中频电磁软接触连铸技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢的电磁软接触连铸技术是通过在结晶器外施加交变电磁场来控制钢液的初始凝固过程来提高铸坯的表面质量,近年来该技术得到了广泛的研究,研究的焦点主要集中在高频电磁场下的软接触连铸技术。但是,由于高频电磁软接触电源和结晶器的制造难度大、造价高,高频交变磁场的致穿透性差,能量损耗高,对铸机电子设备的干扰大,工业推广困难等问题,提出了以中频电磁场代替高频磁场的电磁软接触连铸技术。研究和探讨电参数、结晶器结构参数和工艺参数条件下中频电磁软接触连铸结晶器内的磁场、流场、传热和凝固和弯月面行为变化规律,为后续工业用中频电磁软接触连铸技术的应用提供理论和技术支持。
     本文在理论分析的基础上建立了中频电磁软接触连铸结晶器内的三维电磁场有限元模型,揭示了不同参数下结晶器内磁感应强度、电磁体积力、感生电流和焦耳热的三维分布规律。结果表明:在中频电磁场作用下,结晶器内沿拉坯方向上的磁场分量远大于铸坯径向和周向上的分量,铸坯中沿径向上电磁压力的分量要远大于其它两个方向上的分量,表明施加中频磁场具有与高频磁场相同的以电磁压力为主的磁场特性;沿拉坯方向上的磁场作用范围主要集中在线圈高度范围内,在线圈中心高度附近出现磁感应强度峰值,向结晶器两端迅速减小;当频率为2500Hz,电流强度为800A时,结晶器内最大磁感应强度达0.07261T,满足软接触技术的要求;结晶器切缝中心与分瓣体中心两处的磁感应强度分布趋势相同,分瓣体中心处的磁感应强度峰值相对较小;结晶器内磁感应强度随线圈电流强度的增加线性增加;随电源频率的提高,最大磁感应强度增加,增幅却在减小,结晶器内周向上磁感应强度的均匀性会逐渐变差;切缝宽度对结晶器内拉坯方向上的磁感应强度的分布影响不大,建议切缝宽度选择0.5~0.8mm;随着切缝数的增加,结晶器对中频磁场的屏蔽减小,钢液外表面的磁感应强度增大,但增幅逐渐减小;当分瓣数为8时,中频(2500Hz)电磁软接触连铸结晶器内周向上磁场的均匀度与高频磁场(20.5kHz)下分瓣数为12的结晶器内周向上的磁场均匀度相当;金属液面高度自线圈顶端向下移动时,钢液表面磁感应强度先增大后减小,在自由液面位于感应线圈中心高度位置时获得的磁感应强度最大,随着自由液面高度的下降沿拉坯方向上磁场分布不均匀性加大;随着线圈相对位置的下降,结晶器内沿拉坯方向上的磁场分布规律不变,但磁场作用的有效区域整体随之下降,最大磁感应强度也随之有所减小。
     在连续介质模型基础上,建立了中频电磁软接触连铸结晶器内钢液流动、传热和凝固的耦合计算模型,揭示了不同参数下结晶器内钢液的流动和温度分布规律,结果表明:中频电磁场主要对弯月面区域的钢液有明显力的作用,使弯月面区域的流速加快,温度升高,初始凝固点位置略微下降,初始凝固壳厚度变薄,结晶器下端几乎不受电磁场的影响;自由表面上钢液流动速度按切缝、分瓣体中心反向对称分布,使自由表面产生凸凹变形;钢液纵截面内流动呈现双回流,较常规连铸结晶器在弯月面区域多产生一个由电磁力作用而产生的回流区;随电流强度的增大,结晶器内上部熔池的流体速度和温度增大,电源频率改变会影响钢液上部涡流区域速度的大小和方向,弯月面趋于平稳,自由表面三相点附近钢液的温度略有升高,提高电源频率有抑制自由表面波动的作用。
     在数值计算的基础上,对φ100mm圆坯中频电磁软接触连铸结晶器内的电磁场分布、弯月面行为进行了实验研究,实验结果表明:圆坯中频电磁软接触结晶器内沿周向上的弯月面变形较均匀;在结晶器的分瓣体中心处和切缝处弯月面高度相当,分瓣体中心处的弯月面高度较切缝处稍低;随着电源功率增大,弯月面高度增大,但是弯月面波动逐渐加剧,初始凝固三相点的稳定性变差,不利于获得表面质量良好的连铸坯;在保证适宜弯月面高度的情况下,在2500Hz、30kW条件下,只需高频电磁软接触近一半的功率就能获得与之相当的弯月面高度,大幅节约能源;当初始液面在线圈中心位置时,弯月面的高度最大;当自由液位平行感应线圈顶端和底端时,弯月面的波动都相对较弱,液位越靠近感应线圈中心高度时波动越剧烈,偏离线圈中心高度后波动都会有所减弱;在拉坯过程中,采用合适功率时应将自由液面控制在线圈中心高度偏下附近,以在保障软接触效果的前提下达到节能的效果;随着频率的增加,弯月面的高度几乎成线性关系减小,但弯月面的波动减小,趋于稳定;且随着频率的增加,波动方差的衰减幅度减小。综合考虑结晶器内磁场强度的分布情况、弯月面高度和弯月面波动等情况,中频电磁软接触连铸适宜的频率为2500Hz。
The technology of soft-contact electromagnetic continuous casting of steel is used to improve the surface quality of billets by imposed an alternating electromagnetic field to control the initial solidification of liquid steel. In recent years, the technology research has been focus on the soft contact electromagnetic continuous casting under high-frequency electromagnetic field. However, the manufacture of high-frequency power and mold are very difficult and high cost, high-frequency alternating magnetic field has a strong skin effect which causes poor penetrating and huge energy losing, disturb the normal working of the electronic devices of the caster, the industrial promotion of soft-contact electromagnetic continuous casting very difficult, and so inadequate. In this paper, the technology of using intermediate frequency electromagnetic fields in place of high-frequency electromagnetic field has been put forward and carry out the investigation of the electromagnetic field, flow field, heat transfer, solidification, meniscus behavior and the influence of different electrical parameters, structure parameters of mold and process parameters on them in order to provide theoretical and technical fundamention for industrial applications.
     Based on the theoretical analysis, the three-dimensional electromagnetic field finite element model of intermediate frequency electromagnetic soft-contact continuous casting mold is developed and the three-dimensional distribution of magnetic induction intensity, electromagnetic volume force, induced current and Joule heat in mold are revealed. The results show that:under the intermediate frequency magnetic field, the magnetic induction intensity component along the casting direction in the mold is much larger than ones in the direction of radial component and circumferential component, so that the magnetic pressure component along the radial is much larger than that in the other two directions, which shows that the characteristic of magnetic filed in the mold with imposed intermediate frequency magnetic fields has the same characteristics of electromagnetic pressure as high-frequency magnetic field. The magnetic field mainly concentrated in the high range of the coil along the casting direction, the position of maximum magnetic induction intensity is near the center height of the coil, and the magnetic induction intensity rapid decrease along the both ends of mold. With the frequency of 2500Hz and current intensity of 800A, the maximum magnetic induction intensity is 0.07261T, which meets the requirements of soft-contact technology. The distributions of magnetic induction intensity are same in slit and segment center, but the maximum magnetic induction intensity in segment center is slightly less than that in slit. The magnetic induction intensity linear increases with the increasing of current intensity in coils, it also increases with the increasing of frequency, but the increasing amplitude decrease. When the frequency is above 2500Hz, the uniformity of magnetic induction intensity along the circumferential direction will gradually deteriorate. The slits width has little effect on the distribution of magnetic induction intensity along the casting direction in mold, so the slits width of 0.5mm-0.8mm is recommended. With the increasing of slits number, the shielding of mod to intermediate frequency magnetic field is reduced, the magnetic induction intensity in outer surface of molten steel increases, but the growth rate gradually decrease. When the slits number is 8, the uniformity of magnetic fields along the circumferential direction of mold under intermediate frequency (2500Hz) is as the same as that in mould with slits number of 12 under high-frequency (20.5 kHz). With the height of free surface declining from the top of coils, the magnetic induction intensity in outer surface of molten steel firstly increases and then decreases. The maximum magnetic induction intensity can be gotten when the position of free surface is at the center height of coils. With the height of free surface declining, the non-uniformity of magnetic field distribution increases. With the relative position of the coils declining, the distribution of magnetic field along the casting direction doesn't change, but the effective region of magnetic field declines, the maximum magnetic induction intensity decreases slightly.
     From the Bennon's continuum model, a three dimensional coupled mathematical model of flow field, heat transfer and solidification in mold under intermediate frequency electromagnetic soft-contact continuous casting is developed. The fluid flow and temperature distribution of molten steel are revealed under different parameters. The results show that: intermediate frequency electromagnetic field mainly has effects on the meniscus zone of billet, which induce the incensement of fluid velocity and temperature of molten steel, the position declining of initial solidification point and thin shell thickness of initial solidification, and it cannot act on molten steel in the lower part of mold. The flow velocities are periodical antisymmetric distribution at the center of slit and segment which results in the concavo-convex deformation at free surface. There are two vortexes forming in longitudinal section compared to the one vortex in conventional continuous casting. The flow velocity and temperature increase with the current intensity increasing in the upper part of mold. When frequency increases, the magnitude and direction of fluid velocity vector also altered, meniscus gradually stabilizes, the temperature of molten steel in three-phase-point near the free surface increases slightly, the fluctuation of free surface of liquid steel could be retrained under the higher frequency electromagnetic field.
     Based on the numerical simulation, compared the calculation results, experimental study of electromagnetic field distribution and meniscus behavior was carried out forφ100mm round billet under intermediate frequency soft contact electromagnetic continuous casting, revealed the rule of electromagnetic field distribution, meniscus deformation and meniscus fluctuations under different parameters. The experimental results show that:the meniscus height was very closed along the circumferential direction, meniscus height in segment slightly lower than that in the slit, the meniscus height increased with the power increasing and the fluctuations of meniscus become more intense, the initial solidification environmental of three-phase point is degradation, all of these are not conducive to obtain good surface quality billet. With the conditions of appropriate meniscus height, frequency of 2500Hz, power of 30kW, the meniscus height is almost as same as that under high-frequency soft contact electromagnetic continuous casting with frequency of 20.5 kHz and power of 67.2kW, a significant energy is saved. When the position of free surface is in the center height of the coil, the meniscus height is maximum. When the free surface paralleled the top and bottom of induction coil, meniscus fluctuations is relatively stable. When the position of free surface was more closed to the induction coil centers, the meniscus fluctuations become more intense. In the casting process, under the appropriate power, the free surface should be controlled near the center under partial of coils in order to ensure the effectiveness of soft contact and energy-saving. With the frequency increasing, the meniscus height decreases almost linear relationship, the meniscus fluctuation reduce, the attenuation range of fluctuation variance reduce. Considered the distribution of magnetic induction intensity, meniscus height and fluctuations, the frequency of 2500Hz is suggested to the appropriate parameter of intermediate frequency soft contact electromagnetic continuous casting
引文
1. 胡会军,李丘林,田正宏等.从铸造方法的变迁看铸造业对节能的追求[J].铸造技术,2004,25(3):224-225.
    2. 田乃媛著.薄板坯连铸连轧[M].冶金工业出版社,1998:3.
    3. 干勇,仇圣桃,萧泽强著.连续铸钢过程数学物理模拟[M].北京:冶金工业出版社,2001:9.
    4. 蔡开科,程士福著.连续铸钢原理与工艺[M].北京:冶金工业出版社,1994:1.
    5. 史衰兴著.实用连铸冶金技术[M].北京:冶金工业出版社,1998:4.
    6. Edward S. Szekeres. Overview of mould oscillation in continuous casting[J]. Iron and steel engineer,1996, (7):29-37.
    7. 奥村裕言.连铸技术的动向和今后发展[J].国外钢铁,1995;20(2):26-31.
    8. 郑沛然著.连续铸钢工艺及设备[M].北京:冶金工业出版社,1991.
    9. 熊毅刚著.板坯连铸[M].北京:冶金工业出版社,1994.
    10. Birat J. P Innovation in steel Continuous casting:Past, Present and Future[J]. La Revue de Metallurgie-CIT,1999, (11):1389-1399.
    11.殷瑞钰,潘荫华,苏天森.中国加快发展连铸的途径[J].1998:33(3):72-76.
    12. E. Takeuchi, J. K. Brimacombe. The Formation of Oscillation Marks in the Continuous Casting of Steel Slabs[J]. Metallurgical Transactions B,1984,15B (9):493-509.
    13.卢盛意著.连铸坯质量[M].第2版.北京:冶金工业出版社,2000.
    14. E. Takeuchi, J. K. Brimacombe. Effect of oscillation Marks on the Surface Quality of Continuously Cast Steel Slabs [J]. Metallurgical Transactions B,1985,16B(9):605-625.
    15. Y Sundberg. Metallurgical Applications of Magnetohydrodynamics[A]. Proceedings of a Symposium of the IUTAM[C],1984,217-224.
    16. Grebhard M., He Q. L, Herbertson. Vortexing Phenomena in Continuous Slab Casting Molds[A]. Steelmaking Division of Iron and Steel Society.76th Steelmaking Conference Proceedings[C],1993,441-446.
    17. Takeuchi S., Mike Y., Itoyama S. et al. Control of Oscillation Mark Formation in Continuous Casting[A].74th Steelm2king Conference Proceedings[C],1991,73-77.
    18.李廷举,金俊泽.材料电磁加工新进展[J].材料导报,2000,14(12):12-13
    19.舍克里著,彭一川等泽.冶金中的流体流动现象[M].冶金工业出版社,1985.
    20.韩至成著.电磁冶金学[M].北京:冶金工业出版社,1991.
    21. Gteselev. Z. N. Casting in an electromagnetic field[J].Journal of Metals,1971,23(10):38-42.
    22. Weber J. C. New applications for electromagnetic casting process[J]. Light Metals,1988, 503-507.
    23. Sautebin R, Haller W. Industrial application of electromagnetic casting (EMC) of aluminum[J]. Light Metal Age 1985,14(8):14-18.
    24.李润生,王为钢,赫冀成.电磁冶金概述[J].钢铁,1998,33(4):72-75.
    25. Zhongming REN, Huafeng DONG, Kang DENG, et al. Influence of High Frequency Electromagnetic Field on the Initial Solidification during Electromagnetic Continuous Casting[J]. ISIJ International,2001,41(9):981-985.
    26. Hoyoung KIM, Joon-Pyo PARK, Heetae JEONG, et al. Continuous Casting of Billet with High Frequency Electromagnetic Field[J]. ISIJ International,2002,42(2):171-177.
    27. Joonpyo PARK, Hoyoung KIM, Heetae JEONG, et al. Continuous Casting of Steel Billet with High Frequency Electromagnetic Field[J]. ISIJ International,2003,43(6):813-819.
    28. Hitoshi NATAKA, Jacqueline ETAY. Meniscus Shape of Molten Steel under Alternating Magnetic Field[J]. ISIJ International,1992,32(4):521-528.
    29. H. Nakata, T. Inoue, H. Mori, et al. Improvement of Billet Surface Quality by Ultra-high-frequency Electromagnetic Casting[J]. ISIJ International,2002,42(3):264-272.
    30.周月明,张永杰.软接触电磁连铸技术及工业应用前景[J].宝钢技术,2003,(8):1-4.
    31.张永杰,陈向勇,邓安元.工业实验用电磁软接触结晶器结构参数研究[J].重型机械,2005,(5):5-10.
    32. Shigeo ASAI. Birth and Recent Activities of Electromagnetic Processing of Materials[J]. ISIJ International,1989,29(12):981-992
    33. Charles VIVES. Electromagnetic Refining of Aluminum Alloys by the CREM Process:Part Ⅰ[J]. Working Priciple and Metallurgical Results[J]. Metallurgical Transactions B,1989 20B:623-629
    34. Charles VIVES. Electromagnetic Refining of Aluminum Alloys by the CREM Process:Part Ⅱ[J]. Specific Practical Problems and Their Solutions [J]. Metallurgical Transactions B,1989 20B:631-643
    35. F. Negrini, M. Fabbri, M. Zuccarini, et al. Electromagnetic control of the meniscus shape during casting in a high frequency magnetic field[J]. Energy Conversion & Management, 2000(41):1687-1701.
    36. Joonpyo PARK, Hoyoung KIM, Heetae JEONG, et al. Continuous Casting of Steel Billet with High Frequency Electromagnetic Field[J]. ISIJ International,2003,43(6):817-819.
    37. Takeuchi E, Miyazawa K. Electromagnetic Casting Technology of Steel[A]. The Third International Symposium on Electromagnetic Processing of Materials. Tokyo:ISIJ,2002, 20-27
    38.藤健彦,金子克志,竹内容一.交流电磁场にちわ固定铸型连铸初期凝固制御[J],CAMP-ISIJ,1992,5:197-202.
    41.浅井滋生.电磁气冶金の诞生と最近の动向.第129-130回西山纪念技术讲座,东京,日本铁钢协会,1989:65.
    43. Tanaka T, Kurita K, Kuroda A. Mathematical modeling for electromagnetic field and shaping of melts in cold crucible[J], ISIJ International,1991,31(4):350-357.
    44. Sumi I, Shimizu H, Nishioka S, et al. Initial solidification control of continuous casting using electromagnetic oscillation method[J], ISIJ International,2003,43(6):807-812.
    45. Park J, Sim D, Kim H, et al. Effect of high frequency electromagnetic field on continuously cast billet[J], ISIJ International,2003,43(6):807-812.
    46. Park J, Jeong H, Kim H, et al. Laboratory scale continuous casting of steel billet with high frequency magnetic field[J], ISIJ International,2002,42(4):385-391.
    47. Park J, Sim D, Jeong H, et al. Effect of high frequency electromagnetic field on continuously cast billet[J], ISIJ International,1999,12:57.
    48. Kim H, Park J, Jeong H, et al. Continuous casting of billet with high frequency electromagnetic field[J], ISIJ International,2002,42(2):171-177.
    49. Park J, Kim H, Jeong H, et al. Continuous casting of steel billet with high frequency electromagnetic field[J], ISIJ International,2003,43(6):813-819.
    50. Young-Whan CHO, Young-Joo OH, Soon-Hyo CHUNG, et al. Mechanism of Surface Quality Improvement in Continuous Cast Slab With Rectangular Cold Crucible Mold[J], ISIJ International,1998,38(7):723.
    51. Cho Y W, Oh Y J, Chung S H, et al. Mechanism of surface quality improvement in continuous cast slab with rectangular cold crucible mold[J], ISIJ International,1998,38(7):723-729.
    52.张永杰,赫冀成,王恩刚等.钢的软接触电磁连铸工业实验难点及解决途径[A].2003中国 钢铁年会论文集[C],2003,509-513.
    53.黄军涛,赫冀成.方坯软接触结晶器电磁场分布及弯月面形状的数值模拟[J].钢铁研究学报,2001,13(2):6-12.
    54.钱忠东,李本文,李东辉.电磁连铸复合式结晶器内钢液流场的数值模拟[J].金属学报,2001,37(11):1223-1227.
    55.于光伟,贾光霖,王恩刚等.方坯软接触电磁连铸结晶器内钢液弯月面行为的热模拟[J].金属学报,2000,36(12):1253-1257.
    56.邓安元,贾光霖,赫冀成.软接触结晶器内的钢液流动及夹杂物运动规律[J].东北大学学报,2001,22(3):311-314.
    57.邓安元,贾光霖,赫冀成.钢液对软接触结晶器内三维电磁特性影响的数值模拟[J].过程工程学报,2004,1(2):127-131.
    58.金百刚,王强,邓安元.两段式方坯结晶器内电磁场分布及弯月面行为[J].铸造,2005,54(6):556-559.
    59.金百刚,王强,刘岩等.两段式无缝软接触电磁连铸结晶器内的电磁场分布[J].金属学报,2007,43(9):999-1003.
    60. LI TingJu, Nagaya S, Sassa K, et al. Study of meniscus behavior and surface properties during casting in a high-frequency magnetic field[J], Metallurgical Transactions B,1995,26(2): 353-359.
    61.张志峰,温斌,李廷举等。软接触结晶器外对连铸坯施加高频电磁场的基础研究[J].铸造,2000,49(5):257-260.
    62.曲方懿,郑贤淑,周永东等.软接触结晶器内电磁场分布的数值模拟研究[J].铸造,2002,51(7):420-424.
    63.那贤昭,王锡钢,张兴中等.高频磁场作用下软接触电磁连铸初生坯壳的变形行为[J].钢铁研究学报[J],2004,16(6):21-26.
    64.邓康,任忠鸣,蒋国昌.软接触电磁连铸的数值模拟和实验分析[J].金属学报,1999,35(10):1112-1116.
    65.王强、赫冀成等.软接触电磁连铸用无切缝结器[P],中国专利:02132867.6,2002.09.05
    66.陈向勇,张永杰,冯长宝等.圆坯电磁软接触连铸结晶器高频磁场分布[J].宝钢技术,2004,(5):51-56.
    67. R. Kageyama, James W. Evans. Development of a Three Dimensional Mathematical Model of the Electromagnetic Casting of Steel[J]. ISIJ International,2002,42(2):163-170.
    68.邓安元,贾光霖,赫冀成.方坯软接触结晶器三维电磁场有限元计算[J].东北大学学报,2001,22(1):75-78.
    69. Bruno Dumont, Annie Gagnoud.3D Finite Element Method with Impedance Boundary Condition for the Modeling of Molten Metal Shape in Electromagnetic Casting[J]. IEEE Transaction on Magnetics,2000,36(4):1329-1332.
    70.金百刚,王强,崔大伟等.两段式无缝软接触结晶器电磁参数和结构参数的研究[J].金属学报,2007,43(4):427-432.
    71.王宏明,刘强,李桂荣等.磁场频率对软接触结晶器内磁感应强度分布的影响[J].特种铸造及有色合金,2008,28(1):20-22.
    72.王宏明,任忠鸣,夏小江等.电磁软接触结晶器内钢液面高度对磁场分布的影响[J].北京科技大学学报,2008,30(7):795-799.
    73.夏小江,王宏明,戴起勋等.电磁软接触连铸高频磁场的数值模拟[J].中国有色金属学报,2008,18(3):529-534.
    74.邓安元,许秀杰,王恩刚等.圆坯钢电磁软接触连铸的实验研究[J].钢铁,2009,44(4):33-37.
    75. Shinichiro Yokoya, Shigeo Takagil, Manabu Iguchi, et al. Swirling Flow Effect in Immersion Nozzle on Flow in Slab Continuous Casting Mold[J]. ISIJ International,2000,40(6): 578-583.
    76.邓安元,贾光霖,赫冀成.电磁场对软接触结晶器内钢液流动的影响[J].钢铁研究学报,2002,14(1):6-10.
    77.武文斐,郑坤灿,李义科.数值模拟研究钢液入口速度对结晶器流场的影响[J].特种铸造,2003,24(2):143-145.
    78. Quan Yuan, Sivaraj Sivaramakrishnan, S.P. Vanka, et al. Computational and Experimental Study of Turbulent Flow in a 0.4-Scale Water Model of a Continuous Steel Caster[J].
    79.王朝阳,王恩刚,赫冀成.圆坯中频电磁软接触连铸结晶器内钢液流动的数值模拟.中国冶金,2009,19(3):13-18.
    80. T.T. Natarajan, Nagy El-Kaddah. Finite Element Analysis of Electromagnetically Driven Flow in Sub-mold Stirring of Steel Billets and Slabs[J]. ISIJ International,1998,38(7): 680-689.
    81. T.T. Natarajan, Nagy El-Kaddah. Finite Element Analysis of Electromagnetic and Fluid Flow Phenomena in Rotary Electromagnetic Stirring of Steel[J]. Applied Mathematical Modeling, 2004, (28):47-61.
    82.闫小林著.连铸过程原理及数值模拟[M].石家庄:河北科学技术出版社,2001.
    83. J. E. Lait, J. K. Brimacombe, F. Weinberg. Mathematical Modelling of Heat Flow in the Continuous Casting of Steel[J]. Ironmaking and Steelmaking,1974, (2):90-94
    84. Man Y. Ha, Hyun G. Lee, Seung H. Seong. Numerical Simulation of Three-Dimensional Flow, Heat Transfer and Solidification of Steel in Continuous Casting Mold with Electromagnetic Brake[J]. Journal of Materials Processing Technology,2003, (133):322-339.
    85. Hideyuki YASUDA, Takehiko TOH, Kazuhiko IWAI. Recent Progress of EPM in Steelmaking, Casting, and Solidification Processing[J]. ISIJ International,2007,47(4): 619-626.
    86. Darning Xu, Yunfeng Bai, Jingjie Guo, et al. Numerical simulation of heat, mass and momentum transport behaviors in directionally solidifying alloy castings under electromagnetic fields using an extended Direct-SIMPLE scheme[J]. International Journal for Numerical Methods in Fluids,2004, (46):767-791.
    87. Jiahong GUO, Xin HONG. Numerical Solution of Heat Transfer Problem with Flow and Solidification in Round Billet Continuous Casting of Steel[J]. Communications in Nonlinear Science & Numerical Simulation,1999,4(3):236-239.
    88. lkuto MIYOSHINO, Eiichi TAKEUCHI, Hiroshi YANO, et al. Influence of Electromagnetic Pressure on the Early Solidification in A Continuous Casting Mold[J]. ISIJ International, 1989,29(12):1040-1047
    89.张红伟,王恩刚,赫冀成.方坯连铸过程中钢液流动、凝固及溶质分布的耦合数值模拟[J].金属学报,2002,38(1):99-104.
    90. ZHAN Hui-ying, WANG Xu-dong, GUO Liang-liang, et al. Real Heat Flux Analysis of Continuously Casting Round Billet[J]. Journal of Iron and Steel Research, International,2008, 15(1):25-29.
    91.邓安元,赫冀成.小方坯初始凝固三维数值模拟[J].钢铁研究,2000,(1):15-18.
    92.金百刚,王强,崔大伟.切缝式软接触电磁连铸结晶器的冷却效果分析[J].铸造技术,2007,28(11):1468-1472.
    93.李广海,赵连刚.板坯连铸结晶器内钢水流场和传热凝固数值模拟[J].钢铁研究学报,2007,19(12):21-25.
    94. Heung N H, Jung E L, Tae J Y, et al. A finite Element Model for 2-Dimensional Slice of Casting Strand[J]. ISIJ International,1999,39(5):445-454.
    95. Susa M, Mills K C, Richardson M J. Thermal Properties of Slay Films Taken from Continuous Casting[J]. Ironmaking and Steelmaking,1994,21(4):279-286.
    96.白云峰,徐达鸣,郭景杰等.采用温度回升法对任意结晶区间的铸件凝固结晶潜热的数值计算[J].金属学报,2003,39(6):623-629.
    97. Sarjant R J and Slack M R. Internal Temperature Distribution in the Cooling and Reheat of Steel Ingots [J]. Iron Steel Inst.,1954,177:428-444
    98. Crowley A B and Ockedon J R. On the Numerical Solution of An Alloy Solidification Problem [J]. Int. J. Heat Mass Transfer,1979,22:941-947.
    99. Uehara M, Samarasekera I V, Brimacombe J K. Mathematical Modelling of Unbending of Continuously Casting Steel slabs [J]. Ironmaking and Steelmaking,1986,14(1):138-153.
    100. Yang H L, et al. Development of Mathematical Model Based on Coupling Fluid Flow and Solidification Process in Continuous Casting of Steel [A]. Proceedings of the International Conference-MSMM'96[C], Beijing,1996:361-365.
    lOl.Bennon W D, Incropera F P. A continuum Model for Mementum, Heat and Species Transport in Binary Solid-Liquid Phase Change Systems [J]. Int. J. Heat Mass Transfer,1987,30: 2161-2187
    102.邓安元,王恩刚,赫冀成等.矩形软接触结晶器内磁场分布的实验研究[J].金属学报,2003,39(10):1105-1109.
    103.金百刚,王强,高翱等.高频磁场下两段式无缝结晶器内磁场分布和弯月面的实验研究[J].铸造技术,2008,29(8):1005-1009.
    104.张林涛,邓安元,张兴武.矩形电磁软接触连铸结晶器内弯月面行为[J].中国有色金属学报,2006,16(8):1405-1410.
    105.Toshiaki MIZOGUCHI, Ken-ichi MIYAZAWa, Yoshiyuki UESHIM. Relation between Surface Quality of Cast Strips and Meniscus Profile of Molten Pool in the Twin Roll Casting Process[J]. ISIJ International,1996,36(4):417-423.
    106. Li Ting-ju, Li X-T, Zhang Zhi-feng, et al. Effect of multielectromagnetic field on meniscus shape and quality of continuously cast metals [J]. Ironmaking and Steelmaking 2006,33(1): 57-60.
    107.Toshio TAGAWA. Numerical Simulation of Liquid Metal Free-surface Flows in the Presence of a Uniform Static Magnetic Field [J]. ISIJ International,2007,47(4):574-581.
    108.Keisuke Fujisaki. Magnetohydrodynamic Stability in Pulse Electromagnetic Casting[J]. IEEE Transaction on Industry Applications,2003,39(5):1442-1447.
    109.谭利坚 沈厚发 柳百成等.连铸结晶器液位波动的数值模拟[J].金属学报,2003,39(4):435-438.
    110.陈芝会,王恩刚,张兴武等.静磁场控制板坯连铸结晶器液面波动[J].钢铁研究学报,2008,20(2):21-24.
    111.王宏明,柏立庆,李桂等.高频调幅磁场分布和液面波动行为研究[J].特种铸造及有色合金,2006,26(8):468-470.
    112.胡皓,赵和明,张炯明等.结晶器液面波动的水模型研究[J].钢铁钒钛,2005,26(1):10-15.
    113.Bingzhen SHEN, Houfa SHEN, Baicheng LIU. Instability of Fluid Flow and Level Fluctuation in Continuous Thin Slab Casting Mould [J]. ISIJ International,2007,47(3): 427-432.
    114.王朝阳,王恩刚,张兴武,赫冀成.圆坯中频电磁软接触连铸结晶器内弯月面研究.铸造,2009,58(5):440-443

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700