基于光学检测的电泳微芯片关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电泳微芯片技术作为微流控芯片中重要的组成部分之一,在近二十年来的发展过程中,经历了材料选取、工艺实现、功能完善以及分析仪器系统的集成化、微型化和便携化等几个发展阶段。本文基于毛细管电渗流基本理论,以光学探测方法,针对电泳微芯片现有技术中存在的芯片制作工艺复杂、注液清洗过程繁复以及光学测试方法中微米量级光程影响检测灵敏度等问题进行研究。
     电渗性能作为衡量电泳微芯片性能的指标之一,其大小直接影响分离情况和分析结果的精密度和准确度。以电场中稀溶液流动的Navier-Stokes方程为基础,借鉴低雷诺数流理论忽略斯托克斯方程中的惯性力项,建立电渗驱动方程模型。利用有限差分法和多步打靶法分别求解PMMA基材电泳微沟道内电渗流形、电场和微流体流速的关系。计算结果表明PMMA基电泳芯片电渗流形为扁平塞状流,流体流速与电场强度保持线性关系,μeo=2.3×10-4cm2/Vs。设计电流监测法电渗流测速实验,以硼砂为缓冲溶液,PMMA基电泳微芯片测试的电渗迁移率为μeo=3.02×10-4cm2/Vs。利用XPS谱进行加工表面成分和价态分析,表明铣削方式加工制作的PMMA电泳微芯片微沟道表面存在不饱和价键结构,导致定域电荷面密度较大,而造成电渗强度较大。
     以毛细管电渗理论为基础,进行电泳微芯片设计、制作以及实验过程研究。以CFDRC软件进行微沟道构型、几何尺寸以及电场施加策略等优化设计,将微沟道设计为宽度大于50μm,可施加场强200V/cm~250V/cm。
     针对PDMS和PMMA材料分别进行芯片加工实现,提出二次模板法加工PDMS微器件以及氨水浸泡法实现PDMS芯片不可逆键合法,解决了PDMS芯片加工过程中的脱模问题和键合问题;
     采用超精密数控铣削加工模式进行PMMA电泳微芯片加工,实现加工即成形目的。设计加工PMMA基压电驱动平面无阀微泵,最大流量可达350μl/min,在1min内完成沟道清洗次数最高可达487次,可完成电泳微芯片微沟道内溶液的灌注、清洗以及进样功能。PMMA微泵设计工艺与制作电泳微芯片工艺兼容,一体化的设计加工模式提高了芯片的可使用性。
     搭建了以TW30SX光敏二极管为光电转换器件的紫外-可见吸收检测系统,可检测10-11A数量级的光电流;总延迟时间在150~250ms之间;输出噪声±5mV。总重量2kg左右,体积为280×200×150mm3。以该系统测试单层PMMA芯片对紫外光源的吸收率为0.035,键合后芯片对光强的衰减为16.87%。
     同时针对无机阴离子(Cl-和SO42-)的电泳实验,以间接紫外吸收检测方式,设计背景缓冲溶液为10mmol/L Na2CrO4+0.5mmol/LCTAB的混合液,其电渗性能测试结果表明在此浓度溶液组合下,电渗流方向成功实现反转,反向电渗迁移率为μeo=9.15×10-4cm2/Vs,可满足无机阴离子毛细管电泳实验测试需求。
     最后利用电迁移进样方式在单一微沟道布局芯片上,实现无机阴离子Cl-和SO42-电泳间接紫外吸收检测,单峰重复性实验结果效果良好,双峰可初步实现基线分离,检测限可达10-9mol。PMMA电泳微芯片以及光检测系统性能稳定,为PMMA基材电泳微芯片在紫外吸收检测方面的进一步应用奠定基础。
As one of important parts of microfluidics, microchip electrophoresis (MCE) technology has gone through several seedtimes during the last 20 years,including fabrication processing and selection of materials, function improvement, as well as system integrated, miniaturized and portable. There are some problems still impeding the development of MCE, such as the complexity of fabrication technique, the operation process complexity of solution introducing into the microchannel. Also the micron-scale optical-path length is so short that the sensitivity of optical detection system is affected seriously. In this paper,based on the basic theory of capillary electro-osmosis flow (EOF), with optical detection methods, all attention are focused on finding solutions to the problems that exist in the MCE technology.
     EOF,as one of the most important performance indicators of MCE, will influence the precision and veracity of the analysis result. Based on Navier-Stokes equation of the dilute solution under the electric field, neglected the inertial force item in Stokes equations as the theory of low Reynolds number, the EOF mathematics model in MCE micro-channel is set up. Then with finite difference method and multi-step shooting method, the EOF flow shape in the micro-channel on PMMA MCE and the relationship between E and veo are solved respectively. The calculation results indicate that the EOF flow shape in the micro-channel is flat plug-like, and the E ? veo curve is kept the lineariy relation,μeo=2.3×1 0-4cm2/Vs. Current-monitoring method for measuring the EOF rate is adopted. The buffer is borax. The electroosmosis mobility isμeo=3.02×10-4cm2/Vs. The microchannel surface component and valent-state are analysed with XPS spectrum, the results show that the unsaturated bond are existing on the PMMA surface with the milling process, leading to increase the surface charge density, then resulting in a greater intensity of electro-osmotic. According to EOF basic theory,MCE structure design is carried out, at the same time, the study for the fabrication process and the electophoresis experimental is followed along. With CFDRC software, the configuration and geometry parameter of the MCE micro-channel, also the strategy of electric field apllied, are simulated and optimized designing. The optimization parameter of the microchannel width is 50μm, and the electric field strength E is 200V/cm~ 250V/cm.
     The fabrication techniques about the PDMS and PMMA material are described detailed in this paper. The technique that fabricated the PDMS device with twice mold is presented firstly.With this method the PDMS devices could be released from the PMMA mold easily and perfectly. Then an irreversible bonding process of PDMS chip with ammonia immersion method is developed. These two methods completely solved the fabrication problems of PDMS chip.
     The ultra-precision computer numerical control (CNC) milling manufacture method is presented in fabrication the PMMA substrate MCE with an ultra-precision CNC milling. As for the PMMA materials chip fabrication, this method is easier to realize the purpose of processing that is forming. A PMMA substrate plane valveless micro-pump driven by the PZT piezoelectric thick film is designed and fabricated with this method too. Then the chip’s function and practicability could be increased. The maxium flow rate is 350μl/min, and could complete rinsing microchannel up to 487 times in 1 min. The function of solution introducing, rinsing and sample injection could be completed. Especially, the fabrication process of the PMMA micropump is compatibile with MCE chip’s. Integrated design and processing mode improve the availability of the chip.
     With the TW30SX photodiode as the photo-electric converter device, a UV detection system is set up. With this detection system, 10-11A magnitude of photocurrent can be detected. The total delay time is between 150 ~ 250ms, the output noise is±5mV, the weight of the whole detect system is about 2kg, and the volume is 280×200×150mm3. The absorption rate of single-layer PMMA chip is 0.035at UV light source with the system, while attenuation of the light strength is 16.87% with the bonding PMMA chip.
     The whole system electrophoresis experiment are developed with indirect UV detection methods. The inorganic anions(Cl-, SO42-)is used as the separation ions. The background buffer solution is 10mmol/L Na2CrO4+0.5mmol/LCTAB, which electroosmotic test results show that the direction of EOF flow is from the cathode to the anode, reversal with the borax buffer. And the mobility of this buffer isμeo=9.15×10-4cm2/Vs. This condition is suitable for the test demand of inorganic anion electrophoresis experiment
     Finally, with the electromigration sample injection mode in a single micro- channel MCE chip, inorganic anion Cl-and SO42- electrophoresis peak are detected with indirect UV detection method. The single-peak repeatability results are better, also the mixed two ions could achieve the baseline separation, the detection limit is 10-9mol. The performance and stability are better during the experiment of PMMA MCE with the portable detection system. All these work lay a stable foundation for the PMMA MCE further application in the UV absorbance detection.
引文
1方肇伦.关于在我国发展微全分析系统的建议.分析仪器.2001,(2):1~3
    2 Harrisson D J, Manz A, Fan Z H. Capillary Electrophoresis and Sample Injection System Integrated on a Planar Glass Chip. Anal Chem. 1992, 64 (17):1926~1932
    3王琪,方向东,王小宁等.缩微芯片实验室.生命的化学.2000,20(2):87~89
    4刘莉莉,马文丽,姚文娟等.集成毛细管电泳芯片研究进展.北京生物医学工程.2006,25(3):316~320
    5 Manz A, Graber N, Widmer H M. Miniaturized Total Analysis Systems: A Novel Concept for Chemical Sensing. Sensors & Actuators.B. 1990,B1: 244~248
    6 Liu S R, Shi Y N, Mathies R A. Optimization of High-Speed DNA Sequencing on Microfabricated Capillary Electrophoresis Channels. Anal. Chem. 1999, 71: 566~573
    7 Jacobson S.C, Koutny L.B, Herrgenroder R et al. Microchip Capillary Electrophoresis with an Integrated Post Column Reaction. Anal. Chem. 1994, 66(6): 3472~3476
    8 Effenhauser C.S, Manz A, Widmer H.M. Glass Chips for High-Speed Capillary Electrophoresis Separation with Submicrometer Plate Heights. Anal.Chem. 1993,65: 2637~2642
    9 Carlo S.Effenhauser, Aran Paulus, Andreas Manz, et al. High-Speed Separation of Antisense Oligonucleotides on a Micromachined Capillary Electrophoresis Device. Anal. Chem. 1994,71: 2949~2953
    10 Yoshiaki Mizukami, Daniel Rajniak, Akiko Rajiak etal. A Novel Microchip for Capillary Electrophoresis with Acrylic Microchannel Fabricated on Photosensor Array. Sensors and Actuators B. 2002,81: 202~209
    11 Burns M A, Johnson B N, Brahmasandra S N. An Integrated Micro-fabricated DNA Analysis Device. Science. 1998,282: 484~487
    12 Liu, R. H.,Yang, J., Lenigk, R. Self-contained Fully Integrated Biochip for Sample Preparation Polymerase Chain Reaction Amplification and DNA Microarray Detection. Anal. Chem. 2004, 76:1824~1831
    13杨华勇,谢海波,刘玲等.可快速进样和换样的集成微泵式毛细电泳芯片.中
    14国专利.ZL200320107933.8
    15谢海波,傅新,杨华勇.用于微量化学分析芯片的微型无阀泵流动特性分析与测试.仪器仪表学报. 2004,25(2):168~173
    16高晓光.用于微流控芯片的压电薄膜微泵研究.大连理工硕士学位论文. 2008:45~55
    17 Rice C. L, Whitehead R. Electrokinetic Flow in a Narrow Cylindrical Capillary. J. Phys Chem. 1965,69: 4017~4024
    18 Jorgenson J. M, Lukacs K. D. Zone Eletrophoresis in Open-Tubular Glass Capillaries. Anal. Chem. 1981,53: 1298~1302
    19 Andreev V P, Lisin E E. On the Mathematical Model of Capillary Electrophoresis. Chromatographia. 1993,37: 202~210
    20 Burggraf N, Manz A, Verpoorte E et al. Planar Glass Chips for Capillary Electrophoresis: Repetitive Sample Injection, Quantization, Separation Efficiency. Sensors and Actuators. 1994,20: 103~110
    21 Molho, Herr A. E, Mosier B. P,et al. Micro Total Analysis Systems. Enschede. The Netherlands. 2000:3~10
    22 Yi Wang, Qiao Lin,Tamal Mukherjee. A Model for Joule Heating-Induced Dispersion in Microchip Electrophoresis. Lab on Chip. 2004, (4): 625~631
    23 Gongyue Tang, Deguang Yan, Chun Yang. Assessment of Joule heating and its effects on Electroosmotic Flow and Electrophoretic Transport of Solutes in Microfluidic Channels. Electrophoresis. 2006, 27:628~639
    24 Stewart K. Griffiths,Robert H. Nilson. Charged Species Transport, Separation, and Dispersion in Nanoscale Channels: Autogenous Electric Field-Flow Fractionation. Anal. Chem. 2006, 78:8134~8141
    25伊福廷,姜雄平,彭良强等.微流路生物芯片的研制.微纳电子技术. 2003, (7/8):356~358
    26范博源,闫卫平,马灵芝.毛细管电泳芯片微沟道内电场分布的数值计算.分析试验室. 2003, 22(4): 89~92
    27仲武,陈云飞,庄苹.电渗流的机理分析.东南大学学报(自然科学版). 2003, l33(3): 307~311
    28方力,张劲柏.二维微槽道电渗流的增强混合.北京航空航天大学学报. 2005,31(5):583~586
    29吴健康,王贤明.生物芯片微通道周期性电渗流特性.力学学报. 2006,38(3):309~315
    30王辉,林炳承.芯片毛细管电泳及其在生命科学中的应用.分析化学评述与进展. 2002,30(3):359~364
    31吴友谊,吴明嘉.集成毛细管电泳芯片及其制作技术的进展.分析测试技术与仪器. 1999, 5(3):135~ 141
    32方肇伦等.微流控分析芯片.科学出版社, 2003:1~30
    33 Duffy D.C., Mcdonald J.C., Schuller O J A. Rapid Prototyping of Microfluidic System in Poly(dimethylsiloxane) . Anal. Chem. 1998, 70: 4974~4984
    34 Woolley A.T, Sensabaugh G.F, Mathies R.A. High-speed DNA Genotyping Using Microfabricated Capillary Array Electrophoresis Chips. Anal. Chem. 1997, 69(11): 2181~ 2186
    35 Shi Y, Simpson P.C, Scherer J.R. Radial Capillary Array Electrophoresis Microplate and Scanner for High Performance Nucleic Acid Analysis. Anal. Chem. 1999,71(23):5354~5361
    36 Emrich C A, Tian H J, Medintz I L, et al. Microfabricated 384-lane Capillary Array Electrophoresis Bioanalyzer for Ultrahigh-throughput Genetic Analysis. Anal.Chem. 2002,74:5076~5083
    37 A. T. Woolley, D. Hadley, P. Landre, et al. Functional Integration of PCR Amplification and Capillary Electrophoresis in a Micro fabricated DNA Analysis Device. Anal. Chem.1996,68: 4081~4086
    38 GriffithsSK, NilsonRH. Design and Analysis of Folded Channel for Chip-Based Separations. Anal.Chem. 2002, 74: 2960~2967
    39汤扬华,周兆英,叶雄英等.毛细管电泳芯片的制造.微细加工技术. 2001,(1):62~66
    40 Linhars M C, Kissinger P T. Use of a Noncolumn Fracture in Capillary Zone Electrophoresis for Sample Introduction. Anal.Chem. 1991,63 (18): 2076 ~2078
    41 Dem L M, Foret F, Bocek P. Electric Sample Splitter for Capillary Electroph- oresis. J of Chromatogr. 1985, 320(1):159~165
    42陈义,竺安.高效毛细管电泳的扩散进样.色谱. 1991,9(6):353~356
    43刘军山. PMMA集成毛细管电泳芯片制作工艺研究.大连理工大学博士学位论文. 2005:5~35
    44熊少祥,韩慧婉,赵睿等.高效毛细管电泳——激光诱导荧光检测生物活性肽的研究.分析测试学报. 1999,18(5):1~3
    45许鹏翔,袁东星,陈猛.高效毛细管电泳的光学检测.分析科学学报. 1999, 15(6):516~520
    46 Zhenhua Liang, Nghia Chiem, Gregor Ocvirk,et al. Microfabrication of a Planar Absorbance and Fluorescence Cell for Integreated Capillary Electrophoresis Devices. Analytical Chemistry. 1996, 68: 1040~1046
    47 Oliver Klett ,Leif Nyholm.Separation High Voltage Field Driven on-Chip Amperometric Detection in Capillary Electrophoresis. Anal. Chem. 2003, 75: 1245~1250
    48翟海云,蔡沛祥,陈缵光等.毛细管电泳高频电导法快速分离检测混合氨基酸.高等学校化学学报. 2004, 25:1037~1039
    49 Cuiru Zhu, Xinya He, James R. Kraly, et al. Instrumentation for Medium-Throughput Two-Dimensional Capillary Electrophoresis with Laser-Induced Fluorescence Detection. Anal. Chem. 2007, 79: 765~768
    50 Moosavi H S, Jiann Y, Lester L, A Multireflection Cell for Enhanced Absorhance Detection in Microchip-based Capillary Electrophoresis Devices. 2000,21: 1291~1299
    51 Tiggelaar R. M., Veenstra T.T., Sanders R. G P., et al. A Light Detection Cell to be Used in a Micro Analysis System for Ammonia. Anal. Chem. 2002,56: 331~339
    52杜文斌,方群,方肇伦.基于液芯波导原理的微流控芯片长光程光度检测系统.高等学校化学学报. 2004,25:610~613
    53 H. S. Moosavi, T. Tang, D. J. Harrison. Electroosmotic Pumping of Organic Solvents and Reagents in Microfabricated Reactor Chips. Journal of the American Chemical Society. 1997, 119: 8716~8717
    54 Liang Z.H., Chiem N., Ocvirk G., Tang T., Fluri K., Harrison D.J. Microfabrica- tion of a Planar Absorbance and Fluorescence Cell for Integrated Capillary Electrophoresis Devices. Analytical Chemistry. 1996, 68(6): 1040~ 1046
    55 L. K. Chau, T. Osborn, C. C. Wu, P. Yager. Microfabricated Silicon Flow-Cell for Optical Monitoring of Biological Fluids. Analytical Sciences, 1999, 15(8): 721~724
    56 I. Recha, A. Restelli, S. Cova, M. Ghioni. Microelectronic Photosensors for Genetic Diagnostic Microsystems. Sensors and Actuators,B. 2004,100:158~162
    57苏波.集成光纤的毛细管电泳芯片检测系统的研制.中科院电子学研究所博士学位论文.2006:15~40
    58 Cuiru Zhu, Xinya He, James R. Kraly, et al. Instrumentation for Medium Throughput Two Dimensional Capillary Electrophoresis with Laser Induced Fluorescence Detection. Anal. Chem. 2007, 79: 765~768
    59刘军.紫外检测_微流控毛细管电泳系统的研究.浙江大学硕士学位论文. 2005:5~30
    60 Jinkee Lee and Anubhav Tripathi. Measurements of Label Free Protein Concentration and Conformational Changes Using a Microfluidic UV-LED Method. Biotechnol. Prog. 2007, 23:1506~1512
    61 Joseph P. Hutchinson, Christopher J. Evenhuis, Cameron Johns. Identification of Inorganic Improvised Explosive Devices by Analysis of Postblast Residues Using Portable Capillary Electrophoresis Instrumentation and Indirect Photometric Detection with a Light-Emitting Diode. Anal. Chem. 2007, 79(18):7005~7013
    62 B. Zhang, H. Liu, BL. Karger, et al. Micro Fabricated Devices for Capillary Electrophoresis-Electrospraymass Spectrometry. Anal Chem. 1999, 71: 3258~ 3264
    63 Masanori Ueda, Hirohisa Abe, Hiroki Kuyama. Imaging of Injection and Seperation Processes of DNA on a Microfabricated Capillary Electrophoresis Device. Bioimages. 2000,7(4): 157~161
    64 Liu S R, Shi Y N, Mathies R A. Optimization of High-Speed DNA Sequencing on Microfabricated Capillary Electrophoresis Channels. Anal. Chem. 1999, 71: 566~573
    65 Paolo Fortina, Jing Cheng, Larry J.Kricka, Larry C. Waters. DOP-PCR Amplification of Whole Genomic DNA and Microchip-based Capillary Electrophoresis. 2000 International Forum on Biochip Technologies. Beijing, 2000: 228~235
    66 N. Chiem, DJ. Harrison. Monoclonal Antibody Binding Affinity Detemined by Microchip-based Capillary Electrophoresis. Electrophoresis. 1998, 19: 3040~ 3044
    67 Agustin Gonzalez Crevillen, Miriam Hervas, Miguel Angel Lopez. Real sample analysis on microfluidic devices. Talanta .2007,74:342~357
    68 George Em Karniadakis, Ali Beskok.微流动—基础与模拟.化学工业出版社,69 2006:2~35
    70李战华,崔海航.微尺度流动特性.机械强度. 2001,23(4):476~480
    71凌智勇,丁建宁,杨继昌等.微流动的研究现状及影响因素.江苏大学学报(自然科学版). 2002,23(6):1~5
    72 Hunter R. J. Zeta Potential in Colloid Science: Principles and Applications. Academic Press. New York, 1981:10~50
    73 Yang C, Li D. Eletrokinetic Effects on Pressure-Driven Liquid Flows in Rectangular Microchannels. J. of Colloid and Interface Science. 1997, 194: 95~107
    74邓延倬,何金兰.高效毛细管电泳.科学出版社. 2000:23~36
    75高乐怡,方禹之. 21世纪毛细管电泳技术及应用发展趋势.理化检验-化学分册. 2002,(1): 1~6
    76毕颖楠,张惠静,管潇.生理缓冲液应用于微流控芯片分析系统中的电学特性的研究.重庆医学.2006,35(20):1872~1874
    77范博源.毛细管电泳芯片电动进样的研究.大连理工大学硕士论文. 2003:
    17~21
    78严宗毅.低雷诺数流理论.北京大学出版社,2002:1~6
    79 E. John Finnemore, Joseph B. Franzini.流体力学及其工程应用.钱翼稷,周玉文.机械工业出版社,2006:180
    80 Alyssa C. Henry, Tumari J. Tutt, Michelle Galloway, et al. Surface Modification of Poly(methyl methacrylate) Used in the Fabrication of Microanalytical Devices. Anal. Chem. 2000, 72(21):5331~5337
    81 Neelesh A. Patankar, Howard H. Hu. Numerical Simulation of Electro- osmotic Flow. Anal. Chem. 1998, 70(9): 1870~1881
    82 Brian J. Kirby,Ernest F. Hasselbrink Jr. Zeta Potential of Microfluidic Substrates: 1. Theory, Experimental Techniques, and Effects on Separations. Electrophoresis. 2004, 25:187~202
    83 Brian J. Kirby,Ernest F. Hasselbrink Jr. Zeta potential of microfluidic substrates: 2. Data for polymers. Electrophoresis. 2004, 25:203~213
    84 Peter Deuflhard.非线性问题的牛顿法.科学出版社,2006:315~337
    85陈海峰,金文睿,全如翔.毛细管区带电泳的电渗流.分析科学学报.1998,14(3):257~262
    86陈阳.微流控芯片流体动态观测平台及实验研究.大连理工大学硕士学位论文. 2004:5~30
    87段仁庆.基于Micro-PIV技术的电动微流体测量研究.大连理工大学硕士学位论文.2006:10~20
    88谢海波,傅新,杨华勇.基于Micro-PIV的微观流场可视化检测技术.机械工程学报. 2005,41(9):106~111
    89 Xiaohua Huang, Manuel J. Gordon, Richard N.Zare. Current_Mornitoring Method for Measuring the Electroosmotic Flow Rate in Capillary Zone Electrophoresis. Anal. Chem.1988,60: 1837~1838
    90杜晓光,关艳霞,王福仁等.聚甲基丙烯酸甲酯微流控芯片的简易热压制作法.高等学校化学学报. 2003,24(11):1962~1966
    91周小棉,戴忠鹏,罗勇.注塑型聚甲基丙烯酸甲酯多通道微流控芯片的研制及其性能考察.高等学校化学学报. 2005,26(1):52~54
    92 Alexander Muck, Jr. Joseph Wang,Michael Jacobs,et al. Fabrication of Poly(methyl methacrylate) Microfluidic Chips by Atmospheric Molding. Anal. Chem. 2004, 76: 2290~2297
    93 U. Tallarek, E. Rapp, A. Seidel-Morgenstern,et al. Electroosmotic Flow Phenomena in Packed Capillaries: From the Interstitial Velocities to Intraparticle and Boundary Layer Mass Transfer. J. Phys. Chem. B. 2002, 106(49): 12709~12721
    94 Aveek N. Chatterjee, N. R. Aluru. Combined Circuit. Device Modeling and Simulation of Integrated Microfluidic Systems. Microelectromechanical Systems. 2005,14(1):81-95
    95 Griffiths S.K., Nilson R.H. Low Dispersion Turns and Junctions for Microchannel Systems. Anal.Chem. 2001,73:272~278
    96罗怡,娄志峰,褚德南等.玻璃微流控芯片的制作.纳米技术与精密工程.2004,2(1):20~23
    97 Harrison D J, Fluri K, Seiler K, et al. Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical Analysis System on a Chip.Science. 1993, 261: 895~897
    98 V.G. Kutchoukova, F. Laugere, W. van der Vlist, L. Pakula et al. Fabrication of
    99 Nanochannel using Glass to Glass Anodic Bonding. The 12th International Conference on Solid State Sensors, Actuators and Microsystems. Boston. TRANSDUCERS '03. 2003 ,(8-12):1327~1330
    100刘丙寅,游家玮,蔡宏营.异质晶圆键合机制探讨及发展现况.机械工业快讯. 2005,269:5~20
    101 Andreas Hierlemann, Oliver Brand, Christoph Hagleitner. Microfabrication Techniques for Chemical/Biosensors. Proceedings of IEEE. 2003,91(6) :839~863
    102贾志舰,方群,方肇伦.玻璃基质微流控芯片的室温键合技术.高等学校化学学报. 2004,25(4):61~62
    103辛龙涛,陈华,夏之宁.微流控分析芯片制作中的低温键合技术.微纳电子技术. 2004,(11):7~11
    104刘晓为,霍明学,王喜莲等.电化学法玻璃片硅片穿孔设备. 2003,专利号ZL03132459.2
    105李红,蒋稼欢,蔡绍皙. PDMS微流体系统的加工制作.高分子通报. 2005,(1):108~111
    106陈国防,袁湘林,李彤.集成毛细管电泳芯片技术及其在生化研究方面的应用.分析科学学报. 2001, 17(3):253
    107刘长春,崔大付,赵强等.基于MEMS技术的PDMS电泳微芯片的研制.微细加工技术. 2004,(1):58~61
    108刘长春,崔大付,王利.聚二甲基硅氧烷微流体芯片的制作技术.传感器技术. 2004, 23(7):77~80
    109 Yi-Chung Tung, Katsuo Kurabayashi. A Single-Layer PDMS-on-Silicon Hybrid Microactuator with Multi Axis Out of Plane Motion Capabilities Part II: Fabrication and Characterization. Journal of Microelectomechanical Systems. 2005, 14(3): 558~566
    110 Yulia Mourzina, Dmitry Kalyagin, Alfred Steffen et al. Electrophoretic Separations of Neuromediators on Microfluidic Devices. www. sciencedirect. com.Talanta.2006 , 70: 489~ 498
    111颜流水,梁宁,罗国安等.整体式PDMS电泳芯片快速成型及高灵敏化学发光检测氨基酸.高等学校化学学报. 2003, 24(7):1193~1197.
    112 Kang-Sun Lee, Chung Kim, Youngho Kim et al. Fabrication Method of Round-shaped Cross Sectional Channel Using a Difference Between Adsorptionand Cohesion of PDMS. The 13th International Conference on Solid-State Sensors, Actuators and Microsystems. TRANSDUCERS '05. 2005, (2): 1505 ~ 1508
    113叶美英,方群,殷学峰.聚二甲基硅氧烷基质微流控芯片通道的氧气氛改性研究.分析化学研究报告. 2004,32(12):1585~1589
    114陈林,任吉存,毕睿等.聚二甲基硅氮烷一玻璃微流控芯片永久性粘合方法研究.广西师范大学学报(自然科学版). 2003,21(3):298~299
    115孟斐,陈恒武,方群等.聚二甲基硅氧烷微流控芯片的紫外光照射表面处理研究.高等学校化学学报. 2002, 23(7):1264~1268
    116叶美英,方群,殷学锋等.聚二甲基硅氧烷基质微流控芯片封接技术的研究.高等学校化学学报. 2003,23(12):2243~2246
    117 R. Truckenmuller and S. Giselbrecht. Microthermoforming of Flexible not buried Hollow Microstructures for Chip-based Life Sciences Applications. IEEE Proc. Nanobiotechnol. 2004, 151: 162~164
    118叶嘉明,李明佳,周勇亮.热压法快速制作微流控芯片模具.中国机械工程. 2007,18(19):2379~2382
    119刘晓为,王蔚,田丽等.基于聚二甲基硅氧烷微小元器件的二次模板复制加工方法.专利号200510127395.2
    120石尔.硅橡胶-PDMS-复合膜结构及渗透蒸发应用研究.四川大学博士学位论文. 2007:10~30
    121黄道君,尤学一.聚合物PDMS片表面特性的AFM和XPS初步研究.现代仪器. 2007,(1):23~25
    122刘晓为,王蔚,田丽等.一种以聚二甲基硅氧烷为基材的芯片简易不可逆键合方法.专利号ZL200510009804.9
    123王文广,田雁晨,吕通建.塑料材料的选用.第二版.化学工业出版社,2007:194~500
    124 Siyi Lai, Xia Cao, and L. James Lee. A Packaging Technique for Polymer Microfluidic Platforms. Anal. Chem. 2004, 76:1175~1183
    125 Justin S. Mecomber, Apryll M. Stalcup, Doug Hurd, et al. Analytical Performance of Polymer-Based Microfluidic Devices Fabricated By Computer Numerical Controlled Machining. Anal. Chem. 2006, 78:936~941
    126 Martyanova L, Locascoi L E, Gaitan M, et al. Fabrication of Plastic Microfluid Channels by Imprinting Method. Anal. Chem. 1996,68:720~723
    127陈国防,袁湘林,李彤等.集成毛细管电泳芯片技术及其在生化研究方面的应用.分析科学学报. 2001, 17(3):253
    128殷学锋,方群,凌云扬.微流控分析芯片的加工技术.现代科学仪器. 2001, (4):12
    129于建群,王立鼎,刘军山.集成毛细管电泳芯片的结构及其制作技术研究进展.中国机械工程. 2003, 14(2):172
    130 Mccormick R M,Neison R J, Goretty Alonson Amigo M, et al. Microchannel Electrophoretic Separations of DNA in Injection-Molded Plastic Substrates. Anal. Chem. 1997,69:2626~2630
    131刘晓为,霍明学,田丽等.用于生物化学分析的毛细管电泳芯片的制备方法.专利号ZL03111185.3
    132谭亚明.基于微小型铣床的微细铣削加工试验研究.哈尔滨工业大学硕士论文. 2006:8
    133刘毅.基于PMAC的微小型机床数控系统的研究.哈尔滨工业大学硕士论文. 2006:7
    134 Ryan T. Kelly,Adam T. Woolley. Thermal Bonding of Polymeric Capillary Electrophoresis Microdevices in Water. Anal. Chem. 2003, 75:1941~1945
    135 Jayna J. Shah, Jon Geist, Laurie E. Locascio, et al. Capillarity Induced Solvent-Actuated Bonding of Polymeric Microfluidic Devices. Anal. Chem. 2006, 78: 3348~3353
    136杜晓光.热塑性聚合物微流控芯片制作_表面改性及在DNA分析应用中的研究.东北大学博士论文. 2006:1~36
    137刘军山. PMMA集成毛细管电泳芯片制作工艺研究.大连理工大学博士论文. 2005:1~28
    138鲍志勇.压电微泵的设计与制作.哈尔滨工业大学硕士论文. 2006:15~35
    139傅建奇.多口压电微泵的设计与制作.哈尔滨工业大学硕士论文. 2007:10~35
    140王蔚,刘晓为,陈伟平等.压电膜片的优化设计及在微泵中的应用.压电与声光. 2006,28(2):153~158
    141 Culbertson C. T, Jacobson S. C, Ramsey J. M. Eletroosmotically Induced Hydraulic Pumping on Microchips: Differential Ion Transport. Anal. Chem. 1998, 70: 3781
    142张维佳,潘大林.工程流体力学.黑龙江科学技术出版社. 2001: 108~109
    143 Stemme E. A Valeless Diffuser/Nuzzle-Based Fluid Pump. Sensors and Actuators. 1993, A39: 159 ~167
    144张宇峰,张国威,刘晓为等.平面无阀微泵的设计与制作.哈尔滨工业大学学报. 2007,39(6):936~939
    145 Joseph P. Hutchinson, Christopher J. Evenhuis, Cameron Johns, et al. Identification of Inorganic Improvised Explosive Devices by Analysis of Postblast Residues Using Portable Capillary Electrophoresis Instrumentation and Indirect Photometric Detection with a Light-Emitting Diode. Anal. Chem. 2007, 79:7005~7013
    146邓勃.原子吸收光谱分析的原理、技术和应用.清华大学出版社. 2004:65~80
    147黄君礼,鲍治宇.紫外吸收光谱法及其应用.中国科学技术出版社. 1992:1~38
    148霍戌文,李伟,李进.光电探测微信号放大器设计.浙江理工大学学报. 2005,22(3):259~262
    149王慧锋,陈晞,张芹.微弱荧光信号检测放大器的低噪声设计.生命科学仪器. 2007,5(4):46~50
    150刘刚,余岳辉,史济群等.半导体器件—电力、敏感、光子、微波器件.电子工业出版社,2000:208~228
    151陈颖,吴正云,蔡加法等.基于Labview的紫外光探测器自动化测试与分析系统.半导体光电. 2007,28(5):647~650
    152 Timothy J. Johnson, David Ross, Michael Gaitan, et al. Laser Modification of Preformed Polymer Microchannels: Application to Reduce Band Broadening around Turns Subject to Electrokinetic Flow. Anal. Chem. 2001, 73(15):3656~3661
    153 Shaurya Prakash, Timothy M. Long, John C. Selby.“Click”Modification of Silica Surfaces and Glass Microfluidic Channels. Anal. Chem. 2007, 79(4): 1661~1667
    154陈冰.高效毛细管电泳间接紫外光检测法的应用研究.南京理工大学硕士论文. 2004:15~30
    155郑平,傅晓芸,吕建德.常见阴离子的毛细管电泳迁移行为.色谱. 1999,17(4): 332~334
    156 Paul R. Haddad. Comparison of Ion Chromatography and Capillary Electrophoresis for the Determination of Inorganic Ions. Journal of
    157 Chromatography A. 1997,770:281~290
    158陈义.毛细管电泳技术及应用(第二版).化学工业出版社,2006:23~26
    159方群,何巧红.自动液体更换的微流控芯片毛细管电泳分析装置及使用方法.中国发明专利. 2006.申请号:200610050805.2
    160 Vladislav Dolnfk. Selectivity, Differential Mobility and Resolution as Parameters to Optimize Capillary Electrophoretic Separation. Journal of Chromatography A. 1996, 744: 115~121
    161 Yongwon Jeong, Yongsuk Han, Songyi Kim, Haehyung Lee. Channel Flownetwork at Low Electric Field with High Flow Resistance Compensationation Pattern. IEEE. 2003, 21: 434~431

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700