危险货物运输半挂车辆转弯安全状态辨识与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合我国危险货物运输安全现状,立足于国内外道路主动安全研究热点—车辆监控预警技术,围绕危险货物运输半挂车转弯过程中的侧倾安全状态展开研究。
     研究了TruckSim仿真环境下车辆动力学建模方法,分别以实际运营的厢式固态和罐式液态危险货物运输半挂车为对象,构建了整车动力学模型;通过对牵引车以及半挂车在不同工况下的运动规律的仿真分析,确定了半挂车为侧倾危险研究的主体。
     以车辆转弯时半挂车内侧车轮刚刚离地为侧倾危险的判定条件,以车速、转向盘转角、货物密度、货物质心位置、货物充装系数等为参变量,针对非偏载和偏载两种装载条件,通过车辆动力学仿真,分别构建了厢式危险货物运输半挂车的多变量侧倾危险状态阈值辨识模型;通过不同条件下单摆运动的类比分析,研究了车辆转弯时一定侧向加速度状态下罐内液体的摆振规律,通过车辆动力学仿真,构建了罐式液态危险货物运输半挂车的多变量侧倾危险状态阈值辨识模型。
     以相似理论为基础,构建了相似模型试验平台,通过固定行车速度、转向控制角阶跃输入条件下的模型车试验,证明了将半挂车作为侧倾危险研究主体的正确性;通过安全、临界、危险三种侧倾状态下的模型车试验,证明了试验结果与对应相似条件下仿真辨识结果的一致性。
With the sustaining and rapid economic development in China, hazmat carrying trade has been unprecedented flourishing. At the same time, the volume of hazmat transportation has been rising continually. As the need of high-speed development of freeway and modern logistics, and the further integration (heavy-duty, container, Train and so on) and specialization (van-type transportation, professional transportation and special transportation) of highway transportation, heavy truck, especially the semi-trailer develops more rapidly. Hazmat transportation in China develops gradually from the current transportation form of medium and short distance, and medium and small load to the one of long distance and large load (heavy). Allopatry , long-distance, and large-tonnage transportation has become the general status of hazmat transportation in China.
     Although it greatly improves the transit efficiency, semi-trailer hazmat transportation brings a great deal of hidden risk, for example, serious accidents frequently happen in highway hazard transportation, and oversize accidents are shocking. The safety of semi-trailer for hazmat transportation has become a bottleneck of restricting the development of road transportation.
     Facing the increasingly severe security situation of road transportation, the United States, Japan and other developed countries have carried out a great deal of work in the warning system of vehicle safety monitoring, such as warning system of dangerous state for vehicle, collaborative system between vehicle and road, risk preventing system before a curve, vehicle rollover warning and controlling system etc. Intelligent transportation system based on the integration of human, vehicle and road is the developing trend of road traffic safety, thereinto the technology of getting the safety state of vehicle and monitoring and early-warning is one of the research emphases. Transfer from macro industry management to micro technology management is the changing trend of hazmat transportation management in developed countries. Research on the monitoring and early warning of state in transit of hazmat transportation is the frontier technology and research focus.
     In the "National Plan for Medium and Long Term Science and Technology Development (2006-2020)", the development of technology for preventing and early warning and emergency treating of traffic accident was classified as the priority themes in the field of transportation industry. While in the field of public security, improving early detecting and preventing capabilities for the accident was acted as the train of thought, and leakage monitoring of hazmat, early warning and emergency rescuing technologies were acted as the key technologies. Therefore, active technologies of monitoring and early warning for the hazmat transportation have become the major technical requirement of our country.
     This thesis just combines with the technical requirement in active monitoring of hazmat transportation, at the same time is based on the Technological Developing Project of Jilin Province“Research of Integrated Monitoring and Early Warning Technology for Road Transportation of Hazmat”, the 863 Project“Integrated Testing or Early Warning Technology and Device for Operating Motortruck Safety Performance”and National Natural Science Foundation Project“Research on the Key Monitoring and Early Warning Techology for the Safty of Hazmat Transportation Based on GIS-T”, chooses semi-trailer vehicle for hazmat transportation as the research object, regards the active early warning of vehicle sideward rolling safety as the target, respectively identifies the roll dangerous state of van semi-trailer hazmat transportation and liquid tank semi-trailer hazmat transpotation while turning, and studies the related laws among the parameters (steering wheel angle, vehicle speed and cargo filling coefficient, and so on). Research in the thesis mainly contains the following aspects:
     (1) From the perspective of vehicle dynamics modeling method, kinetics equation solving method, the working process of VS solver's, tire model and suspension performance of TruckSim software, the modeling methods of every subsystems for semi-trailer are deeply analyzed, and the required parameters (property curves) of car body, load, tire system, suspension system and other subsystems in the modeling process are studied. Respectively, the actual operation of van semi-trailer, solid-state hazmat transportation and a half tank of liquid hazmat transportation are taken as the research objects, based on the actual parameters, dynamic models of the whole vehicle are built in the Trucksim simulation environment. The the tractor and trailer moving law is analyzed under the condition of fixed speed and sinusoidal input of steering wheel angle and different speed and step input steering wheel angle, the order of main body while the risk of sideward roll happens during vehicle runing process is established.
     (2) The influencing factors of roll stability when the semi-trailer turning are analyzed, the basic parameters of the running state identification model of hazmat transportation vehicle are determined. When vehicle turning, taking the inside wheel of the semi-trailer just off the ground as the determinant condition for the sideward roll risk. For the condition of non-partial set, the relationship among the density for different values of the goods, the semi-trailer cargo filling factor K, the vehicle speed V and steering wheel angleθ(involving turning radius) are studied when the roll risk of semi-trailer happens. Then the K/V/θroll threshold identification model under different cargo density is gotten by simulation. Aiming at the problem of prone to the partial set when cargo loading process, the relationship among the eccentricity of goods a, the vehicle speed V and steering wheel angleθ(involving turning radius) is studied when the roll risk of semi-trailer happens. Then the a/V/θroll threshold identification model under different cargo loading M and centroid height h values is established by simulation. Finally, according to the curves from the corresponding parameters, the threshold identification model curve of each parameter for non-partial load and partial roll are compared, and their change regularity are analyzed.
     (3) The motion law of the ideal pendulum, the pendulum with a system acceleration and the pendulum with vibration damping are respectively reasearched. Based on the analysis of the existing washboard layout on a semi-trailer tank with liquid hazmat, the tank liquid swing around the tank is abstracted as a swinging damping pendulum rounding the cross-section center. Then, the relationship of the tank liquid’s centroid position and the liquid loading coefficient is gotten by analysising and calculating. Taking the liquid propylene as the tank containing liquid, and the physical function parameters of liquid propylene at room temperature as an index, the law of the shimmy damper attenuation in round cans body is studied. Assuming that the liquid does not shimmy, the acceleration is respectively gotten by simulation when a semi-trailer take a turn and under the conditions of differet loading coefficient K. And thus the transverse eccentricity a as well as the horizontal distance from the vertical uplift c are gotten when the liquid shimmy. Finally, the relationship among loading coefficient K the vehicle speed V and steering wheel angleθ(involving turning radius) is studied by simulation when the roll risk of semi-trailer happens under the conditions of liquid shimmy, and then the K/V/θroll threshold identification model is established.
     (4) According to similarity theory, a experimental platform of similar model is built. The similar conditions and similar criteria between the model vehicle and the prototype vehicle are studied. Through the research of program design, data parse, data synchronization, a data collecting system is developped. Finally, the experimental results are gotten by similar model experiment, and through the compare with the results between experiment and simulation, the consistency is proved.
     How to identify the dangerous state of the hazmat transportation vehicles in the change of different behavior parameters is the technical problems in actively monitoring and early warning technology of anti-rollover. The research has important theoretical value and practical significance, and it can provide reference for the early warning of the vehicle dangerous state in cooperative system of vehicle and road.
引文
[1]刘秀,王长君,罗俊仪,等.我国危险化学品道路运输安全现状及对策[J].道路交通管理, 2007(9): 14-18.
    [2]王立,吴芳.道路危险货物运输安全现状分析及对策研究[J].山东交通科技, 2009(1): 15-21.
    [3]毕振兴,张志勇.北美、欧、澳半挂车市场环境及技术特点[J].专用汽车, 2007(8): 11-14.
    [4] DeLorenzo Joseph P., Allen John, Williams David. Hazardous Materials Safety and Security Technology Field Operational Test Volume II: Evaluation Final Report Synthesis[R]. USDOT, 2004.
    [5]冯杰,李善同.我国公路货运现代化与装备发展的方向,条件和对策[R].国务院发展研究中心, 2004.
    [6]李善同,冯杰.我国公路货物运输中存在的主要问题[R].国务院发展研究中心, 2004.
    [7]安坤,徐超彦,华道理.国产半挂车未来的发展势头[J].城市车辆, 2007(8): 24-25.
    [8]王欣.国内半挂车市场前景看好[J].重型汽车, 2005(4): 29-32.
    [9]王琦.基于卫星导航定位的“危险品道路运输车辆运行安全监控管理应用系统”[J].卫星应用, 2006,14(3): 23-28.
    [10]吴宗之,孙猛. 200起危险化学品公路运输事故的统计分析及对策研究[J].中国安全生产科学技术, 2006,2(2): 3-8.
    [11]王伟.基于系统动力学道路危险品运输管理模式研究[D].大连:大连海事大学物流工程与管理, 2009.
    [12] KNUDSON P., FRECCERI C. A., DeLATEUR S. A. Improving the field triage of major trauma victims[J]. The Journal of trauma, 1988, 28(5): 602.
    [13] Knuiman M. W., Council F. M., Reinfurt D. W. Association of median width and highway accident rates[J]. Transportation Research Record, 1993(1401):70-71.
    [14]国务院.国家中长期科学和技术发展规划纲要(2006-2020)[R].中华人民共和国, 2006.
    [15]朱余清,洪添胜,李钳金,等.先进安全车(ASV)技术的现状与发展[J].农机化研究, 2006(4): 54-56.
    [16]汪卫东.世界汽车安全技术的最新发展[J].汽车工业研究, 2004(4): 36-37.
    [17]孙振平,安向京,贺汉根.汽车主动安全的发展及未来[C].青岛:中国汽车工程学会汽车电子技术分会第七届(2006)年会暨学术研讨会, 2006.
    [18]史其信,吴波. ITS中的车辆与系统的信息交互[J]. ITS通讯, 2006,8(2): 45-47.
    [19]肖琛,史自力.日本汽车产业成长特点及其对中国汽车工业发展的借鉴意义[J].经济研究参考, 2004(82): 38-44.
    [20]帅正梅.日本汽车产业发展概述[J].汽车工业研究, 2006(12): 42-43.
    [21]沈安,顾丽琴.从日本汽车产业看供应商-制造商的关系[J].物流技术, 2007,26(4): 123-126.
    [22] Suetomi T., Kido K. Driver behavior under a collision warning system-A driving simulator study[J]. SAE970279, 1997.
    [23] McMahon D. H., Hedrick J. K., Shladover S. E. Vehicle modeling and control for automated highway systems[C]. San Diego, Calif.: Vehicle Navigation & Information Systems Conference Proceedings, 1990.
    [24] Bishop R., Consulting R. B., Granite M. D. Intelligent vehicle applications worldwide[J]. IEEE Intelligent Systems and Their Applications, 2000, 15(1): 78-81.
    [25] Congress U. S. Transportation Equity Act for the 21st Century[Z]. 1998: 105-178.
    [26] Alic J. A. The federal role in commercial technology development[J]. Technovation, 1986, 4(4): 253-267.
    [27] Levitin H. W., Siegelson H. J. Hazardous materials. Disaster medical planning and response.[J]. Emergency medicine clinics of North America, 1996, 14(2): 327.
    [28] Erkut E., Verter V. Hazardous materials transportation[M]. Quebec, Canada: Centre for Research on Transportation, 2005.
    [29] Erkut E., Verter V. Modeling of transport risk for hazardous materials[J]. Operations Research, 1998, 46(5): 625-642.
    [30] Zhang J., Hodgson J., Erkut E. Using GIS to assess the risks of hazardous materials transport in networks[J]. European Journal of Operational Research, 2000, 121(2): 316-329.
    [31] Miller-Hooks E., Mahmassani H. S. Optimal routing of hazardous materials in stochastic, time-varying transportation networks[J]. Transportation Research Record: Journal of the Transportation Research Board, 1998, 1645(1): 143-151.
    [32] List G. F., Mirchandani P. B., Turnquist M. A., et.cl. Modeling and analysis for hazardous materials transportation: risk analysis, routing/scheduling and facility location[J]. Transportation Science, 1991, 25(2): 100.
    [33] Leonelli P., Bonvicini S., Spadoni G. New detailed numerical procedures for calculating risk measures in hazardous materials transportation[J]. Journal of Loss Prevention in the Process Industries, 1999, 12(6): 507-515.
    [34] Bonvicini S., Leonelli P., Spadoni G. Risk analysis of hazardous materials transportation: evaluating uncertainty by means of fuzzy logic[J]. Journal of Hazardous Materials, 1998, 62(1): 59-74.
    [35] Kara B. Y., Verter V. Designing a road network for hazardous materials transportation[J]. Transportation Science, 2004, 38(2): 188-192.
    [36] Strandberg L., Nordstroem O., Nordmark S. Safety problems in commercial vehicle handling[C]. Ann Arbor: Proceedings of Symposium on Commercial Vehicle Braking and Handling, 1975.
    [37] Mallikarjunarao C., Segel L. A Study of the Directional and Roll Dynamics of Multiple-Articulated Vehicles[J]. Vehicle System Dynamics, 1981, 10(2): 74-77.
    [38] MacAdam C. C. A computer-based study of the yaw/roll stability of heavy trucks characterized by high centers of gravity[J]. SAE821260, 1982.
    [39] Ervin R. D. The influence of size and weight variables on the roll stability of heavy duty trucks [J]. SAE831163, 1983.
    [40] Ervin R. D., Guy Y. The influence of weights and dimensions on the stability and control of heavy duty trucks in Canada[R]. UMTRI-86-35/III, 1986.
    [41] Winkler C. B., Fancher P. S., MacAdam C. C. Parametric Analysis of Heavy Duty Truck Dynamic Stability [R]. UMTRI-83-13-1, 1983.
    [42] Das N. S., Suresh B. A., Wambold J. C. Estimation of dynamic rollover threshold of commercial vehicles using low speed experimental data[J], SAE 932949, 1993.
    [43] Chen Bo-chiuan. Warning and Control for Vehicle Rollover Prevention[D]. the University of Michigan: Department of Mechanical Engineering, 2001.
    [44] Von Glasner E. C. Active safety of commercial vehicles[J]. JSAE Review, 1995, 16(2): 211.
    [45] Rakheja S., Pich A. Development of directional stability criteria for an early warning safety device[J]: SAE 902265, 1990.
    [46] Preston-Thomas J. And Woodrooffe J. A feasibility study of a rollover warning device for heavy trucks[R]. Transport Canada: Transportation Development Centre, Policy and Coordination Group, 1990.
    [47] Ervin R. D. Cooperative agreement to foster the deployment of a heavy vehicle intelligent dynamic stability enhancement system[R]. University of Michigan: Transportation Research Institute, 1998.
    [48] El-Gindy M. An overview of performance measures for heavy commercial vehicles in North America[J]. International Journal of Vehicle Design, 1995, 16(4): 441-463.
    [49] Winkler C. B., Fancher P. S. Scenarios for regulation of commercial vehiclestability in the US[C]. Cambridge UK: 4th Int. Heavy Vehicle Seminar Inst. Road and Dimensions, 1992.
    [50] Golaman Robert W. Development of a rollover-warning device for road vehicles[D]. Central County: Pennsylvania State University Department of Mechanical Engineering, 2001.
    [51] MacAdam C. C. A computer-based study of the yaw/roll stability of heavy trucks characterized by high centers of gravity[J]: SAE 821260, 1982.
    [52] Chen B. C., Peng H. Differential-braking-based rollover prevention for sport utility vehicles with human-in-the-loop evaluations[J]. Vehicle System Dynamics, 2001,36(4):359-389.
    [53] Chen B. C., Peng H. Rollover warning of articulated vehicles based on a time-to-rollover metric[J]. Transaction of the ASME, 2005, 127(7): 406-414.
    [54] Huang B., Long C. R., Liew Y. S. GIS-ABP model for HAZMAT routing with security considerations[J]. 2003 IEEE Intelligent Transportation Systems, 2003(2): 253-255.
    [55]王宏伟.用人工智能突破传统管理模式——天泰雷兹安全监控管理系统在危险品运输中的广泛应用[J].中国物流与采购, 2006(8): 34-35.
    [56]赵韩涛,王云鹏,王俊喜,等.高速公路应急车辆指挥调度优化模型[J].吉林大学学报:工学版, 2006, 36(3): 336-339.
    [57]王云鹏,赵韩涛,王俊喜,等.基于共用信息平台的高速公路系统集成框架研究[J].公路交通科技, 2006, 23(2): 128-132.
    [58]朱建良,王兴全.工程车辆远程管理诊断系统终端设计[J].中国惯性技术学报, 2007, 15(003): 312-315.
    [59]罗俊仪,龚标,王长君.我国危险化学品道路运输现状[J].道路交通管理, 2005(11): 4-6.
    [60]吴学雷,姜吉庆,陈炎.半挂汽车列车侧倾稳定性计算机模拟研究[J].兵工学报, 1996(3): 1-13.
    [61]何锋,杨利勇,何锋,等.稳态转向时非满载罐式汽车侧翻稳定性的分析[J].现代机械, 2003(6): 24-26.
    [62]朱天军,宗长富,郑宏宇,等.基于LQG/LTR的重型半挂车主动侧倾控制仿真分析[J].系统仿真学报, 2008, 20(002): 476-479.
    [63]关志伟.半挂汽车列车行驶稳定性动力学仿真研究[D].长春:吉林大学交通学院, 2003.
    [64]刘宏飞.半挂汽车列车横摆动力学仿真及控制策略研究[D].长春:吉林大学交通学院, 2005.
    [65]黄杰燕.基于TTR预警的重型车辆防侧翻控制系统的研究[D].长春:吉林大学汽车学院, 2008.
    [66]姜祖啸.基于TruckSim的重型卡车整车动力学建模与仿真分析[D].吉林大学, 2009.
    [67] Captain K. M., Boghani A. B., Wormley D. N. Analytical tire models for dynamic vehicle simulation[J]. Vehicle System Dynamics, 1979, 8(1): 1-32.
    [68] Loeb J. S., Chen HHF, Guenther D. A. Lateral stiffness, cornering stiffness and relaxation length of the pneumatic tire[J]. SAE 900129, 1990.
    [69] Sayers M. W., Han D. S. A generic multibody vehicle model for simulating handling and braking[J]. Vehicle system dynamics, 1996, 25(3): 599-613.
    [70] Svendenius J., G Fvert M. A semi-empirical dynamic tire model for combined-slip forces[J]. Vehicle System Dynamics, 2006, 44(2): 189-208.
    [71] Bernard J. E., Clover C. L. Tire modeling for low-speed and high-speed calculations[J]. SAE 950311, 1995.
    [72] Pacejka H. B., Besselink IJM. Magic formula tyre model with transient properties[J]. Vehicle system dynamics, 1997, 27(5): 234-249.
    [73] Sharp R. S., Evangelou S., Limebeer DJN. Advances in the modelling of motorcycle dynamics[J]. Multibody System Dynamics, 2004, 12(3): 251-283.
    [74] Hac A. Rollover stability index including effects of suspension design[J]. PROGRESS IN TECHNOLOGY, 2004, 101(4): 68-78.
    [75]李志魁.基于CarSim的整车动力学建模与操纵稳定性仿真分析[D].吉林大学, 2007.
    [76]王蠡. K&C悬架试验台设计及操纵稳定性分析[D].吉林大学, 2007.
    [77]王英麟.基于CarSim与UniTire的爆胎汽车动力学响应研究[D].吉林大学, 2007.
    [78]王国林,韦超毅,陆永华,等.半挂汽车列车模型的建立与试验[J].农业机械学报, 2005, 36(11): 17-20.
    [79]李祥峰,罗新闻,马金刚,等.半挂汽车列车转向特性的计算机仿真分析[J].拖拉机与农用运输车, 2008, 35(3): 28-30.
    [80]黄乾生.基于差动制动的半挂汽车列车主动安全控制的仿真研究[D].吉林大学, 2009.
    [81]刘合法,花家寿.汽车侧倾稳定性的动态仿真(一)——数学模型的建立[J].传动技术, 2003, 17(2): 25-34.
    [82]吴社强.汽车行驶的侧向稳定性[J].公路交通科技, 1997, 14(4): 38-41.
    [83]祝军,李一兵.汽车侧翻和滚翻事故建模研究[J].汽车工程, 2006, 28(3):254-258.
    [84]丁良旭,徐宗俊,郭钢.汽车横向静侧翻稳定性的仿真评估[J].客车技术与研究, 2005, 27(6): 10-12.
    [85]王坤.半挂汽车防侧翻控制算法研究[D].吉林大学, 2009.
    [86]何锋,郑秉康.影响载重汽车倾翻的主要汽车因素分析[J].贵州工业大学学报(自然科学版), 2001, 30(4): 92-96.
    [87]张少华.载货汽车的倾翻及预防[J].商用汽车, 2005(5): 103-105.
    [88]何锋,杨利勇.非满载罐式汽车准静态侧翻阈值的计算与分析[J].贵州师范大学学报(自然科学版), 2004, 22(2): 73-76.
    [89]宗长富,郭孔辉.汽车操纵稳定性的客观定量评价指标[J].吉林工业大学自然科学学报, 2000, 30(1): 1-6.
    [90]宗长富,郭孔辉.汽车操纵稳定性的理论预测与综合评价[J].汽车工程, 2001, 23(1): 5-8.
    [91]宗长富,刘蕴博.汽车操纵稳定性的模拟器闭环评价与试验方法[J].汽车工程, 2001, 23(3): 205-208.
    [92]赵秋芳.基于ADAMS的汽车操纵稳定性仿真试验初步研究[D].大连理工大学, 2006.
    [93]刘锦.重型商用车操纵稳定性客观评价方法研究[D].长春:吉林大学汽车学院, 2009.
    [94]黄朝胜.重型载货汽车底盘性能设计参数控制研究[D].长春:吉林大学汽车学院, 2005.
    [95]国务院.中华人民共和国道路交通安全法实施条例[EB/OL]. [2010.03.10] http://www.chinasafety.gov.cn/jiaotongyunshu/2004-06/21/content_11312.htm.
    [96]廉宝昌.超限超载运输对公路的危害及管理措施[J].黑龙江交通科技, 2006, 29(3): 112.
    [97]陈铭年,雷治国,徐建全.横向隔板对液罐车纵向稳定性的影响[J].专用汽车, 2004(2): 19-22.
    [98]陈志伟.移动式压力容器介质晃动数值模拟及防波装置研究[D].浙江大学, 2006.
    [99]刘国良.单摆振动周期的探讨[J].物理通报, 2008(12): 39-41.
    [100]卢伟辉.对单摆振动周期的讨论[J].科技信息, 2008(8): 228-230.
    [101]鞠衍清.单摆运动中的几个极值问题[J].大学物理实验, 2005, 18(4): 45-47.
    [102]尹忠文,宋海珍.加速平动非惯性系中单摆的周期公式[J].南阳师专学报, 1996, 16(3): 26-28.
    [103]刘巧伶,李洪.理论力学[M].北京:科学出版社, 2005.
    [104]刘国跃,龚劲涛,吴英.单摆运动的非谐振和弱阻尼修正[J].绵阳师范学院学报, 2007, 26(2): 38-41.
    [105]何松林,戴祖诚,黄焱.弱阻尼非线性单摆的周期研究[J].大学物理, 2009(8): 20-22.
    [106]王玉清,任新成.落球法测液体粘度实验的改进[J].大学物理, 2004, 23(8): 41-42.
    [107]唐果书.落球法测液体粘滞系数实验的研究[J].安徽教育学院学报, 2006, 24(3): 22-23.
    [108]李谷楠.危险品运输罐式半挂汽车列车侧翻危险状态仿真分析[D].吉林大学, 2009.
    [109]崔广心.相似理论与模型试验[M].徐州:中国矿业大学出版杜, 1990.
    [110]邱绪光.实用相似理论[M].北京:北京航空学院出版社, 1988.
    [111]袁文忠.相似理论与静力学模型试验[M].成都:西南交通大学出版社, 1998.
    [112]付江华.基于GPS与陀螺仪的汽车运动性能测试[D].西华大学, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700