crystals,twinned-crystals,and various novel architectures of copper hydroxyphosphate were constructed through a careful control of synthetic parameters.Copper hydroxyphosphate crystals tend to grow along the c-axis and have a rotation twinned growth habit,which is essential for the formation of various complex architectures.
     Malachite(Cu_2(OH)_2CO_3) with a hierarchical sphere-like architecture has been successfully synthesized via a hydrothermal route in the absence of any external inorganic additives or organic structure-directing templates.The hierarchical malachite particles are comprised of numerous two-dimensional micro-platelets paralleling to the sphere surface. The growth of the hierarchical architecture is believed to be a layer-by-layer growth process. Copper oxide with the similar morphology can be easily obtained from the as-prepared malachite.Lindgrenite(Cu_3(OH)_2(MoO_4)_2) with a hollow and prickly sphere-like architecture has been synthesized via the same hydrothermal route.The hierarchical lindgrenite particles are hollow and prickly spheres,which are comprised of numerous small crystal strips that are aligned perpendicularly to the spherical surface.Ostwald ripening in solution is responsible for the hollow structure.Furthermore,Cu_3Mo_2O_9 with the similar size and morphology can be easily obtained by a thermal treatment of the as-prepared lindgrenite in air atmosphere.
     A novel strategy has been designed to form upended taper-shaped cuprous thiocyanate (β-CuSCN) arrays and curved ammonium copper molybdate((NH_4)_2Cu(MoO_4)_2) nanoflakes on a copper substrate using a solution-phase method at room temperature.This method consists in a liquid-solid reaction between a solution of thiocyanate ammonium and the copper substrate itself in the assistance of fonnamide.Novel cuprous thiocyanate arrays are approximately perpendicular to copper substrate surfaces.Every single crystal shows an upended taper-like morphology.Cuprous thiocyanate crystals tend to grow along the c-axis, which is essential for the formation of cuprous thiocyanate arrays on a copper substrate.The lamellar ammonium copper molybdate are approximately perpendicular to the copper substrate surface and are intermeshed with each other to form nanogroove structures. Formamide molecules can not only promote the oxidation of copper substrate and the formation of copper-complex,but also act as NH_4~+ source in the final products.Furthermore, the selective adsorption of formamide molecules on different crystallographic planes of ammonium copper molybdate plays the major role in determining the curved morphology.
引文
[1]Byrappa K,Ohachi T.Crystal growth technology,William Andrew Publishing,2002.
    [2]Jun Y,Choi J,Cheon J.Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes.Angew.Chem.Int.Ed.,2006,45(21):3414-3439.
    [3]Yan C,Zou L,Xu J et al.Chemical strategy for tuning the surface microstructures of particles.Powder Technol.,2008,183(1):2-9.
    [4]Zhao X,Ren X,Sun C et al.Morphology evolution at nano- to micro-scale.Funct.Mater.Lett.,2008,1(3):167-172.
    [5]Xu J.Flux Bridgman growth of functional oxide single crystals.Funct.Mater.Lett.,2008,1(3):247-251.
    [6]Sekerka R.Equilibrium and growth shapes of crystals:how do they differ and why should we care.Cryst.Res.Technol.,2005,40(4-5):291-306.
    [7]Wulff G.Zur frage der geschwindigkeit des wachsthums und der auflosung der krystallflachen.Z.Krystallogr.,1901,34:449-481.
    [8]Xu D,Xue D.Chemical bond analysis of the crystal growth of KDP and ADP.J.Cryst.Growth,2006,286(1):108-113.
    [9]许东利,薛冬峰.结晶生长的化学键合理论.人工晶体学报,2006,35(3):598-603.
    [10]Wang Z.Transmission electron microscopy of shape-controlled nanocrystals and their assemblies.J.Phys.Chem.B,2000,104(6):1153-1175.
    [11]Barnard A,Russo S.Modelling nanoscale FeS_2 formation in sulfur rich conditions.J.Mater.Chem.,2009,19(21):3389-3394.
    [12]Navrotsky A,Mazeina L,Majzlan J.Size-drien structural and thermodynamic complexity in iron oxides.Science,2008,319(5870):1635-1638.
    [13]Xu J,Xue D.Chemical synthesis of BaCO_3 with a hexagonal pencil-like morphology.J.Phys.Chem.Solids,2006,67(7):1427-1431.
    [14]钱逸泰.结晶化学导论,中国科技大学出版社,2002.
    [15]Siegfried M,Choi K.Electrochemical crystallization of cuprous oxide with systematic shape evolution.Adv.Mater.,2004,16(19):1743-1746.
    [16]Xia Y,Xiong Y,Lira B et al.Shape-controlled synthesis of metal nanocrystals:simple chemistry meets complex physics.Angew.Chem.Int.Ed.,2009,48(1):60-103.
    [17]Zeng H.Synthetic architecture of interior space for inorganic nanostructures.J.Mater.Chem.,2006,16(7):649-662.
    [18]Sounart T,Liu J,Voigt J et al.Sequential nucleation and growth of complex nanostructured films.Adv.Funct.Mater.,2006,16(3):335-344.
    [19]Yang H,Zeng H.Preparation of hollow anatase TiO_2 nanospheres via Ostwald ripening.J.Phys.Chem.B,2004,108(11):3492-3495.
    [20]Xu J,Xue D,Yan C.Chemical synthesis of NaTaO_3 powder at low temperature.Mater.Lett.,2005,59(23):2920-2922.
    [21]Navaladian S,Viswanathan B,Varadarajan T et al.Fabrication of worm-like nanorods and ultrafine nanospheres of silver via solid-state photochemical decomposition.Nanoscale Res.Lett.,2009,4(5):471-479.
    [22]许家胜,薛冬峰.利用可见光催化分解水制氢研究进展.材料导报,2006,20(10):1-4.
    [23]Feng S,Xu R.New materials in hydrothermal synthesis.Acc.Chem.Res.,2001,34(3):239-247.
    [24]Barrer R.Hydrothermal chemistry of zeolites.London:Academic Press,1982.
    [25]Marris E.The life aquatic.Nature,2005,436(7053):908-909.
    [26]徐如人,庞文琴,于吉红.分子筛与多孔材料化学.北京:科学出版社,2004.
    [27]Chen X,Yan W,Cao X et al.Fabrication of silicalite-1 crystals with tunable aspect ratios by microwave-assisted solvothermal synthesis.Micropor.Mesopor.Mater.,2009,119(1-3):217-222.
    [28]Zhao H,Feng S.Hydrothermal synthesis and oxygen ionic conductivity of codoped nanocrystalline.Chem.Mater.,1999,11(4):958-964.
    [29]Song X,Li Y,Gan L et al.Heteroatom-stabilized chiral framework of aluminophosphate molecular sieves.Angew.Chem.Int.Ed.,2009,48(2):314-317.
    [30]Huang T,Qi L.Controlled synthesis of PbSe nanotubes by solvothermal transformation from selenium nanotubes.Nanotechnology,2009,20(2):025606.
    [31]Yan C,Xue D,Zou L et al.Preparation of magnesium hydroxide nanoflowers.J.Cryst.Growth,2005,282(3-4):448-454.
    [32]Zhang Y,Or S,Wang X et al.Hydrothermal synthesis of three-dimensional hierarchical CuO butterfly like architectures.Eur.J.Inorg.Chem.,2009,(1):168-173.
    [33]Zhu Y,Qian Y.Solution-phase synthesis of nanomaterials at low temperature.Sci.China Ser.G,2009,52(1):13-20.
    [34]Tang Q,Zhou W,Zhang W et al.Size-controllable growth of single crystal In(OH)_3 and In_2O_3nanocubes.Cryst.Growth Des.,2005,5(1):147-150.
    [35]Jia C,Sun L,Yan Z et al.Iron oxide nanotubes-single-crystalline iron oxide nanotubes.Angew.Chem.Int.Ed.,2005,44(28):4328-4333.
    [36]Kuang D,Xu A,Fang Y et al.Surfactant-assisted growth of novel PbS dendritic nanostructures via facile hydrothermal process.Adv.Mater.,2003,15(20):1747-1719.
    [37]Wang X,Zhuang J,Peng Q et al.A general strategy for nanocrystal synthesis.Nature,2005,437(7055):121-124.
    [38]Hu J,Lu Q,Tang K et al.Synthesis and characterization of SiC nanowires through a reduction-carburization route.J.Phys.Chem.B,2000,104(22):5251-5254.
    [39]Wood B,Mocanu V,Gates B.Solution-phase synthesis of crystalline lithium niobate nanostructures.Adv.Mater.,2008,20(23):4552-4556.
    [40]Sampanthar J,Zeng H.Arresting butterfly-like intermediate nanocrystals of ss-Co(OH)_2 via ethylenediamine-mediated synthesis.J.Am.Chem.Soc.,2002,124(23):6668-6675.
    [41]Cao M,Hu C,Wang E.The first fluoride one-dimensional nanostructures:microemulsion-mediated hydrothermal synthesis of BaF_2 whiskers.J.Am.Chem.Soc.,2003,125(37):11196-11197.
    [42]Xu A,Fang Y,You L et al.A simple method to synthesize Dy(OH)_3 and Dy_2O_3 nanotubes.J.Am.Chem.Soc.,2003,125(6):1494-1495.
    [43]Lou X,Archer L,Yang C.Hollow micro-/nanostructures:synthesis and applications.Adv.Mater.,2008,20(21):3987-4019.
    [44]Liu B,Zeng H.Fabrication of ZnO "dandelions" via a modified kirkendall process.J.Am.Chem.Soc.,2004,126(51):16744-16746.
    [45]Yang H,Zeng H.Creation of intestine-like interior space for metal-oxide nanostructures with a quasi-reverse emulsion.Angew.Chem.Int.Ed.,2004,43(39):5206-5209.
    [46]Luo C,Xue D.Mild,quasireverse emulsion route to submicrometer lithium niobate hollow spheres.Langmuir,2006,22(24):9914-9918.
    [47]Yan C,Xue D.Novel self-assembled MgO nanosheet and its precursors.J.Phys.Chem.B,2005,109(25):12358-12361.
    [48]Liang J,Liu J,Xie Q et al.Hydrothermal growth and optical properties of doughnut-shaped ZnO microparticles.J.Phys.Chem.B,2005,109(19):9463-9467.
    [49]Han W,Yi L,Zhao N et al.Synthesis and shape-tailoring of copper sulfide/indium sulfide-based nanocrystals.J.Am.Chem.Soc.,2008,130(39),13152-13161.
    [50]Wiley B,Sun Y,Mayers B et al.Shape-controlled synthesis of metal nanostructures:the case of silver.Chem.Eur.J.,2005,11(2):454-463.
    [51]Maynadie J,Salant A,Falqui A et al.Cobalt growth on the tips of CdSe nanorods.Angew.Chem.Int.Ed.,2009,48(10):1814-1817.
    [52]王训.过渡金属氧化物一维纳米结构液相合成、表征与性能研究:(博士学位论文).北京:清华大学,2004.
    [53]Shon J,Kong S,Kim S et al.Synthesis of mesoporous iron oxide nanoparticles from mesoporous silica template via nano-replication.Funct.Mater.Lett.,2008,1(2):151-154.
    [54]Terfort A,Bowden N,Whitesides G.Three-dimensional self-assembly of millimetre-scale components.Nature,1997,386(6621):162-164.
    [55]Xie R,Peng X.Synthetic scheme for high-quality InAs nanocrystals based on self-focusing and one-pot synthesis of InAs-based core-shell nanocrystals.Angew.Chem.Int.Ed.,2008,47(40):7677-7680.
    [56]Richter T,Schuh C,Moos R et al.Single crystal growth and texturing of lead-based piezoelectric ceramics via templated grain growth process.Funct.Mater.Lett.,2008,1(2):127-132.
    [57]Zhang L,Bogershausen A,Eckert H.Mesoporous AlPO_4 glass from a simple aqueous sol-gel route.J.Am.Ceram.Soc.,2005,88(4):897-902.
    [58]Yang H,Zhao D.Synthesis of replica mesostructures by the nanocasting strategy.J.Mater.Chem.,2005,15(12):1217-1231.
    [59]Braun P,Osenar P,Stupp S.Semiconducting superlattices templated by molecular assemblies.Nature,1996,380(6572):325-328.
    [60]Wang L,Chen X,Zhan J et al.Synthesis of gold nano-and microplates in hexagonal liquid crystals.J.Phys.Chem.B,2005,109(8):3189-3194.
    [61]Stupp S,Braun P.Supramolecular materials:self-organized nanostructures.Science,1997,276(5311):384-389.
    [62]Mann S,Ozin G.Synthesis of inorganic materials with complex form.Nature,1996,382(6589):313-318.
    [63] Zhong S, Song J, Zhang S et al. Template-free hydrothermal synthesis and formation mechanism of hematite microrings. J. Phys. Chem. C, 2008,112 (50): 19916-19921.
    [64] Xie T, Li S, Peng Q et al. Monodisperse BaF_2 nanocrystals: phases, size transitions, and self-assembly. Angew. Chem. Int. Ed., 2009, 48 (1): 196-200.
    [65] Liu Q, Liu H, Han M et al. Nanometer-sized nickel hollow spheres. Adv. Mater., 2005, 17 (16): 1995-1998.
    [66] Jiang Y, Yang D, Zhang L et al. Preparation of protamine-titania microcapsules through synergy between layer-by-layer assembly and biomimetic mineralization. Adv. Funct. Mater., 2009, 19 (1): 150-156.
    [67] Shi H, Qi L, Ma J et al. Architectural control of hierarchical nanobelt superstructures in catanionic reverse micelles. Adv. Funct. Mater., 2005, 15 (3): 442-450.
    [68] Jung S, Cho W, Lee H et al. Self-template-directed formation of coordination-polymer hexagonal tubes and rings, and their calcination to ZnO rings. Angew. Chem. Int. Ed., 2009,48 (8): 1459-1462.
    [69] Garcia-Ruiz J, Melero-Garcia E, Hyde S et al. Morphogenesis of self-assembled nanocrystalline materials of barium carbonate and silica. Science, 2009, 323 (5912): 362-365.
    [70] Wolf S, Leiterer J, Kappl M et al. Early homogenous amorphous precursor stages of calcium carbonate and subsequent crystal growth in levitated droplets. J. Am. Chem. Soc, 2008, 130 (37): 12342-12347.
    [71] Wei W, Ma G, Hu G et al. Preparation of hierarchical hollow CaCC>3 particles and the application as anticancer drug carrier. J. Am. Chem. Soc, 2008, 130(47): 15808-15810.
    [72] Shi H, Qi L, Ma J et al. Polymer-directed synthesis of penniform BaWO_4 nanostructures in reverse micelles. J. Am. Chem. Soc, 2003,125 (12): 3450-3451.
    [73] Xu H, Wang W. A growth model of single crystalline hollow spheres: oriented attachment of CU2O nanoparticles to the single crystalline shell wall. Cryst. Growth Des., 2008, 8(10): 3486-3489.
    [74] Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298 (5601): 2176-2179.
    [75] Fan H, Knez M, Scholz R et al. Influence of surface diffusion on the formation of hollow nanostructures induced by the Kirkendall effect: the basic concept. Nano Lett., 2007,7 (4): 993-997.
    [76] Yin Y, Drioux R, Erdonmez C et al. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science, 2004, 304 (5671): 711-714.
    [77] Cao H, Qian X, Wang C et al. High symmetric 18-facet polyhedron nanocrystals of CU7S4 with a hollow nanocage. J. Am. Chem. Soc, 2005,127 (46): 16024-16025.
    [78] Yan C, Xue D. Room temperature fabrication of hollow ZnS and ZnO architectures by a sacrificial template route. J. Phys. Chem. B, 2006,110(14): 7102-7106.
    [79] Yan C, Zou L, Xue D et al. Chemical tuning polymorphology of functional materials by hydrothermal and solvothermal reactions. J. Mater. Sci., 2008,43 (7): 2263-2269.
    [80] Wang X, Xue D. Direct observation of the shape evolution of MgO whiskers in a solution system. Mater. Lett., 2006,60 (25-26): 3160-3164.
    [81] Yan C, Xue D. General spontaneous ion replacement reaction for the synthesis of micro- and nanostructured metal oxides. J. Phys. Chem. B, 2006,110 (4): 1581-1586.
    [82] Xu J, Xue D. Fabrication of malachite with a hierarchical sphere-like architecture. J. Phys. Chem. B, 2006,109(36): 17157-17161.
    [83] Lu L, Shen Y, Chen X et al. Ultrahigh strength and high electrical conductivity in copper. Science, 2004, 304 (5669): 422-426.
    [84] Hong B, Bae S, Lee C. Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase. Science, 2001, 294 (5541): 348-351.
    [85] Penner R, Martin C. Preparation and electrochemical characterization of ultramicroelectrode ensembles. Anal. Chem., 1987,59 (21): 2625-2630.
    [86] Fu Y, Wei Z, Ji M et al. Morphology-controllable synthesis of CeO_2 on a Pt electrode. Nanoscale Res. Lett., 2008, 3 (11): 431-434.
    [87] Qiu Y, Yu J, Zhou X et al. Synthesis of porous NiO and ZnO submicro- and nanofibers from electrospun polymer fiber templates. Nanoscale Res. Lett., 2009,4 (2): 173-177.
    [88] Lee W, Alexe M, Nielsch K. Metal membranes with hierarchically organized nanotube arrays. Chem. Mater., 2005,17 (13): 3325-3327.
    [89] Pan S, Rothberg L. Interferometric sensing of biomolecular binding using nanoporous aluminum oxide templates. Nano Lett., 2003,3 (6): 811-814.
    [90] Wu X, Bai H, Zhang J et al. Copper hydroxide nanoneedle and nanotube arrays fabricated by anodization of copper. J. Phys. Chem. B, 2005,109 (48): 22836-22842.
    [91] Li Y, Shi G. Electrochemical growth of two-dimensional gold nanostructures on a thin polypyrrole film modified ITO electrode. J. Phys. Chem. B, 2005,109 (50): 23787-23793.
    [92] Siegfried M, Choi K. Directing the architecture of cuprous oxide crystals during electrochemical growth. Angew. Chem. Int. Ed., 2005,44 (21): 3218-3223.
    [93] Siegfried M, Choi K. Elucidating the effect of additives on the growth and stability of Cu_2O surfaces via shape transformation of pre-grown crystals. J. Am. Chem. Soc, 2006,128 (32): 10356-10357.
    [94] Sikha G, Popov B. Modeling and application studies of an electrochemical hybrid system. Funct. Mater. Lett., 2008,1 (2): 155-165.
    [95] Cappelletti G, Ardizzone S, Bianchi C et al. Photodegradation of pollutants in air: enhanced properties of nano-TiO_2 prepared by ultrasound. Nanoscale Res. Lett., 2009,4 (2): 97-105.
    [96] Wang J, Li F, Zhou H et al. Silica hollow spheres with ordered and radially oriented amino functionalized mesochannels. Chem. Mater., 2009,21 (4): 612-620.
    [97] Xiong H, Shchukin D, Mohwald H et al. Sonochemical synthesis of highly luminescent zinc oxide nanoparticles doped with magnesium(II). Angew. Chem. Int. Ed., 2009,48 (15): 2727-2731.
    [98] Dang F, Enomoto N, Hojo J et al. Sonochemical synthesis of monodispersed magnetite nanoparticles by using an ethanol-water mixed solvent. Ultrason. Sonochem., 2009,16 (5): 649-654.
    [99] Mizukoshi Y, Shuto T, Masahashi N et al. Preparation of superparamagnetic magnetite nanoparticles by reverse precipitation method: Contribution of sonochemically generated oxidants. Ultrason. Sonochem., 2009, 16 (4): 525-531.
    [100] Navaladian S, Viswanathan B, Varadarajan T et al. A rapid synthesis of oriented palladium nanoparticles by UV irradiation. Nanoscale Res. Lett., 2009,4 (2): 181-186.
    [101] Zhang X, Xie Y, Xu F et al. Growth and morphological evolution of hexapod-shaped cuprous oxide microcrystals at room temperature. Can. J. Chem., 2004,82 (9): 1341-1345.
    
    [102] Skrabalak S, Chen J, Sun Y et al. Gold nanocages: synthesis, properties, and applications. Acc. Chem. Res., 2008,41 (12): 1587-1595.
    [103] Yin S, Liu B, Sato T. Microwave-assisted hydrothermal synthesis of nitrogen-doped titania nanoparticles. Funct. Mater. Lett., 2008,1 (3): 173-176.
    [104] Burda C, Chen X, Narayanan R et al. Chemistry and properties of nanocrystals of different shapes. Chem. Rev., 2005,105 (4): 1025-1102.
    [105] Zhang Y, Zhu F, Zhang J et al. Converting layered zinc acetate nanobelts to one-dimensional structured ZnO nanoparticle aggregates and their photocatalytic activity. Nanoscale Res. Lett., 2008, 3(6): 201-204.
    [106] Liu B, Zeng H. Mesoscale organization of CuO nanoribbons: formation of "dandelions". J. Am. Chem. Soc, 2004,126 (26): 8124-8125.
    [107] Chang Y, Zeng H. Manipulative synthesis of multipod frameworks for self-organization and self-amplification of Cu_2O microcrystals. Cryst. Growth Des., 2004,4 (2): 273-278.
    [108] Wu C, Yu S, Antonietti M. Complex concaved cuboctahedrons of copper sulfide crystals with highly geometrical symmetry created by a solution process. Chem. Mater., 2006, 18 (16): 3599-3601.
    [109] Wu Z, Pan C, Yao Z et al. Large-scale synthesis of single-crystal double-fold snowflake Cu_2S dendrites. Cryst. Growth Des., 2006,6 (7): 1717-1719.
    [110] Liu J, Xue D. Thermal oxidation strategy towards porous metal oxide hollow architectures. Adv. Mater., 2008, 20 (13): 2622-2627.
    [111] Vayssieres L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater., 2003, 15(5): 464-466.
    [112] Vayssieres L, Keis K, Hagfeldt A et al. Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem. Mater., 2001,13 (12): 4395-4397.
    [113] Wen X, Zhang W, Yang S. Synthesis of Cu(OH)_2 and CuO nanoribbon arrays on a copper surface. Langmuir, 2003,19 (14): 5898-5903.
    [114] Wen X, Xie Y, Choi C et al. Copper-based nanowire materials: templated syntheses, characterizations, and applications. Langmuir, 2005,21(10): 4729-4737.
    [115] Hou H, Xie Y, Li Q. Large-scale synthesis of single-crystalline quasi-aligned submicrometer CuO ribbons. Cryst. Growth Des., 2005,5(1): 201-205.
    [116] Zhang Z, Shao X, Yu H et al. Morphosynthesis and ornamentation of 3D dendritic nanoarchitectures. Chem. Mater., 2005,17 (2): 332-336.
    [117] Liu Y, Ji Z, Tang Q et al. Particle-size control and patterning of a charge-transfer complex for nanoelectronics. Adv. Mater., 2005,17 (24): 2953-2958.
    [118] Wang S, Jiang L. One-step solution-immersion process for the fabrication of stable bionic superhydrophobic surfaces. Adv. Mater., 2006,18 (6): 767-770.
    [119] Cui S, Li Y, Guo Y et al. Fabrication and field-emission properties of large-area nanostructures of the organic charge-transfer complex Cu-TCNAQ. Adv. Mater., 2008,20 (2): 309-313.
    [1] Byrappa K, Ohachi T. Crystal growth technology, William Andrew Publishing, 2002.
    
    [2] Yang H, Sun C, Qiao S et al. Anatase TiO_2 single crystals with a large percentage of reactive facets. Science, 2008,453 (7195): 638-642.
    [3] Tian N, Zhou Z, Sun S et al. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 2007, 316 (5825): 732-735.
    [4] Bahadur H, Srivastava A, Sharma R et al. Morphologies of sol-gel derived thin films of ZnO using different precursor materials and their nanostructures. Nanoscale Res. Lett., 2007, 2 (10): 469-475.
    [5] Zhu Y. Insight into the structure and formation of titanium oxide nanotubes. Funct. Mater. Lett., 2008, 1 (3): 239-246.
    [6] Zhang D, Pan X, Zhu H et al. A simple method to synthesize cadmium hydroxide nanobelts. Nanoscale Res. Lett., 2008, 3 (8): 284-288.
    [7] Shah M. A versatile route for the synthesis of nickel oxide nanostructures without organics at low temperature. Nanoscale Res. Lett., 2008, 3 (7): 255-259.
    [8] Zhuang Z, Peng Q, Zhang B et al. Controllable synthesis of Cu_2S nanocrystals and their assembly into a superlattice. J. Am. Chem. Soc, 2008, 130 (32): 10482-10483.
    [9] Yu W, Xie H, Chen L et al. Synthesis and characterization of monodispersed copper colloids in polar solvents. Nanoscale Res. Lett., 2009,4 (5): 465-470.
    [10] Nakaya U. Snow crystals: natural and artificial, Harvard University Press, Cambridge, 1954.
    
    [11] Siegfried M, Choi K. Electrochemical crystallization of cuprous oxide with systematic shape evolution. Adv. Mater., 2004,16 (19): 1743-1746.
    
    [12] Siegfried M, Choi K. Directing the architecture of cuprous oxide crystals during electrochemical growth. Angew. Chem. Int. Ed., 2005,44 (21): 3218-3223.
    [13] Siegfried M, Choi K. Elucidating the effect of additives on the growth and stability of Cu_2O surfaces via shape transformation of pre-grown crystals. J. Am. Chem. Soc, 2006,128 (32): 10356-10357.
    [14] Pinna N, Niederberger M. Surfactant-free nonaqueous synthesis of metal oxide nanostructures. Angew. Chem. Int. Ed., 2008, 47 (29): 5292-5304.
    [15] Hu P, Jia D, Cao Y et al. CdSe ring- and tribulus-shaped vanocrystals: controlled synthesis, growth mechanism, and photoluminescence properties. Nanoscale Res. Lett., 2009, 4 (5): 437-443.
    [16] Kim B, Koo T, Lee J et al. Catalyst-free growth of single-crystal silicon and germanium nanowires. Nano lett., 2009, 9 (2): 864-869.
    [17] Qi W, Huang B, Wang M. Structure of unsupported small palladium nanoparticles. Nanoscale Res. Lett., 2009, 4 (3): 269-273.
    [18] Purkayastha A, Yan Q, Raghuveer M et al. Surfactant-directed synthesis of branched bismuth telluride/sulfide core/shell nanorods. Adv. Mater., 2008, 20 (14): 2679-2682.
    [19] Mikhael J, Roth J, Helden L et al. Archimedean-like tiling on decagonal quasicrystalline surfaces. Nature, 2008,454 (7203): 501-504.
    [20] Sunagawa I. Fundamentals and applications: a 50-year retrospective of the Japanese crystal growth community. J. Cryst. Growth, 2004,264 (4): 631-638.
    [21] Gao F, Lu Q. Single crystalline cadmium sulfide nanowires with branched structure. Nanoscale Res. Lett., 2009, 4(4): 471-479.
    [22] Sekerka R. Equilibrium and growth shapes of crystals: how do they differ and why should we care. Cryst. Res. Technol., 2005,40 (4-5): 291-306.
    [23] Wulff G. Zur frage der geschwindigkeit des wachsthums und der auflosung der krystallflachen. Z. Krystallogr., 1901, 34: 449-481.
    [24] Gao F, Lu Q. Single crystalline cadmium sulfide nanowires with branched structure. Nanoscale Res. Lett., 2009,4 (4): 371-376.
    [25] Kudora T, Irisawa T, Ookawa A. Growth of a polyhedral crystal from solution and its morphological stability. J. Cryst. Growth, 1977,42: 41-46.
    
    [26] Whitesides G, Grzybowski B. Self-assembly at all scales. Science, 2002,295 (5564): 2418-2421.
    [27] Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002,298 (5601): 2176-2179.
    [28] Qi L, Li J, Ma J. Biomimetic morphogenesis of calcium carbonate in mixed solutions of surfactants and double-hydrophilic block copolymers. Adv. Mater., 2002,14 (4): 300-303.
    [29] Wu W, He Q, Jiang C. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett., 2008,3 (11): 397-415.
    [30] Xu D, Xue D. Chemical bond analysis of the crystal growth of KDP and ADP. J. Cryst. Growth, 2006, 286(1): 108-113.
    [31] Suprabha T, Roy H, Thomas J et al. Microwave-assisted synthesis of titania nanocubes, nanospheres and nanorods for photocatalytic dye degradation. Nanoscale Res. Lett., 2009,4 (2): 144-152.
    [32] Snoke D. Spontaneous bose coherence of excitons and polaritons. Science, 2002, 298 (5597): 1368-1372.
    [33] Xu H, Wang W. Template synthesis of multishelled Cu_2O hollow spheres with a single-crystalline shell wall. Angew. Chem. Int. Ed., 2007,46 (9): 1489-1492.
    [34] Mcfadyen P, Matijevic E. Copper hydrous oxide sols of uniform particle shape and size. J. Colloid Interface Sci., 1973,44 (1): 95-106.
    [35] Chang Y, Zeng H. Manipulative synthesis of multipod frameworks for self-organization and self-amplification of Cu_2O microcrystals. Cryst. Growth Des., 2004,4 (2): 273-278.
    [36] Huang L, Wang H, Wang Z et al. Cuprite nanowires by electrodeposition from lyotropic reverse hexagonal liquid crystalline phase. Chem. Mater., 2002,14 (2): 876-880.
    [37] Shin H, Dong J, Liu M. Nanoporous structures prepared by an electrochemical deposition process. Adv. Mater., 2003,15(19): 1610-1613.
    [38] Wang D, Mo M, Yu D et al. Large-scale growth and shape evolution of Cu_2O cubes. Cryst. Growth Des., 2003,3 (5): 717-720.
    [39] Lu C, Qi L, Yang J, Wang X et al. One-pot synthesis of octahedral Cu_2O nanocages via a catalytic solution route. Adv. Mater., 2005, 17 (21): 2562-2566.
    [40] Kumar R, Mastai Y, Diamant Y et al. Sonochemical synthesis of amorphous Cu and nanocrystalline Cu_2O embedded in a polyaniline matrix. J. Mater. Chem., 2001,11 (4): 1209-1213.
    [41] Yanagimoto H, Akamatsu K, Gotoh K. et al. Synthesis and characterization of Cu_2O nanoparticles dispersed in NH_2-terminated poly (ethylene oxide). J. Mater. Chem., 2001,11 (9): 2387-2390.
    [42] Zhao X, Bao Z, Sun C et al. Polymorphology formation of Cu_2O: a microscopic understanding of single crystal growth from both thermodynamic and kinetic models. J. Cryst. Growth, 2009, 311 (3): 711-715.
    [43] Xu J, Xue D. Five branching growth patterns in the cubic crystal system: a direct observation of cuprous oxide microcrystals. Acta Mater., 2007, 55 (7): 2397-2406.
    [44] Wu Y, Bose S. Nanocrystalline hydroxyapatite: micelle templated synthesis and characterization. Langmuir, 2005,21 (8): 3232-3234.
    [45] Busch S, Schwarz U, Kniep R. Morphogenesis and structure of human teeth in relation to biomimetically grown fluorapatite-gelatine composites. Chem. Mater., 2001, 13 (10): 3260-3271.
    [46] Baies R, Caignaert V, Pralong V et al. Copper hydroxydiphosphate with a one-dimensional arrangement of copper polyhedra. Inorg. Chem., 2005,44 (7): 2376-2380.
    [47] Xiao F, Sun J, Meng X et al. Synthesis and structure of copper hydroxyphosphate and its high catalytic activity in hydroxylation of phenol by H_2O_2. J. Catal., 2001,199 (2): 273-281.
    [48] Cordsen A. A crystal-structure refinement of libethenite. Can. Mineral., 1978,16:153-157.
    [49] Xu J, Xue D. Fabrication of copper hydroxyphosphate with complex architectures. J. Phys. Chem. B, 2006,110 (15): 7750-7756.
    [50] Copper hydroxyphosphate elongated octahedron were modeled with SHAPE V7.1 (2002 by Shape Software, Kingsport USA).
    [51] Blochwitz C, Tirschler W. Twin boundaries as crack nucleation sites. Cryst. Res. Technol., 2005, 40 (1-2): 32-41.
    [52] Cerofolini G, Narducci D, Amato P et al. Fractal nanotechnology. Nanoscale Res. Lett., 2008, 3 (10): 381-385.
    [53] Sun Y, Mayers B, Herricks T et al. Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Lett., 2003, 3 (7): 955-960.
    [54] Henke H. Crystal structures, order-disorder transition and twinning of the Jahn-Teller system. Z. Kristallogr., 2003,218 (9): 617-625.
    
    [55] Yin M, Wu C, Lou Y et al. Copper oxide nanocrystals. J. Am. Chem. Soc, 2005,127 (26): 9506-9511.
    [56] Chen K, Wu W, Liao C et al. Observation of atomic diffusion at twin-modified grain boundaries in copper. Science, 2008, 321 (5892): 1066-1069.
    [57] Rodriguez-Clemente R, Serna C, Ocana M et al. The relationship of particle morphology and structure of basic copper(II) compounds obtained by homogeneous precipitation. J. Cryst. Growth, 1994, 143 (1-3): 277-286.
    [58] Batte H, Marangoni A. Fractal growth of milk fat crystals is unaffected by microstructural confinement. Cryst. Growth Des., 2005, 5 (5): 1703-1705.
    [59] Yu S, Colfen H, Xu A et al. Complex spherical BaCO_3 superstructures self-assembled by a facile mineralization process under control of simple polyelectrolytes. Cryst. Growth Des., 2004, 4 (1): 33-37.
    [1] Koh S. Strategies for controlled placement of nanoscale building blocks. Nanoscale Res. Lett., 2007, 2 (11): 519-545.
    
    [2] Zhang Y, Zeng H. Mesoscale spherical and planar organizations of gold nanoparticles. Funct. Mater. Lett., 2008,1(1): 43-53.
    [3] Sun Z, Yang B. Fabricating colloidal crystals and construction of ordered nanostructures. Nanoscale Res. Lett., 2006,1(1): 46-56.
    [4] Si R, Flytzani-Stephanopoulos M. Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO_2 catalysts for the water-gas shift reaction. Angew. Chem. Int. Ed., 2008,47 (15): 2884-2887.
    [5] Yuan N, Cheng G, An Y et al. Ordered mesostructured CdS nanowire arrays with rectifying properties. Nanoscale Res. Lett., 2009,4 (5): 414-419.
    [6] Long T, Yin S, Takabatake K et al. Synthesis and characterization of ZnO nanorods and nanodisks from zinc chloride aqueous solution. Nanoscale Res. Lett., 2009,4 (3): 247-253.
    [7] Li Z, Ding Y, Xiong Y et al. One-step solution-based catalytic route to fabricate novel alpha-MnO_2 hierarchical structures on a large scale. Chem. Commun., 2005, (7): 918-920.
    [8] Whitesides G, Grzybowski B. Self-assembly at all scales. Science, 2002, 295 (5564): 2418-2421.
    [9] Soler-Illia G, Sanchez C, Lebeau B et al. Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev., 2002, 102 (11): 4093-4138.
    
    [10] Zhang S, Chen X, Gu C et al. The effect of iron oxide magnetic nanoparticles on smooth muscle cells. Nanoscale Res. Lett., 2009,4(1): 70-77.
    
    [11] Caruso F, Caruso R, Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science, 1998,282 (5391): 1111-1114.
    
    [12] Liu J, Xue D. Solvothermal synthesis of CuS semiconductor hollow spheres based on a bubble template route. J. Cryst. Growth, 2009,311 (3): 500-503.
    [13] Wang J, Shi T, Jiang X. Synthesis and characterization of core-shell ZrO_2/PAAEM/PS nanoparticles. Nanoscale Res. Lett., 2009,4 (3): 240-246.
    [14] Zhang H, Wu J, Zhou L et al. Facile synthesis of monodisperse microspheres and gigantic hollow shells of mesoporous silica in mixed water-ethanol solvents. Langmuir, 2007,23 (3): 1107-1113.
    [15] Jiang D, Cao L, Liu W et al. Synthesis and luminescence properties of core/shell ZnS:Mn/ZnO nanoparticles. Nanoscale Res. Lett., 2009, 4(1): 78-83.
    [16] Yan C, Xue D. Synthesis of designed templates for novel semiconductor materials with hollow structures. Funct. Mater. Lett., 2008, 1(1): 37-42.
    
    [17] Hu S, Wang X. Single-walled MoO_3 nanotubes. J. Am. Chem. Soc, 2008,130 (26): 8126-8127.
    [18] Jia C, Sun L, Luo F et al. Large-scale synthesis of single-crystalline iron oxide magnetic nanorings. J. Am. Chem. Soc, 2008,130 (50): 16968-16977.
    [19] Tang K, Zhang J, Yan W et al. One-step controllable synthesis for high-quality ultrafine metal oxide semiconductor nanocrystals via a separated two-phase hydrolysis reaction. J. Am. Chem. Soc., 2008, 130(8): 2676-2680.
    [20] Balitsky V, Bublikova M. Physico-chemical foundations of malachite synthesis and structural morphological peculiarities and properties of its man-made jewelry quality varieties. Prog. Cryst. Growth Ch., 1990,21 (1-4): 139-141.
    [21] Reitz J, Solomon E. Propylene oxidation on copper oxide surfaces: electronic and geometric contributions to reactivity and selectivity. J. Am. Chem. Soc., 1998,120 (44): 11467-11478.
    [22]Susse P. Verfeinerung der kristallstruktur des malachits, Cu_2(OH)_2CO_3. Acta Crystallogr., 1967, 22: 146-151.
    [23] Stoilova D, Koleva V, Vassileva V. Infrared study of some synthetic phases of malachite-hydrozincite series. Spectrochim. Acta A, 2002,58 (9): 2051-2059.
    [24] Frost R, Martens W, Rintoul L et al. Raman spectroscopic study of azurite and malachite at 298 and 77 K. J. Raman Spectrosc, 2002, 33 (4): 252-259.
    [25] Ding Z, Frost R, Kloprogge J. Thermal activation of copper carbonate. J. Mater. Sci. Lett., 2002, 21 (13): 981-983.
    [26] Frost R, Ding Z, Kloprogge J et al. Thermal stability of azurite and malachite in relation to the formation of mediaeval glass and glazes. Thermochim. Acta, 2002,390 (1-2): 133-144.
    [27] Koga N. Kinetic-analysis of thermoanalytical data by extrapolating to infinite temperature. Thermochim. Acta, 1995,258: 145-159.
    [28] Janod E, leonyuk L, Maltsev V. Experimental evidence for a spin gap in the s=l/2 quantum antiferromagnet Cu_2(OH)_2CO_3. Solid State Commun., 2000,116 (9): 513-518.
    [29] Rodriguez-Clemente R, Serna C, Ocana M et al. The relationship of particle morphology and structure of basic copper(II) compounds obtained by homogeneous precipitation. J. Cryst. Growth, 1994, 143(1-3): 277-286.
    [30] Astilieros J, Pina C, Fernandez-Diaz L et al. Malachite crystallization in a diffusing-reacting system. Cryst. Res. Technol., 1998,33 (1): 51-57.
    [31] Zhang L, Yu J, Xu A et al. Peanut-shaped nanoribbon bundle superstructures of malachite and copper oxide. J. Cryst. Growth, 2004, 266 (4): 545-551.
    [32] Zhu C, Chen C, Hao L et al. In-situ preparation of 1D CuO nanostructures using Cu_2(OH)_2CO_3 nanoribbons as precursor for sacrifice-template via heat-treatment. Solid State Commun., 2004, 130(10): 681-686.
    [33] Xu J, Xue D. Fabrication of malachite with a hierarchical sphere-like architecture. J. Phys. Chem. B, 2005,109 (36): 17157-17161.
    [34] Xu D, Xue D. Chemical bond simulation of KADP single-crystal growth. J. Cryst. Growth, 2008, 310 (7-9): 1385-1390.
    [35] Schmidt M, Lutz H. Hydrogen bonding in basic copper salts: a spectroscopic study of malachite, Cu_2(OH)_2CO_3, and brochantite, Cu4(OH)6SO4. Phys. Chem. Miner., 1993,20 (1): 27-32.
    [36] Lutz H. Structure and strength of hydrogen bonds in inorganic solids. J. Mol. Struct., 2003, 646 (1-3): 227-236.
    [37] Ren X, Xu D, Xue D. Crystal growth of KDP, ADP, and KADP. J. Cryst. Growth, 2008, 310 (7-9): 2005-2009.
    [38] Xu D, Xue D. Fast growth of KDP. J. Cryst. Growth, 2008, 310 (7-9): 2157-2161.
    [39] Yan C, Xue D. Novel self-assembled MgO nanosheet and its precursors. J. Phys. Chem. B, 2005, 109 (25): 12358-12361.
    
    [40] Cheetham A. Advanced inorganic materials: an open horizon. Science, 1994,264 (5160): 794-795.
    [41] Steiner U, Reichelt W. A reinvestigation of Cu_3Mo_2O_9, a compound containing copper(II) in compressed octahedral coordination. Acta Cryst. C, 1997, 53: 1371-1373.
    [42] Kim S, Ogura S, Ikuta H et al. Reaction mechanisms of MnMoO_4 for high capacity anode material of Li secondary battery. Solid State Ionics, 2002,146 (3-4): 249-256.
    [43] Miller J, Sault A, Jackson N et al. The formation of active species for oxidative dehydrogenation of propane on magnesium molybdates. Catal. Lett., 1999,58 (2-3): 147-152.
    [44] Palache C. Lindgrenite a new mineral. Am. Mineral., 1935,20: 484-491.
    [45] Calvert L, Barnes W. The structure of lindgrenite. Can. Mineral., 1957, 6: 31-51.
    [46] Hawthorne F, Eby R. Refinement of the crystal structure of lindgrenite. Neues Jb. Miner. Monat., 1985, 5:234-240.
    [47] Frost R, Duong L, Weler M. Raman microscopy of the molybdate minerals koechlinite, iriginite and lindgrenite. Neues Jb. Miner. Abh., 2004,180 (3): 245-260.
    [48] Pavani K, Ramanan A. Influence of 2-aminopyridine on the formation of molybdates under hydrothermal conditions. Eur. J. Inorg. Chem., 2005, (15): 3080-3087.
    [49] Xu J, Xue D. Hydrothermal synthesis of lindgrenite with a hollow and prickly sphere-like architecture. J. Solid State Chem., 2007, 180 (1): 119-126.
    [50] Xu D, Xue D, Ratajczak H. Morphology and structure studies of KDP and ADP crystallites in the water and ethanol solutions. J. Mol. Struct., 2005, 740 (1-3): 37-45.
    
    [51] Xu D, Xue D. Morphology control of KDP crystallites. Physica B, 2005,370 (1-4): 84-89.
    [52] Xu D, Xue D. Chemical bond analysis of the crystal growth of KDP and ADP. J. Cryst. Growth, 2006, 286(1): 108-113.
    
    [53] Zott R. Friedrich Wilhelm Ostwald, now 150 years. Angew. Chem. Int. Ed., 2003, 42 (34): 3990-3995.
    [54] Ball P, Ruben M. Color theory in science and art: Ostwald and the Bauhaus. Angew. Chem. Int. Ed., 2004,43 (37): 4842-4846.
    [55] Zeng H. Ostwald ripening: a synthetic approach for hollow nanomaterials. Curr. Nanosci., 2007, 3 (2): 177-181.
    [56] Liu F, Sun C, Yan C et al. Solution-based chemical strategies to purposely control the microstructure of functional materials. J. Mater. Sci. Technol., 2008, 24 (4): 641-648.
    [1] Yan C, Xue D. Formation of Nb_2O_5 nanotube arrays through phase transformation. Adv. Mater., 2008, 20(5): 1055-1058.
    
    [2] Yan C, Xue D. Solution growth of nano- to microscopic ZnO on Zn. J. Cryst. Growth, 2008, 310 (7-9): 1836-1840.
    [3] Yan C, Sun C, Shi Y et al. Surface fabrication of oxides via solution chemistry. J. Cryst. Growth, 2008, 310(7-9): 1708-1712.
    [4] Yue G, Wang L, Wang X et al. Characterization and optical properties of the single crystalline SnS nanowire arrays. Nanoscale Res. Lett., 2009,4 (4): 359-363.
    [5] Zhang Z, Shao X, Yu H et al. Morphosynthesis and ornamentation of 3D dendritic nanoarchitectures. Chem. Mater., 2005,17 (2): 332-336.
    [6] Yan C, Xue D. A modified electroless deposition route to dendritic Cu metal nanostructures. Cryst. Growth Des., 2008,8 (6): 1849-1854.
    [7] Wen X, Zhang W, Yang S. Synthesis of Cu(OH)_2 and CuO nanoribbon arrays on a copper surface. Langmuir, 2003,19(14): 5898-5903.
    [8] Zhang W, Wen X, Yang S. Synthesis and characterization of uniform arrays of copper sulfide nanorods coated with nanolayers of polypyrrole. Langmuir, 2003,19(10): 4420-4426.
    [9] Yan C, Liu J, Liu F et al. Tube formation in nanoscale materials. Nanoscale Res. Lett., 2008, 3 (12): 473-480.
    
    [10] Kang T, Smith A, Taylor B et al. Fabrication of highly-ordered TiO_2 nanotube arrays and their use in dye-sensitized solar cells. Nano Lett., 2009,9 (2): 601-606.
    
    [11] Schrinner M, Ballauff M, Talmon Y et al. Single nanocrystals of platinum prepared by partial dissolution of Au-Pt nanoalloys. Science, 2009,323 (5914): 617-620.
    
    [12] Ling X, Phang I, Maijenburg W et al. Free-standing 3D supramolecular hybrid particle structures. Angew. Chem. Int. Ed., 2009, 48 (5): 983-985.
    [13] Paladugu M, Zou J, Guo Y et al. Formation of hierarchical InAs nanoring/GaAs nanowire heterostructures. Angew. Chem. Int. Ed., 2009,48 (4): 780-783.
    [14] Nakamura Y, Nakashima S, Ricinschi D et al. The insertion effect of Bi-excess layers on stoichiometric BiFeO_3 thin filmes prepared by chemical solution deposition. Funct. Mater. Lett., 2008, 1 (1): 19-24.
    [15] Zhu Y, Bando Y, Xue D et al. Insulating tubular BN sheathing on semiconducting nanowires. J. Am. Chem. Soc., 2003,125 (47): 14226-14227.
    [16] Li L, Reiss P. One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection. J. Am. Chem. Soc, 2008,130 (35): 11588-11589.
    [17] Henzie J, Barton J, Stender C et al. Large-area nanoscale patterning: chemistry meets fabrication. Acc. Chem. Res., 2006,39 (4): 249-257.
    [18] Sounart T, Liu J, Voigt J et al. Sequential nucleation and growth of complex nanostructured films. Adv. Funct. Mater., 2006,16 (3): 335-344.
    [19] Vayssieres L, Keis K, Hagfeldt A et al. Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem. Mater., 2001,13 (12): 4395-4397.
    [20] O'Regan B, Scully S, Mayer A. The effect of Al_2O_3 barrier layers in TiO_2/Dye/CuSCN photovoltaic cells explored by recombination and DOS characterization using transient photovoltage measurements. J. Phys. Chem. B, 2005,109 (10): 4616-4623.
    [21] O'Regan B, Lenzmann F, Muis R et al. A solid-state dye-sensitized solar cell fabricated with pressure-treated P25-TiO_2 and CuSCN: analysis of pore filling and IV characteristics. Chem. Mater., 2002,14,14 (12): 5023-5029.
    [22] Perea V, Pitigala P, Jayaweera P et al. Dye-sensitized solid-state photovoltaic cells based on dye multilayer-semiconductor nanostructures. J. Phys. Chem. B, 2003,107 (50): 13758-13761.
    [23] Tennakone K, Kumara G, Kottegoda I et al. Sensitization of nano-porous films of TiO_2 with santalin (red sandalwood pigment) and construction of dye-sensitized solid-state photovoltaic cells. J. Photochem. Photobiol. A, 1998,117 (2): 137-142.
    [24] Levy-Clement C, Tena-Zaera R, Ryan M et al. CdSe-Sensitized p-CuSCN/nanowire n-ZnO heterojunctions. Adv. Mater., 2005,17 (12): 1512-1515.
    [25] Tennakoneb K, Wickramanayakab S, Basub S. Cuprous thiocyanate: a superior photocatalyst for oxidation of water. Chem. Phys. Lett., 1985,121 (6): 551-553.
    [26] Mahrov B, Hagfeldt A, Lenzmann F et al. Comparison of charge accumulation and transport in nanostructured dye-sensitized solar cells with electrolyte or CuSCN as hole conductor. Sol. Energ. Mat. Sol. C, 2005, 88 (4): 351-362.
    [27] Regan B, Lenzmann F. Charge transport and recombination in a nanoscale interpenetrating network of n-type and p-type semiconductors: transient photocurrent and photovoltage studies of TiO_2/Dye/CuSCN photovoltaic cells. J. Phys. Chem. B, 2004, 108 (14): 4342-4350.
    [28] De Taccomi N, Son Y, Rajeshwar K. Electrochemical behavior, Raman characterization, and photoelectrochemistry of cuprous thiocyanate-polypyrrole bilayers and films. J. Phys. Chem., 1993, 97(5): 1042-1049.
    [29] Sindhu K, Sekhon S, Hashmi S et al. Studies on poly (ethylene oxide)-CuSCN polymer electrolytes. Eur. Polym. J., 1993,29 (6): 779-782.
    [30] Zhang H, Marin V, Fijten M et al. High-throughput experimentation in atom transfer radical polymerization: a general approach toward a directed design and understanding of optimal catalytic systems. J. Polym. Sci. A, 2004, 42 (8): 1876-1885.
    [31] Rost C, Sieber 1, Lux-Steiner M et al. Spatially distributed p-n heterojunction based on nanoporous TiO_2 and CuSCN. Appl. Phys. Lett., 1999, 75 (5): 692-694.
    [32] Bringley J, Eachus R, Marchetti A. Aqueous phase self-assembly of nanoscale p-n heterojunctions. J. Phys. Chem. B, 2002,106 (21): 5346-5350.
    [33] Tacconi N, Rajeshwar K. Semiconductor nanostructures in an alumina template matrix: micro-versus macro-scale photoelectrochemical behavior. Electrochim. Acta, 2002,47 (16): 2603-2613.
    [34] Yang M, Zhu J, Li J. Synthesis and characterizations of porous spherical CuSCN nanoparticles. Mater. Lett., 2005, 59 (7): 842-845.
    [35] Smith D, Saunders V. The structure and polytypism of the modification of copper (I) thiocyanate. Acta Crystallogr. B, 1981, 37: 1807-1812.
    [36] Smith D, Saunders V. Preparation and structure refinement of the 2H polytype of copper (I) thiocyanate. Acta Crystallogr. B, 1982, 38: 907-909.
    [37] Xu D, Xue D. Chemical bond analysis of the crystal growth of KDP and ADP. J. Cryst. Growth, 2006, 286(1): 108-113.
    [38] Xu D, Xue D. Computational study of crystal growth habit and cleavage. J. Alloy. Compd., 2008,449 (1-2): 353-356.
    [39] Xu J, Xue D. Fabrication of upended taper-shaped cuprous thiocyanate arrays on a copper surface at room temperature. J. Phys. Chem. B, 2006,110 (23): 11232-11236.
    [40] Zhang Z, Sun H, Shao X et al. Three-dimensionally oriented aggregation of a few hundred nanoparticles into monocrystalline architectures. Adv. Mater., 2005,17 (1): 42-45.
    [41] Sano M, Maruo T, Yamatera H. Structural determination of solvated copper species in formamide solution by EXAFS. J. Chem. Phys., 1988,89 (2): 1185-1187.
    [42] Xu J, Xue D, Yan C. Chemical synthesis of NaTaO_3 powder at low-temperature. Mater. Lett., 2005,59(23): 2920-2922.
    [43] Ji H, Hu J, Guo Y et al. Ion-transfer-based growth: a mechanism for CuTCNQ nanowire formation. Adv. Mater., 2008,20 (24): 4879-4883.
    [44] Zhang J, Liu J, Peng Q et al. Nearly monodisperse Cu_2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chem. Mater., 2006,18 (4): 867-871.
    [45] Xu L, Sithambaram S, Zhang Y et al. Novel urchin-like CuO synthesized by a facile reflux method with efficient olefin epoxidation catalytic performance. Chem. Mater., 2009,21 (7): 1253-1259.
    [46] Park J, Kim J, Kwon H et al. Gram-scale synthesis of Cu_2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium-ion battery anode materials. Adv. Mater., 2009, 21 (7): 803-807.
    [47] Lu L, Chen X, Huang X et al. Revealing the maximum strength in nanotwinned copper. Science, 2009, 323 (5914): 607-610.
    [48] Gozar A, Logvenov G, Kourkoutis L et al. High-temperature interface superconductivity between metallic and insulating copper oxides. Science, 2008,455 (7214): 782-785.
    [49] Wang S, Feng L, Jiang L. One-step solution-immersion process for the fabrication of stable bionic superhydrophobic surfaces. Adv. Mater., 2006,18 (6): 767-770.
    [50] Wu Y, Wadia C, Ma W et al. Synthesis and photovoltaic application of copper(I) sulfide nanocrystals. Nano Lett., 2008, 8 (8): 2551-2555.
    [51] Xu Y, Lu J, Goh N. Hydrothermal assembly and crystal structures of three novel open frameworks based on molybdenum (VI) oxides. J. Mater. Chem., 1999,9 (7): 1599-1602.
    [52] Shi H, Qi L, Ma J et al. Architectural control of hierarchical nanobelt superstructures in catanionic reverse micelles. Adv. Funct. Mater., 2005,15 (3): 442-450.
    [53] Cheng Y, Wang Y, Chen D et al. Evolution of single crystalline dendrites from nanoparticles through oriented attachment. J. Phys. Chem. B, 2005,109 (2): 794-798.
    [54] Hozumi T, Hashimoto K, Ohkoshi S. Electrochemical synthesis, crystal structure, and photomagnetic properties of a three-dimensional cyano-bridged copper-molybdenum complex. J. Am. Chem. Soc., 2005,27 (11): 3864-3869.
    [55] Haight G, Paragamian V. Color complexes of catechol with molybdate. Anal. Chem., 1960, 32 (6): 642-644.
    [56] Abrahams S, Bernstein J, Jamieson P. Crystal structure of the transition-metal molybdates and tungstates paramagnetic CuMoO_4. J. Chem. Phys., 1968,48 (6): 2619-2629.
    [57]Moini A, Peascoe R, Rudolf P et al. Hydrothermal synthesis of copper molybdates. Inorg. Chem., 1986, 25 (21): 3782-3785.
    [58] Garin J, Costamagna J. X-ray powder diffraction data for two ammonium copper molybdates. Powder Diffr., 1989,4 (4): 233-235.
    [59] Costamagna J, Garin J, Cowley A. Synthesis, characterization, and crystal and molecular structure of (NH_4)_2[Cu(NH_3)_2(MoO_4)_2]. J. Solid State Chem., 1993,105 (2): 567-572.
    [60] Gao P, Ding Y, Mai W et al. Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science, 2005,309 (5741): 1700-1704.
    [61] Yu S, Colfen H, Tauer K et al. Tectonic arrangement of BaCO_3 nanocrystals into helices induced by a racemic block copolymer. Nat. Mater., 2005,4 (1): 51-54.
    [62] Sone E, Zubarev E, Stupp S. Semiconductor nanohelices templated by supramolecular ribbons. Angew. Chem. Int. Ed., 2002,41 (10): 1705-1709.
    [63] Xu J, Xue D, Zhu Y. Room temperature synthesis of curved ammonium copper molybdate nanoflake and its hierarchical architecture. J. Phys. Chem. B, 2006,110 (35): 17400-17405.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700