甘菊成花相关基因表达模式和功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
花期不仅是影响菊花(Chrysanthemumxmorifolium Ramat.)观赏性状的重要因素之一,也是重要的栽培性状通过有效操控成花的关键基因,培育出自然花期适合产业化生产的菊花新品种,具有重要的理论和实践意义。由于菊花遗传背景复杂,对其成花的分子机理进行研究十分困难。为此,本文作者以甘菊[Chrysanthemum lavandulifolum (Fisch. ex Trautv.) Makino]作为菊花成花机理的研究模式,首先利用高通量测序技术获得了甘菊混合样本的转录组信息,并对其进行了生物信息学分析。然后利用升级版的DGE (Up-graded Digital Gene Expression)技术分析了甘菊幼苗期和现蕾时的基因表达特征。由于花分生组织特征基囚在植物成花过程中所起的关键性作用,本文作者利用模式杭物拟南芥验证了甘菊开花基因DFL和DenFUL的功能。获得了以下主要成果:
     1.高通量测序总计获得了4GB的原始数据,从头组装后获得了108,737条Unigene.其平均长度为349bp。根据蛋白同源性比对,58,093条Unigene被注释(E-value<10~5)通过GO、 COG和pathway等生物信息学方法分析证明该转录组文库为甘菊成花及其他基础生物学研究提供了一个非常有价值的基因资源库。
     2.确定了甘菊成花受到光周期途径、春化途径、GA途径、自主途径和FRI依赖途径的调控,鉴定了可以用于菊花花期改良的56个重要候选基因。筛选到6,204条编码转录因子的Unigene,这些基因分别属于57个不同的转录因子家族
     3.通过升级版DGE技术筛选到在甘菊现蕾时特异性表达的基因类群。甘菊光周期途径、赤霉素途径、自主途径和春化途径中绝大多数促进开花的基因在甘菊现蕾时表达量上升。此外,基础代谢途径中的糖类和淀粉代谢途径、氮素代谢和新陈代谢途径中基因,以及MIKC、SBP、YABBY、 ARF、 Dof和MYB等转录因子家族的基因调控甘菊成花。
     4.在拟南芥中过表达甘菊DFL基因能互补拟南芥lfy突变体,并使野生型拟南芥花期提前14天左右。使用LFY启动子驱动DFL在野生型拟南芥表达,可以使花期提前7天左右。此外,本研究还发现PLFY::DFL:EGFP转化野生型拟南芥出现了共抑制现象。
     5.过表达DenFUL使拟南芥成花时间大幅度缩短;项部总状花变成本次生枝变成侧花。此外,DenFUL转基因拟南芥莲座叶变小,角果上的花柱变细、伸长,但是没有影响果实的开裂性。
     6.通过转基因植物活体检测、洋葱表皮和拟南芥原生质体瞬时表达分别证明DFL和DenFUL均定位于细胞核中。
     7.迪过分析转基因拟南芥内源基因的表达模式证明,DFL能够激活拟南芥中AP1,AP3和AG花器官特征基因表达,抑制TFL1基因表达。而在DenFUL转基因拟南芥中LFY和FT的表达量升高,TFL1和FLC的表达量降低。
     综合上述研究结果得出了本研究的主要结论:甘菊成花除了受到光周期途径、春化途径、赤毒素途径和自主途径4条遗传途径的控制外,糖类和淀粉等基础代谢途径中的基因以及转录因子也起到了重要作用,通过互补试验证实了DFL基因在甘菊成花过程中起到了关键性的作用;DenFUL具有调控甘菊开花的作用,对果实和叶片的发育也有一定影响。这些研究初步揭示了甘菊成花调控的分子机理,为菊花花期改良奠定了基础。
The flowering period of Chrysanthemum is important horticultural and cultivated characters. It is highly desirable to effectively manipulate the key genes involved in flowering and breed the new variety of Chrysanthemum with the natural florescence suitable for industrial production, while maintaining normal growth and without affecting their resistance to diseases and pests. However, research at the molecular level is limited by a lack of sequence data. Due to the complex genetic background of Chrysanthemum, an analysis of a Chrysanthemum relative species-Chrysanthemum lavandulifolium(Fisch. ex Trautv.) transcriptome aimed to obtain transcript sequence data will be helpful to elucidate the molecular mechanism of flowering control in Chrysanthemum. In this study, the transcriptome of C. lavandlifolium under different developmental stages and stress treatments was sequenced by Illumina/solexa technology, and then bioinformatically analyzed. The genes spatio-temporal expression profiles between seeding stage and squaring period were performed by up-graded version of the DGE. We perform the function analysis of DFL and DenFUL in Arabidopsis by transgenic technology. The major results and conclusions are described as follows:
     1. RNA-seq generated4GB raw data, which was then de novo assembled into108,738Unigenes with a mean length of349bp. A total of58,093Unigenes were obtained non-redundant annotation(E-value<10-5). GO, COG and pathway bioinformatically analysis showed that this transcriptome library provide a valuable resource for studying the C.lavandulifolium flowering mechanism and others basic biology.
     2. Based on the annotations, we screened56important candidate genes that can be used in genetically modified Chrysanthemum flowering. Those genes respectively belong to photoperiod pathway, vernalization pathway, GA pathway, autonomous pathway and FRI-dependent pathway, which indicated these flowering genetic regulatory pathways coexistence in C.lavandulifolium. In addition, we identified 6,204Unigenes that encode transcription factors and belong to57transcription factor families, of which8transcription factor families were related to flowering.
     3. Using up-graded version of DGE technology, we identified gene groups that specifically expressed during C.lavandulifolium squaring period. Most genes promoting flowering in the photoperiod pathway, GA pathway, autonomous pathway and vernalization pathways were up-regulated during C.lavandulifolium squaring period. In addition, the basalmetabolic pathway, such as sugar and starch metabolic pathways, nitrogen metabolism and metabolic pathway genes, as well as MIKC, SBP, YABBY, ARF, Dof and MYB transcription factor families were involved in C.lavandulifolium flowering.
     4. Heterologous overexpression of DFL extremely promoted Arabidopsis wildtype early flowering, the florescence was advanced about14days; and fully complemented Ify mutant. Using LFY promoter to drive DFL expressed in Arabidopsis can promote flowering about7days. We also found heterologous expression DFL in Arabidopsis wildtype drived by LFY promoter caused co-suppression.
     5. DenFUL transgenic Arabidopsis plants were significant early flowering, which advanced about14days than wild-type under long-day conditions and more than40days under short day conditions. In addition, DenFUL transgenic Arabidopsis producing terminal flowers and lateral flowers, the rosette leaves much small than WT and the style of silique was thin and elongate; but did not affect the fruit cracking.
     6. Transgenic plants vivo detection, transient expression using agrobacterium-mediated in onion epidermal cells and transient expression using PEG-mediated in Arabidopsis proplast were employed to investigate the subcellular location of DFL and DenFUL, respectively. All the analysis reached to the same patterns that DFL and DenFUL were localized in nuclear as Arabidopsis LFY and API did.
     7. Analysis on endogenous genes expression patterns in transgenic Arabidopsis, we found DFL widely activated the expression of B-and C-class floral organ identity genes, inhibited TFL1expression. Overexpression of DenFUL conferred the expression of endogenesis LfYand FT increased while TFL1and FLC decreased.
     Comprehensive results in this study, we gain the main conclusions:the flowering of C. lavandulifolium is not only controlled by photoperiod pathway, vernalization pathway, GA pathway, autonomous pathway and FRI-dependent pathway, but also MIKC, SBP, YABBY, AFR transcription factor family and basal metabolism such as sucrose and starch metabolism play important roles. These genes were excellent candidate genes to modify Chrysanthemum flowering. DFL has LFY function and might plays key roles in C.lavandulifolium transformation flowering. DenFUL might play key roles in flower development and also involved in fruit and leaves development. These studies preliminarily reveal molecular mechanism of flowering in C.lavandulifolium, laying foundations on genetic modification of Chrysanthemum flowering.
引文
1. Abe M, Kobayashi Y, Yamamoto S. Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex [J]. Science 2005; 309 (5737):1052-1056.
    2. Abou-Elwafa SF, Buttner B, Chia T, Schulze-Buxloh G, Hohmann U, Mutasa-Gottgens E, Jung C, Muller AE. Conservation and divergence of autonomous pathway genes in the flowering regulatory network of Beta vulgaris [J]. Journal of Experimental Botany 2011; 62(10):3359-3374.
    3. Achard P, Baghour M, Chapple A, Hedden P, Van Der Straeten D, Genschik P Moritz T, Harberd NP. The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes [J]. Proceedings of the National Academy of Sciences, USA 2007; 104(15):6484-6489.
    4. Achard P, Liao L, Jiang C, Desnos T, Bartlett J, Fu X, Harberd NP. DELLAs contribute to plant photomorphogenesis [J]. Plant Physiology 2007; 143(3):1163-1172.
    5. Achard P, Vriezen WH, Van Der Straeten D, Harberd NP. Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function [J]. Plant Cell 2003; 15(12):2816-2825.
    6. Adam H, Jouannic S, Orieux Y, Morcillo F, Richaud F, Duval Y, Tregear JW. Functional characterization of MADS box genes involved in the determination of oil palm flower structure [J]. Journal of Experimental Botany 2007:58(6):1245-1259.
    7. Alabadi D, Oyama T, Yanovsky MJ, Harmon FG, Mas P, Kay SA. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock [J]. Science 2001; 293(5531):880-883.
    8. Aluri S, Buttner M. Identification and functional expression of the Arabidopsis thaliana vacuolar glucose transporter 1 and its role in seed germination and flowering [J]. Proceedings of the National Academy of Sciences, USA 2007; 104(7):2537.
    9. Alvarez-Buylla ER, Liljegren SJ, Pelaz S, Gold SE, Burgeff C, Ditta GS, Vcrgara-Silva F, Yanofsky MF. MADS-box gene evolution beyond flowers:expression in pollen, endosperm, guard cells, roots and trichomes [J]. The Plant Journal 2000; 24(4):457-466.
    10. Amasino RM. Vernalization and flowering time [J]. Current Opinion in Biotechnology 2005; 16(2):154-158.
    11. Amasino RM, Michaels SD. The timing of flowering [J]. Plant Physiology 2010; 154(2): 516-520.
    12. An XM, Wang DM, Wang ZL, Li B, Bo WH. Cao GL, Zhang ZY. Isolation of a LEAFY homolog from Populus tomentosa:expression of PtLFY in P. tomentosa floral buds and PtLFY-IR-mediated gene silencing in tobacco (Nicotiana tabacum) [J]. Plant Cell Rep 2011; 30(1): 89-100.
    13. Anderson N. Chrysanthemum Flower Breeding and Genetics [M], Netherlands:Springer, 2006:389-437.
    14. Anderson NO. Flower breeding and genetics:issues, challenges and opportunities for the 21st century [M]. Netherlands:Springer,2007:559-567.
    15. Aubert D, Chen L, Moon YH, Martin D, Castle LA, Yang CH, Sung ZR. EMF1, a novel protein involved in the control of shoot architecture and flowering in Arabidopsis [J]. Plant Cell 2001; 13(8):1865-1875.
    16. Audic S, Claverie JM. The significance of digital gene expression profiles [J]. Genome Research 1997; 7(10):986-995.
    17. Ausin I, Alonso-Blanco C, Jarillo JA, Ruiz-Garcia L, Martinez-Zapater JM. Regulation of flowering time by FVE, a retinoblastoma-associated protein [J]. Nature Genetics 2004; 36(2): 162-166.
    18. Bae G, Choi G. Decoding of light signals by plant phytochromes and their interacting proteins [J]. Annual Review of Plant Biology 2008; 59:281-311.
    19. Bastow R, Mylne JS, Lister C, Lippman Z, Martienssen RA, Dean C. Vernalization requires epigenetic silencing of FLC by histone methylation [J]. Nature 2004; 427(6970):164-167.
    20. Baurle I, Smith L, Baulcombe DC, Dean C. Widespread role for the flowering-time regulators FCA and FPA in RNA-mediated chromatin silencing [J]. Science 2007; 318(5847):109-112.
    21. Becker A, Gleissbergy S, Smyth DR. Floral and vegetative morphogenesis in California poppy [J]. International Journal of Plant Sciences 2005; 166(4):537-555.
    22. Becker A, TheiBen G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants [J]. Molecular Phylogenetics and Evolution 2003; 29(3): 464-489.
    23. Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency [J]. Annals of Statistics 2001:1165-1188.
    24. Benlloch R, Berbel A, Serrano-Mislata A, Madueno F. Floral initiation and inflorescence architecture:a comparative view [J]. Annals of Botany 2007; 100(3):659-676.
    25. Benlloch R, Kim MC, Sayou C, The'venon E, Parcy F, Nilsson O. Integrating long-day flowering signals:a LEAFY binding site is essential for proper photoperiodic activation of APETALAI [J]. The Plant Journal 2011; 67(6):1094-1102.
    26. Berbel A, Navarro C, Ferrandiz C, Cafias LA, Madueno F, Beltran JP. Analysis of PEAM4, the pea API functional homologue, supports a model for API-like genes controlling both floral meristem and floral organ identity in different plant species [J]. The Plant Journal 2001; 25(4): 441-451.
    27. Berr A, Xu L, Gao J, Cognat V, Steinmetz A, Dong A, Shen WH. SET DOMAIN GROUP25 encodes a histone methyltransferase and is involved in FLOWERING LOCUS C activation and repression of flowering [J]. Plant Physiology 2009; 151(3):1476-1485.
    28. Blazquez MA, Soowal LN, Lee Ⅰ, Weigel D. LEAFY expression and flower initiation in Arabidopsis [J]. Development 1997; 124(19):3835-3844.
    29. Blazquez MA. Plant science. The right time and place for making flowers [J]. Science 2005; 309(5737):1024-1025.
    30. Blazquez MA, Ferrandiz C, Madueno F, Parcy F. How floral meristems are built [J]. Plant Molecular Biology 2006; 60(6):855-870.
    31. Blein T, Pulido A, Vialette-Guiraud A, Nikovics K, Morin H, Hay A, Johansen IE, Tsiantis M, Laufs P. A conserved molecular framework for compound leaf development [J]. Science 2008; 322(5909):1835-1839.
    32. Bolle C. The role of GRAS proteins in plant signal transduction and development [J]. Planta 2004; 218(5):683-692.
    33. Bomblies K, Wang RL, Ambrose BA, Schmidt RJ, Meeley RB, Doebley J. Duplicate FLOR1CAULA/LEAFY homologs zfll and zfl2 control inflorescence architecture and flower patterning in maize [J]. Development 2003; 130(11):2385-2395.
    34. Bowman JL, Alvarez J, Weigel D. Meyerowitz EM, Smyth DR. Control of flower development in Arabidopsis thaliana by APETALAl and interacting genes [J]. Development 1993; 119(3):721-743.
    35. Bradley D, Ratcliffe (), Vincent C, Carpenter R. Coen E. Inflorescence commitment and architecture in Arabidopsis [J]. Science 1997; 275(5296):80-83.
    36. Brown AP, Kroon JTM, Swarbreck D, Febrer M, Larson TR, Graham IA, Caccamo M, Slabas AR. Tissue-specific whole transcriptome sequencing in castor, directed at understanding triacylglycerol lipid biosynthetic pathways [J]. PloS One 2012; 7(2):e30100.
    37. Buhler M, Moazed D. Transcription and RNAi in heterochromatic gene silencing [J]. Nature Structural & Molecular Biology 2007; 14(11):1041-1048.
    38. Burn J, Bagnall D, Metzger J, Dennis E, Peacock W. DNA methylation, vernalization, and the initiation of flowering [J]. Proceedings of the National Academy of Sciences, USA 1993; 90(1): 287-291.
    39. Calonje M, Cubas P, Martfnez-Zapater JM, Carmona MJ. Floral meristem identity genes are expressed during tendril development in grapevine [J]. Plant Physiology 2004; 135(3):1491-1501.
    40. Carre I, Coupland G, Putterill J. Photoperiodic responses and the regulation of flowering [M]. Oxford:Blackwell Publishing.2005:167-190.
    41. Carroll SB. Evo-devo and an expanding evolutionary synthesis:a genetic theory of morphological evolution [J]. Cell 2008; 134(1):25-36.
    42. Caspar T, Lin TP, Kakefuda G. Benbow L, Preiss J, Somerville C. Mutants of Arabidopsis with altered regulation of starch degradation [J]. Plant Physiology 1991; 95(4):1181-1188.
    43. Castillejo C. Pelaz S. The balance between CONSTANS and TEMPRANILLO activities determines FT expression to trigger flowering [J]. Current Biology 2008; 18(17):1338-1343.
    44. Cathey HM. Chrysanthemum morifolium (Ramat.) Hemsl. In:Evans LT, ed. The induction of flowering:some case histories [M].Melbourne, VIC:Macmillan Company of Australia,1969: 268-290.
    45. Cerdan PD, Chory J. Regulation of flowering time by light quality [J]. Nature 2003; 423(6942): 881-885.
    46. Chae E, Tan QKG, Hill TA, Irish VF. An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development [J]. Development 2008; 135(7):1235-1245.
    47. Champagne CEM. Goliber TE, Wojciechowski MF, Mei RW, Townsley BT, Wang K, Paz MM, Geeta R, Sinha NR. Compound leaf development and evolution in the legumes [J]. Plant Cell 2007; 19(11):3369-3378.
    48. Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T. Bretlel K, Essen LO, Van Der Horst GTJ, Batschauer A, Ahmad M. The cryptochromes:blue light photoreceptors in plants and animals [J]. Annual Review of Plant Biology 2011; 62:335-364.
    49. Chen D, Guo B, Hexige S, Zhang T, Shen D, Ming F. SQUA-like genes in the orchid Phalaenopsis are expressed in both vegetative and reproductive tissues [J]. Planta 2007; 226(2): 369-380.
    50. Chen MK, Lin IC, Yang CH. Functional analysis of three lily (Lilium longiflorum) APETALAI-like MADS box genes in regulating floral transition and formation [J]. Plant and Cell Physiology 2008; 49(5):704-717.
    51. Cheng H, Qin L, Lee S, Fu X, Richards DE, Cao D, Luo D, Harberd NP, Peng J. Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function [J]. Development 2004; 131(5):1055-1064.
    52. Chincinska IA, Liesche J, Krugel U, Michalska J, Geigenberger P, Grimm B, Kuhn C. Sucrose transporter StSUT4 from potato affects flowering, tuberization, and shade avoidance response [J]. Plant Physiology 2008; 146(2):515-528.
    53. Choi K, Kim J, Hwang HJ, Kim S, Park C, Kim SY, Lee I. The FRIGIDA Complex Activates Transcription of FLC, a Strong Flowering Repressor in Arabidopsis, by Recruiting Chromatin Modification Factors [J]. Plant Cell 2011; 23(1):289-303.
    54. Choi K, Kim S, Kim SY, Kim M, Hyun Y, Lee H, Choe S, Kim SG, Michaels S, Lee Ⅰ. SUPPRESSOR OF FRIGIDA3 encodes a nuclear ACTIN-RELATED PROTEIN6 required for floral repression in Arabidopsis [J]. Plant Cell 2005; 17(10):2647-2660.
    55. Clough SJ, Bent AF. Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J]. The Plant Journal 1998; 16(6):735-743.
    56. Clouse SD. The molecular intersection of brassinosteroid-regulated growth and flowering in Arabidopsis [J]. Proceedings of the National Academy of Sciences, USA 2008; 105(21): 7345-7346.
    57. Coen ES, Meyerowitz EM. The war of the whorls:genetic interactions controlling flower development [J]. Nature 1991; 353(6339):31-37.
    58. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO:a universal tool for annotation, visualization and analysis in functional genomics research [J]. Bioinformatics 2005; 21(18):3674-3676.
    59. Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle Ⅰ, Giakountis A, Farrona S, Gissot L, Turnbull C. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis [J]. Science 2007; 316(5827):1030-1033.
    60. Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis [J]. Plant Physiology 2005; 139(1):5-17.
    61. Dai M, Zhao Y, Ma Q, Hu Y, Hedden P, Zhang Q, Zhou DX. The rice YABBYI gene is involved in the feedback regulation of gibberellin metabolism [J]. Plant Physiology 2007; 144(1): 121-133.
    62. Dai SL, Wang WK, Li MX, Xu YX. Phylogenetic relationship of Dendranthema (DC.) Des Moul. revealed by fluorescent in situ hybridization [J]. Journal of Integrative Plant Biology 2005; 47(7):783-791.
    63. Dai SL, Zhong Y, Zhang XY. Study on numerical taxonomy of some Chinese species of Dedranthema (DC) Des Moul. [J]. Journal of BeiJing Forestry University 1995; 17(4):9-15.
    64. Danilevskaya ON, Meng X, Hou Z, Ananiev EV, Simmons CR. A genomic and expression compendium of the expanded PEBP gene family from maize [J]. Plant Physiology 2008; 146(1): 250-264.
    65. Daohong W, Bochu W, Biao L, Chuanren D, Jin Z. Extraction of total RNA from Chrysanthemum containing high levels of phenolic and carbohydrates [J]. Colloids and Surfaces B: Biointerfaces 2004; 36(2):111-114.
    66. De Bodt S, Raes J, Florquin K, Rombauts S, Rouze P, TheiBen G, Van de Peer Y. Genomewide structural annotation and evolutionary analysis of the type I MADS-box genes in plants [J]. Journal of Molecular Evolution 2003; 56(5):573-586.
    67. Deal RB, Kandasamy MK, McKinney EC, Meagher RB. The nuclear actin-related protein ARP6 is a pleiotropic developmental regulator required for the maintenance of FLOWERING LOCUS C expression and repression of flowering in Arabidopsis [J]. Plant Cell 2005; 17(10): 2633-2646.
    68. Devlin P. Photocontrol of flowering [M]. Annual Plant Reviews Volume 30:Light and Plant Development. Oxford:Blackwell Publishing,2007:185-210.
    69. Dieterle M, Thomann A, Renou JP, Parmentier Y. Cognat V, Lemonnier G, Muller R, Shen WH, Kretsch T, Genschik P. Molecular and functional characterization of Arabidopsis Cullin 3A [J]. The Plant Journal 2005; 41(3):386-399.
    70. Ding YH, Liu NY, Tang ZS, Liu J, Yang WC. Arabidopsis GLUTAMINE-RICH PROTEIN23 is essential for early embryogenesis and encodes a novel nuclear PPR motif protein that interacts with RNA polymerase II subunit III [J]. Plant Cell 2006; 18(4):815-830.
    71. Dornelas MC, Amaral WA, Rodriguez APM. EgLFY, the Eucalyptus grandis homolog of the Arabidopsis gene LEAFY is expressed in reproductive and vegetative tissues [J]. Brazilian Journal of Plant Physiology 2004; 16(2):105-114.
    72. Dornelas MC, Rodriguez APM. The rubber tree (Hevea brasiliensis Muell. Arg.) homologue of the LEAFY/FLORICAULA gene is preferentially expressed in both male and female floral meristems [J]. Journal of Experimental Botany 2005; 56(417):1965-1974.
    73. Dornelas MC, Rodriguez APM. The tropical cedar tree (Cedrela fissilis Vell., Meliaceae) homolog of the Arabidopsis LEAFY gene is expressed in reproductive tissues and can complement Arabidopsis leafy mutants [J]. Planta 2006; 223(2):306-314.
    74. Doyle MR. Bizzell CM, Keller MR, Michaels SD. Song J. Noh YS. Amasino RM. HUA2 is required for the expression of floral repressors in Arabidopsis thaliana [J]. The Plant Journal 2005; 41(3):376-385.
    75. Duarte JM, Cui L, Wall PK, Zhang Q, Zhang X, Leebens-Mack J, Ma H, Altman N. Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis [J]. Molecular Biology and Evolution 2006; 23(2):469-478.
    76. Eamens A, Wang MB, Smith NA, Waterhouse PM. RNA silencing in plants:yesterday, today, and tomorrow [J]. Plant Physiology 2008; 147(2):456-468.
    77. Edwards KD, Anderson PE, Hall A, Salathia NS, Locke JCW, Lynn JR, Straume M. Smith JQ, Millar AJ. FLOWERING LOCUS C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock [J]. Plant Cell 2006; 18(3):639-650.
    78. Egea-Cortines M, Saedler H, Sommer H. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus [J]. The EMBO Journal 1999; 18(19):5370-5379.
    79. Eimert K, Wang SM, Lue W, Chen J. Monogenic recessive mutations causing both late floral initiation and excess starch accumulation in Arabidopsis [J]. Plant Cell 1995; 7(10):1703-1712.
    80. Elo A, Lemmetyinen J, Novak A, Keinonen K, Porali Ⅰ, Hassinen M, Sopanen T. BpMADS4 has a central role in inflorescence initiation in silver birch (Betula pendula) [J]. Physiologia Plantarum 2007; 131(1):149-158.
    81. Elo A, Lemmetyinen J, Turunen ML, Tikka L, Sopanen T. Three MADS-box genes similar to APETALA1 and FRU1TFULL from silver birch (Betula pendula) [J]. Physiol Plant 2001; 112(1): 95-103.
    82. Eriksson EM, Bovy A, Manning K, Harrison L, Andrews J, De Silva J, Tucker GA, Seymour GB. Effect of the colorless non-ripening mutation on cell wall biochemistry and gene expression during tomato fruit development and ripening [J]. Plant Physiology 2004; 136(4):4184-4197.
    83. Escribano JM, Perez-Filgueira DM. Strategies for improving vaccine antigens expression in transgenic plants:fusion to carrier sequences [J]. Methods in Molecular Biology 2009; 483: 275-287.
    84. FAY M. Flowering plants. A concise pictorial guide [J]. Botanical Journal of the Linnean Society 2011; 167(2):249-249.
    85. Feldbrugge M, Sprenger M, Dinkelbach M, Yazaki K, Harter K, Weisshaar B. Functional analysis of a light-responsive plant bZIP transcriptional regulator [J]. Plant Cell 1994; 6(11):1607.
    86. Feng C, Chen M, Xu C, Bai L, Yin X. Li X, Allan AC, Ferguson IB, Chen K. Transcriptomic analysis of Chinese bayberry (Myrica rubra) fruit development and ripening using RNA-Seq [J]. BMC Genomics 2012; 13(1):19.
    87. Fernando DD, Zhang S. Characterization and heterologous expression of SLF, a functional homolog of the floral regulator LEAFY/FLORICAULA from Salix discolor [J]. International Journal of Plant Developmental Biology 2002(2):92-99.
    88. Fernando DD, Zhang S. Constitutive expression of the SAP1 gene from willow (Salix discolor) causes early flowering in Arabidopsis thaliana [J]. Development Genes and Evolution 2006; 216(1):19-28.
    89. Ferrandiz C, Gu Q, Martienssen R, Yanofsky MF. Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALAJ and CAULIFLOWER [J]. Development 2000; 127(4):725-734.
    90. Ferrandiz C, Liljegren SJ, Yanofsky MF. Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development [J]. Science 2000; 289(5478):436-438.
    91. Flachowsky H, Hattasch C, Hofer M, Peil A, Hanke MV. Overexpression of LEAFY in apple leads to a columnar phenotype with shorter internodes [J]. Planta 2010; 231(2):251-263.
    92. Flachowsky H, Peil A, Sopanen T, Elo A, Hanke V. Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early-flowering in apple (Malus domestica Borkh.) [J]. Plant Breeding 2007; 126(2):137-145.
    93. Fornara F, Panigrahi KCS, Gissot L, Sauerbrunn N, Riihl M, Jarillo JA, Coupland G. Arabidopsis Dof transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response [J]. Developmental Cell 2009; 17(1):75-86.
    94. Fornara F, Parenicova L, Falasca G, Pelucchi N, Masiero S, Ciannamea S, Lopez-Dee Z, Altamura MM, Colombo L, Kater MM. Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes [J]. Plant Physiology 2004; 135(4):2207-2219.
    95. Fourquin C, Vinauger-Douard M, Chambrier P, Berne-Dedieu A, Scutt CP. Functional conservation between CRABS CLAW orthologues from widely diverged angiosperms [J]. Annals of Botany 2007; 100(3):651-657.
    96. Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B, Coupland G, Putterill J. GIGANTEA:a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains [J]. EMBO Journal 1999; 18(17):4679-4688.
    97. Fu X, Harberd NP. Auxin promotes Arabidopsis root growth by modulating gibberellin response [J]. Nature 2003; 421(6924):740-743.
    98. Fujiwara S, Oda A, Yoshida R, Niinuma K, Miyata K, Tomozoe Y, Tajima T, Nakagawa M, Hayashi K. Coupland G. Mizoguchi T. Circadian clock proteins LHY and CCAI regulate SVP protein accumulation to control flowering in Arabidopsis[J]. Plant Cell 2008; 20(11):2960-2971.
    99. Gallagher TL, Gasser CS. Independence and interaction of regions of the INNER NO OUTER protein in growth control during ovule development [J]. Plant Physiology 2008; 147(1):306-315
    100. Gardner MJ. Hubbard KE, Hotta CT. Dodd AN, Webb AAR. How plants tell the time [J]. Biochemical Journal 2006; 397(Pt 1):15-24.
    101. Garg R, Patel RK, Tyagi AK, Jain M. De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification [J]. DNA Research 2011; 18(1):53-63.
    102. Garner W, Allard. Further studies on photoperiodism, the response of plants to relative length of day and night [J]. Journal of Agricultural Research 1923; (23):871-920.
    103. Garner WW, Allard HA. Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants [J]. Journal of Agricultural Research 1920; (13): 571-580.
    104. Ge GB, Xiao PG, Zhang YY, Yang L. The first insight into the tissue specific taxus transcriptome via Illumina second generation sequencing [J]. PloS One 2011; 6(6):e21220.
    105. Geraldo N, Baurle I, Kidou S, Hu X, Dean C. FRIGIDA delays flowering in Arabidopsis via a cotranscriptional mechanism involving direct interaction with the nuclear cap-binding complex [J]. Plant Physiology 2009; 150(3):1611-1618.
    106. Gocal GFW, King RW, Blundell CA, Schwartz OM, Andersen CH, Weigel D. Analysis of Lolium temulentum genes related to APETALAI and LEAFY of Arabidopsis [J]. Plant Physiology 2001; 125(4):1788-1801.
    107. Goldshmidt A, Alvarez JP, Bowman JL, Eshed Y. Signals derived from YABBY gene activities in organ primordia regulate growth and partitioning of Arabidopsis shoot apical meristems [J]. Plant Cell 2008:20(5):1217-1230.
    108. Gramzow L. Theissen G. A hitchhiker's guide to the MADS world of plants [J]. Genome Biology 2010; 11(6):214.
    109. Greena F. Deciphering the genetics of evolution [J]. Science 2004; 8(321):760-763.
    110. Griffiths S. Dunford RP Coupland G, Laurie DA. The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis [J]. Plant Physiology 2003; 131(4):1855-1867.
    111. Gu Q, Ferrandiz C, Yanofsky MF, Martienssen R. The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development [J]. Development 1998; 125(8): 1509-1517.
    112. Gustafson-Brown C, Savidge B, Yanofsky MF. Regulation of the Arabidopsis floral homeotic geneAPETALAI [J]. Cell 1994; 76(1):131-143.
    113. Guyomarc'h S, Bertrand C, Delarue M, Zhou DX. Regulation of meristem activity by chromatin remodelling [J]. Trends in Plant Scienceence 2005; 10(7):332-338.
    114. Hames C, Ptchelkine D, Grimm C, Thevenon E, Moyroud E, Gerard F, Martiel J-L, Benlloch R, Parcy F. Muller CW. Structural basis for LEAFY floral switch function and similarity with helix-turn-helix proteins [J]. EMBO Journal 2008; 27(19):2628-2637.
    115. Han P, Garcia-Ponce B, Fonseca-Salazar G, Alvarez-Buylla ER, Yu H. AGAMOUS-LIKE 17, a novel flowering promoter, acts in a FT-independent photoperiod pathway [J]. Plant Journal 2008; 55(2):253-265.
    116. Hardenack S, Ye D, Saedler H, Grant S. Comparison of MADS box gene expression in developing male and female flowers of the dioecious plant white campion [J]. Plant Cell 1994; 6(12):1775-1787.
    117. He Y, Michaels SD, Amasino RM. Regulation of flowering time by histone acetylation in Arabidopsis [J]. Science 2003; 302(5651):1751-1754.
    118. Helliwell CA, Wood CC, Robertson M, James Peacock W, Dennis ES. The Arabidopsis FLC protein interacts directly in vivo with SOCI and FT chromatin and is part of a high-molecular-weight protein complex [J]. The Plant Journal 2006; 46(2):183-192.
    119. Hemming MN, Peacock WJ, Dennis ES, Trevaskis B. Low-temperature and daylength cues are integrated to regulate FLOWERING LOCUS T in barley [J]. Plant Physiology 2008; 147(1): 355-366.
    120. Herrero E, Kolmos E, Bujdoso N, Yuan Y, Wang M, Berns MC, Uhlworm H, Coupland G, Saini R, Jaskolski M, Webb A, Goncalves J, Davis SJ. EARLY FLOWERING4 recruitment of EARLY FLOWERING3 in the nucleus sustains the Arabidopsis circadian clock [J]. Plant Cell 2012; 24(2):428-443.
    121. Hoecker U, Quail PH. The Phytochrome A-specific Signaling intermediate SPAI interacts directly with COPI, a constitutive repressor of light signaling in Arabidopsis [J]. Journal of Biological Chemistry 2001; 276(41):38173-38178.
    122. Hoekstra HE, Coyne JA. The locus of evolution:evo devo and the genetics of adaptation [J]. Evolution 2007; 61(5):995-1016.
    123. Hoenicka H, Nowitzki (), Hanelt D, Fladung M. Heterologous overexpression of the birch FRUlTFULL-like MADS-box gene BpMADS4 prevents normal senescence and winter dormancy in Populus tremula L [J]. Planta 2008; 227(5):1001-1011.
    124. Hofer J, Turner L, Hellens R, Ambrose M, Matthews P, Michael A, Ellis N. UNIFOLIATA regulates leaf and flower morphogenesis in pea [J]. Current Biology 1997; 7(8):581-587.
    125. Holec S, Berger F. Polycomb group complexes mediate developmental transitions in plants [J]. Plant Physiology 2012; 158(1):35-43.
    126. Holm M, Hardtke CS, Gaudet R, Deng XW. Identification of a structural motif that confers specific interaction with the WD40 repeat domain of Arabidopsis COPI [J]. EMBO Journal 2001; 20(1):118-127.
    127. Hu Z, Deng L, Chen X, Wang P, Chen G. Co-suppression of the EIN2-homology gene LeEIN2 inhibits fruit ripening and reduces ethylene sensitivity in tomato [J]. Russian Journal of Plant Physiology 2010; 57(4):554-559.
    128. Huang C, Wu MH, Li GY. The present and advance in transcriptomics of nasopharyngeal carcinoma [J]. Progress in Biochemistry and Biophysics 2007; 34(11):1129-1135.
    129. Huijser P, Klein J, Lonnig W, Meijer H, Saedler H, Sommer H. Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinurn majus [J]. EMBO Journal 1992; 11(4):1239-1249.
    130. Ikeda-Kawakatsu K, Yasuno N, Oikawa T, Iida S, Nagato Y, Maekawa M, Kyozuka J. Expression level of ABERRANT PANICLE ORGANIZATION determines rice inflorescence form through control of cell proliferation in the meristem [J]. Plant Physiology 2009; 150(2):736-747.
    131. Ikeda-Kawakatsu K, Maekawa M, Izawa T, Itoh JI, Nagato Y. ABERRANT PANICLE ORGANIZATION 2/RFL, the rice ortholog of Arabidopsis LEAFY, suppresses the transition from inflorescence meristem to floral meristem through interaction with APOI [J]. The Plant Journal 2012; 69(1):168-180.
    132. Ikeda K, Ito M, Nagasawa N, Kyozuka J, Nagato Y. Rice ABERRANT PANICLE ORGANIZATION I, encoding an F-box protein, regulates meristem fate [J]. The Plant Journal 2007; 51(6):1030-1040.
    133. Imaizumi T, Schultz TF, Harmon FG, Ho LA, Kay SA. FKFI F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis [J]. Science 2005; 309(5732):293-297.
    134. Immink R, Hannapcl DJ, Fcrrario S, Busscher M, Franken J, Campagne MML, Angenent GC. A petunia MADS box gene involved in the transition from vegetative to reproductive development [J]. Development 1999; 126(22):5117-5126.
    135. Inglese P, Chessa I, La Mantia T, Nieddu G. Evolution of endogenous gibberellins at different stages of flowering in relation to return bloom of cactus pear (Opuntia ficus-indica L. Miller) [J]. Scientia Horticulturae 1998; 73(1):45-51.
    136. Iorizzo M, Senalik DA, Grzebelus D, Bowman M, Cavagnaro PF, Matvienko M, Ashrafi H, Van Deynze A, Simon PW. De novo assembly and characterization of the carrot transcriptome reveals novel genes, new markers, and genetic diversity [J]. BMC Genomics 2011; 12:389.
    137. Irish VF The flowering of Arabidopsis flower development [J]. The Plant Journal 2010; 61(6):1014-1028.
    138. Irish VF, Litt A. Flower development and evolution:gene duplication, diversification and redeployment [J]. Current Opinion in Genetics & Development 2005; 15(4):454-460.
    139. Irish VF, Sussex IM. Function of the APETALA-1 gene during Arabidopsis floral development [J]. Plant Cell 1990; 2(8):741-753.
    140. Iseli C, Jongeneel CV. Bucher P. ESTScan:a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences [J]. International Conference on Intelligent Systems for Molecular Biology 1999:138-148.
    141. Izawa T, Oikawa T, Sugiyama N, Tanisaka T, Yano M, Shimamoto K. Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice [J]. Genes& Development 2002; 16(15):2006-2020.
    142. Izawa T, Takahashi Y, Yano M. Comparative biology comes into bloom:genomic and genetic comparison of flowering pathways in rice and Arabidopsis [J]. Current Opinion in Plant Biology 2003; 6(2):113-120.
    143. Jaakola L, Poole M, Jones MO, Kamarainen-Karppinen T. Koskimaki JJ, Hohtola A, Haggman H, Fraser PD, Manning K, King GJ. A SQUAMOSA MADS box gene involved in the regulation of anthocyanin accumulation in bilberry fruits [J]. Plant Physiology 2010; 153(4): 1619-1629.
    144. Jack T, Brockman LL, Meyerowitz EM. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens [J]. Cell 1992; 68(4): 683-697.
    145. Jackson SD. Plant responses to photoperiod [J]. New Phytologist 2009; 181(3):517-531
    146. Jang S, Marchal V, Panigrahi KCS, Wenkel S, Soppe W, Deng XW, Valverde F, Coupland G. Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response [J]. EMBO Journal 2008; 27(8):1277-1288.
    147. Jensen JK, Schultink A, Keegstra K, Wilkerson CG, Pauly M. RNA-Seq Analysis of Developing Nasturtium Seeds (Tropaeolum majus):Identification and characterization of an additional galactosyltransferase involved in xyloglucan biosynthesis [J]. Molecular Plant 2012; doi:10.1093/mp/sss032.
    148. Jiang D, Wang Y, He Y. Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis polycomb repressive complex 2 components [J]. PloS One 2008; 3(10):e3404.
    149. Jofuku KD, Boer BGW, Montagu MV, Okamuro JK. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2 [J]. Plant Cell 1994; 6(9):1211-1225.
    150. Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C. Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time [J]. Science 2000; 290(5490):344-347.
    151. Jung C, Muller AE. Flowering time control and applications in plant breeding [J]. Trends in Plant Scienceence 2009; 14(10):563-573.
    152. Kandasamy MK, Deal RB, McKinney EC, Meagher RB. Silencing the nuclear actin-related protein AtARP4 in Arabidopsis has multiple effects on plant development, including early flowering and delayed floral senescence [J]. The Plant Journal 2005; 41(6):845-858.
    153. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T. KEGG for linking genomes to life and the environment [J]. Nucleic Acids Research 2008; 36(1):D480-D484.
    154. Kang J, Zhang G, Bonnema G, Fang Z, Wang X. Global analysis of gene expression in flower buds of Ms-cdl Brassica oleracea conferring male sterility by using an Arabidopsis microarray [J]. Plant Molecular Biology 2008; 66(1):177-192.
    155. Kania T, Russenberger D, Peng S, Apel K, Melzer S. FPFI promotes flowering in Arabidopsis [J]. Plant Cell 1997; 9(8):1327-1338.
    156. Kanrar S, Bhattacharya M, Arthur B, Courtier J, Smith H. Regulatory networks that function to specify flower meristems require the function of homeobox genes PENNYWISE and POUND FOOLISH in Arabidopsis [J]. The Plant Journal 2008; 54(5):924-937.
    157. Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D. Activation tagging of the floral inducer FT [J]. Science 1999; 286(5446): 1962-1965.
    158. Kaufmann K, Melzer R, TheiBen G. MIKC-type MADS-domain proteins:structural modularity, protein interactions and network evolution in land plants [J]. Gene 2005; 347(2): 183-198.
    159. Kaufmann K, Wellmer F, Muino JM, Ferrier T, Wuest SE, Kumar V, Serrano-Mislata A, Madueno F, Krajewski P, Meyerowitz EM. Orchestration of floral initiation by APETALAI [J]. Science 2010; 328(5974):85-89.
    160. Kawabata S, Li Y, Saito T, Zhou B. Identification of differentially expressed genes during flower opening by suppression subtractive hybridization and cDNA microarray analysis in Eustoma grandiflorum [J]. Scientia Horticulturae 2009; 122(1):129-133.
    161. Kelly AJ, Bonnlander MB, Meeks-Wagner DR. NFL, the tobacco homolog of FLOR/CAULA and LEAFY, is transcriptionally expressed in both vegetative and floral meristems [J]. Plant Cell 1995; 7(2):225-234.
    162. Kempin SA, Savidge B, Yanofsky ME Molecular basis of the cauliflower phenotype in Arabidopsis [J]. Science 1995; 267(5197):522-525.
    163. Kim CK, Lee YH, Hong JK, Park DS, Kim MK, Cho MS, Kim YK, Hahn JH. Identification and characterization of flowering repressor-related genes in Chinese cabbage [J]. BioChip Journal 2012; 6(2):120-127.
    164. Kim DH, Doyle MR, Sung S, Amasino RM. Vernalization:winter and the timing of flowering in plants [J]. Annual Review of Cell and Developmental 2009; 25:277-299.
    165. Kim HJ, Hyun Y. Park JY, Park MJ, Park MK, Kim MD, Lee MH, Moon J, Lee Ⅰ. A genetic link between cold responses and flowering time through FVE in Arabidopsis thaliana [J]. Nature Genetics 2004; 36(2):167-171.
    166. Kim JY, Song HR, Taylor BL, Carre IA. Light-regulated translation mediates gated induction of the Arabidopsis clock protein LHY [J]. EMBO Journal 2003; 22(4):935-944.
    167. Kim S, Soltis PS, Wall K, Soltis DE. Phylogeny and domain evolution in the APETALA2-like gene family [J]. Molecular Biology and Evolution 2006; 23(I):107-120.
    168. Kim SY, He Y, Jacob Y, Noh YS, Michaels S, Amasino R. Establishment of the vernalization-responsive, winter-annual habit in Arabidopsis requires a putative histone H3 methyl transferase [J]. Plant Cell 2005; 17(12):3301-3310.
    169. Kim SY, Yu X, Michaels SD. Regulation of CONSTANS and FLOWERING LOCUS T expression in response to changing light quality [J]. Plant Physiology 2008; 148(1):269-279.
    170. Kim WY, Fujiwara S, Suh SS, Kim J, Kim Y, Han L, David K, Putterill J, Nam HG, Somers DE. ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light [J]. Nature 2007; 449(7160):356-360.
    171. Klebs G. Uber das Verhaltnis der Aubenwelt zur Entwicklung der Pflanze [J]. Sitzber. Akad. Wiss, Heidelberg 1913; B(5):3-7.
    172. Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T. A pair of related genes with antagonistic roles in mediating flowering signals [J]. Science 1999; 286(5446):1960-1962.
    173. Kobayashi Y. Weigel D. Move on up, it's time for change-obile signals controlling photoperiod-dependent flowering [J]. Genes & Development 2007; 21(19):2371-2384.
    174. Kodadek T. Sikder D, Nalley K. Keeping transcriptional activators under control [J]. Cell 2006; 127(2):261-264.
    175. Kojima S. Takahashi Y, Kobayashi Y, Monna L, Sasaki T. Araki T, Yano M. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hdl under short-day conditions [J]. Plant and Cell Physiology 2002; 43(10):1096-1105.
    176. Koorneef M, Elgersma A, Hanhart C, Loenen-Martinet EP, Rijn L, Zeevaart J. A gibberellin insensitive mutant of Arabidopsis thaliana [J]. Physiologia Plantarum 1985; 65(1):33-39.
    177. Koornneef M, Hanhart C, Veen JH. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana [J]. Molecular and General Genetics MGG 1991; 229(1):57-66.
    178. Koornneef M, Vries H, Hanhart C, Soppe W, Peeters T. The phenotype of some late flowering mutants is enhanced by a locus on chromosome 5 that is not effective in the Landsberg erecta wild-type [J]. The Plant Journal 1994; 6(6):911-919.
    179. Koroleva OA, Tomlinson ML, Leader D, Shaw P, Doonan JH. High-throughput protein localization in Arabidopsis using Agrobacterium-mediated transient expression of GFP-ORF fusions [J]. The Plant Journal 2005; 41(1):162-174.
    180. Koshita Y, Takahara T, Ogata T, Goto A. Involvement of endogenous plant hormones (IAA, ABA, GAs) in leaves and flower bud formation of satsuma mandarin (Citrus unshiu Marc.) [J]. Scientia Horticulturae 1999; 79(3-4):185-194.
    181. Kyozuka J, Harcourt R, Peacock W, Dennis E. Eucalyptus has functional equivalents of the Arabidopsis API gene [J]. Plant Molecular Biology 1997; 35(5):573-584.
    182. Kyozuka J, Konishi S, Nemoto K, Izawa T, Shimamoto K. Down-regulation of RFL, the FLO/LFY homolog of rice, accompanied with panicle branch initiation [J]. Proceedings of the National Academy of Sciences, USA 1998; 95(5):1979-1982.
    183. Lopez-Gomez R, Cabrera-Ponce JL, Saucedo-Arias LJ, Carreto-Montoya L, Villanueva-Arce R, Diaz-Perez JC, Gomez-Lim MA, Herrera-Estrella L. Ripening in papaya fruit is altered by ACC oxidase cosuppression [J]. Transgenic Research 2009; 18(1):89-97.
    184. Langton F. The responses of early-flowering chrysanthemums to daylength [J]. Scientia Horticulturae 1977; 7(3):277-289.
    185. Laubinger S, Hoecker U. The SPAI-like proteins SPA3 and SPA4 repress photomorphogenesis in the light [J]. The Plant Journal 2003; 35(3):373-385.
    186. Lawton-Rauh AL, Buckler E, Purugganan MD. Patterns of molecular evolution among paralogous floral homeotic genes [J]. Molecular Biology and Evolution 1999; 16(8):1037-1045.
    187. Lee I, Aukerman MJ, Gore SL, Lohman KN, Michaels SD, Weaver LM, John MC, Feldmann KA, Amasino RM. Isolation of LUMINIDEPENDENS:a gene involved in the control of flowering time in Arabidopsis [J]. Plant Cell 1994; 6(1):75-83.
    188. Lee I, Wolfe DS, Nilsson O. A LEAFY co-regulator encoded by unusual floral organs [J]. Current Biology 1997; 7(2):95-104.
    189. Lee J, Oh M, Park H, Lee Ⅰ. SOCI translocated to the nucleus by interaction with AGL24 directly regulates leafy [J]. The Plant Journal 2008; 55(5):832-843.
    190. Lee J, Lee I. Regulation and function of SOCI,a flowering pathway integrator [J]. Journal of Experimental Botany 2010; 61(9):2247-2254.
    191. Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J. SOAP2:an improved ultrafast tool for short read alignment [J]. Bioinformatics 2009; 25(15):1966-1967.
    192. Lin EP, Peng HZ, Jin QY, Deng MJ, Li T, Xiao XC, Hua XQ, Wang KH, Bian HW, Han N, Zhu MY. Identification and characterization of two bamboo (Phvllostachvs praecox) API/SQUA-like MADS-box genes during floral transition [J]. Planta 2009; 231(1):109-120.
    193. Lim MH, Kim J, Kim YS, Chung KS, Seo YH, Lee I, Hong CB, Kim HJ, Park CM. A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C [J]. Plant Cell 2004; 16(3):731-740.
    194. Lippman ZB, Cohen O, Alvarez JP, Abu-Abied M, Pekker Ⅰ, Paran Ⅰ, Eshed Y, Zamir D. The making of a compound inflorescence in tomato and related nightshades [J]. PLoS Biology 2008; 6(11):e288.
    195. Litt A, Irish V. Duplication and diversi cation in the APETALAI/FRUITFULL oral homeotic gene lineage:implications for the evolution of oral development [J]. Genetics 2003; 165(2): 821-833.
    196. Liu C, Thong Z, Yu H. Coming into bloom:the specification of floral meristems [J]. Development 2009; 136(20):3379-3391.
    197. Liu F, Quesada V, Crevillen P, Baurle I, Swiezewski S, Dean C. The Arabidopsis RNA-binding protein FCA requires a lysine-specific demethylase 1 homolog to downregulate FLC [J]. Molecular Cell 2007; 28(3):398-407.
    198. Liu H, Xu YY, Xu ZH, Chong K. A rice YABBY gene, OsYABBY4, preferentially expresses in developing vascular tissue [J]. Development Genes and Evolution 2007; 217(9):629-637.
    199. Liu H, Liu B, Zhao C, Pepper M, Lin C. The action mechanisms of plant cryptochromes [J]. Trends in Plant Scienceence 2011; 16(2):684-691.
    200. Liu C, Xi W, Shen L, Tan C, Yu H. Regulation of floral patterning by flowering time genes [J]. Dev Cell 2009; 16(5):711-722.
    201. Locascio A, Lucchin M, Varotto S. Characterization of a MADS FLOWERING LOCUS C-LIKE (MFL) sequence in Cichorium intybus:a comparative study of CiMFL and AtFLC reveals homologies and divergences in gene function [J]. New Phytologist 2009; 182(3):630-643.
    202. Lohmann JU. Weigel D. Building beauty:the genetic control of floral patterning [J]. Dev Cell 2002; 2(2):135-142.
    203. Ma YP, Fang XH, Chen F, Dai SL. DFL, a FLORICAULA/LEAFY homologue gene from Dendranthema lavandulifolium is expressed both in the vegetative and reproductive tissues [J]. Plant Cell Rep 2008; 27(4):647-654.
    204. Mas P, Kim WY, Somers DE. Kay SA. Targeted degradation of TOCI by ZTL modulates circadian function in Arabidopsis thaliana [J]. Nature 2003; 426(6966):567-570.
    205. Maizel A, Busch MA. Tanahashi T, Perkovic J, Kato M, Hasebe M, Weigel D. The floral regulator LEAFY evolves by substitutions in the DNA binding domain [J]. Science 2005; 308(5719):260-263.
    206. Macknight R, Bancroft I, Page T, Lister C, Schmidt R, Love K, Westphal L, Murphy G, Sherson S, Cobbett C. FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains [J]. Cell 1997:89(5):737-745.
    207. Martin RC, Asahina M, Liu PP, Kristof JR, Coppersmith JL, Pluskota WE, Bassel GW, Goloviznina NA. Nguyen TT, Martinez-Andujar C. The regulation of post-germinative transition from the cotyledon-to vegetative-leaf stages by microRNA-targeted SQUAMOSA PROMOTER-BINDING PROTEIN LIKE 13 in Arabidopsis [J]. Seed Science Research 2010; 20(2): 89-96.
    208. Mandel MA, Bowman JL, Kempin SA, Ma H, Meyerowitz EM, Yanofsky MF. Manipulation of flower structure in transgenic tobacco [J]. Cell 1992; 71(1):133-143.
    209. McARTNEY SJ. Exogenous gibberellin affects biennial bearing and the fruit shape of Braeburn'apple [J]. New Zealand Journal of Crop and Horticultural Science 1994; 22(3): 343-346.
    210. Mandel MA, Yanofsky MF. A gene triggering flower formation in Arabidopsis [J]. Nature 1995; 377(6549):522-524.
    211. McClung CR. Plant circadian rhythms [J]. Plant Cell 2006; 18(4):792-803.
    212. Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF. Molecular characterization of the Arabidopsis floral homeotic gene APETALAI [J]. Nature 1992; 360:273-277.
    213. Mathieu J, Yant LJ, Murdter F, Kuttner F, Schmid M. Repression of flowering by the miR172 target SMZ [J]. PLoS Biology 2009; 7(7):e1000148.
    214. Muller BM, Saedler H, Zachgo S. The MADS-box gene DEFH28 from Antirrhinum is involved in the regulation of floral meristem identity and fruit development [J]. The Plant Journal 2001; 28(2):169-179.
    215. Melzer S, Lens F, Gennen J, Vanneste S, Rohde A, Beeckman T. Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana [J]. Nat Genet 2008; 40(12):1489-1492.
    216. Michael TP, Salome PA, Yu HJ, Spencer TR, Sharp EL, McPeek MA, Alonso JM, Ecker JR. McClung CR. Enhanced fitness conferred by naturally occurring variation in the circadian clock [J]. Science 2003; 302(5647):1049-1053.
    217. Michaels S, Amasino R. Memories of winter:vernalization and the competence to flower [J]. Plant, Cell & Environment 2000; 23(11):1145-1153.
    218. Michaels SD, Ditta G, Gustafson-Brown C, Pelaz S, Yanofsky M, Amasino RM. AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization [J]. The Plant Journal 2003; 33(5):867-874.
    219. Mizrachi E, Hefer C, Ranik M, Joubert F, Myburg A. De novo assembled expressed gene catalog of a fast-growing Eucalyptus tree produced by Illumina mRNA-Seq [J]. BMC Genomics 2010; 11(1):681.
    220. Michaels SD, Amasino RM. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering [J]. Plant Cell 1999; 11 (5):949-956.
    221. Morris ER, Chevalier D, Walker JC. DAWDLE, a forkhead-associated domain gene, regulates multiple aspects of plant development[J]. Plant Physiology 2006; 141 (3):932-941.
    222. Michaels SD, Amasino RM. Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization [J]. Plant Cell 2001; 13(4):935-942.
    223. Moore RC, Purugganan MD. The evolutionary dynamics of plant duplicate genes [J]. Current Opinion in Plant Biology 2005; 8(2):122-128.
    224. Moon J, Suh SS, Lee H, Choi KR, Hong CB, Paek NC, Kim SG, Lee Ⅰ. The SOCI MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis [J]. The Plant Journal 2003; 35(5):613-623.
    225.. Moyroud E, Tichtinsky G, Parcy F. The LEAFY floral regulators in Angiosperms:conserved proteins with diverse roles [J]. Journal of Plant Biology 2009; 52(3):177-185.
    226. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq [J]. Nature Methods 2008; 5(7):621-628.
    227. Mouradov A, Cremer F, Coupland G. Control of flowering time:interacting pathways as a basis for diversity [J]. Plant Cell 2002; 14:S111-S130.
    228. Moyroud E, Kusters E, Monniaux M, Koes R, Parcy F. LEAFY blossoms [J]. Trends Plant Science 2010; 15(6):346-352.
    229. Molinero-Rosales N, Jamilena M, Zurita S, Gomez P, Capel J, Lozano R. FALSIFLORA, the tomato orthologue of FLORICAULA and LEAFY, controls flowering time and floral meristem identity [J]. The Plant Journal 1999; 20(6):685-693
    230. Murai K, Miyamae M, Kato H, Takumi S, Ogihara Y. WAP I, a wheat APETALAI homolog, plays a central role in the phase transition from vegetative to reproductive growth [J]. Plant and Cell Physiology 2003; 44(12):1255-1265.
    231. Muszynski MG, Dam T, Li B, Shirbroun DM, Hou Z, Bruggemann E, Archibald R, Ananiev EV, Danilevskaya ON. Delayed floweringl encodes a basic leucine zipper protein that mediates floral inductive signals at the shoot apex in maize [J]. Plant Physiology 2006; 142(4):1523-1536.
    232. Nishikawa F, Endo T, Shimada T, Fujii H, Shimizu T, Kobayashi Y, Araki T, Omura M. Transcriptional changes in CiFT-introduced transgenic trifoliate orange (Poncirus trifoliata L. Raf.) [J]. Tree Physiology 2010; 30(3):431-439.
    233. Noh B, Lee SH, Kim HJ, Yi G, Shin EA, Lee M, Jung KJ, Doyle MR, Amasino RM, Noh YS. Divergent roles of a pair of homologous jumonji/zinc-finger-class transcription factor proteins in the regulation of Arabidopsis flowering time [J]. Plant Cell 2004; 16(10):2601-2613.
    234. Ni M, Tepperman JM, Quail P. Binding of phytochrome B to its nuclear signaling partner PDE3 is reversibly induced by light [J]. Nature 1993; 400:781-784.
    235. Nelson DC, Lasswell J, Rogg LE, Cohen MA. Bartel B. FKFI, a Clock-Controlled Gene that Regulates the Transition to Flowering in Arabidopsis [J]. Cell 2000; 101(3):331-340.
    236. Nagpal P, Ellis CM, Weber H, Ploense SE,Barkawi LS, Guilfoyle TJ. Hagen G, Alonso JM, Cohen JD, Farmer EE. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation [J]. Development 2005; 132(18):4107-4118.
    237. Oka S, Midorikawa K, Kodama H. Cosuppression and RNAi induced by Arabidopsis ortholog gene sequences in tobacco [J]. Plant Biotechnology Reports 2010; 4(3):185-192.
    238. Noh YS, Amasino RM. PIEI, an ISWI family gene, is required for FLC activation and floral repression in Arabidopsis [J]. Plant Cell 2003; 15(7):1671.
    239. Okoniewski M, Miller C. Hybridization interactions between probesets in short oligo microarrays lead to spurious correlations [J]. BMC Bioinformatics 2006; 7(1):276.
    240. Ono NN, Britton MT. Fass JN, Nicolet CM, Lin D, Tian L. Exploring the transcriptome landscape of pomegranate fruit peel for natural product biosynthetic gene and SSR marker discovery [J]. Journal of Integrative Plant Biology 2011; 53(10); 800-813.
    241. Olimpieri I, Caccia R, Picarella ME, Pucci A, Santangelo E, Soressi GP, Mazzucato A. Constitutive co-suppression of the GA 20-oxidasel gene in tomato leads to severe defects in vegetative and reproductive development [J]. Plant Science 2011; 180(3):496-503.
    242. Ordidge M, Chiurugwi T, Tooke F, Battey NH. LEAFY. TERMINAL FLOWERI and AGAMOUS are functionally conserved but do not regulate terminal flowering and floral determinacy in Impatiens balsamina [J]. The Plant Journal 2005; 44(6):985-1000.
    243. Osterlund MT, Hardtke CS, Wei N, Deng XW. Targeted destabilization of HY5 during light-regulated development of Arabidopsis [J]. Nature 2000:405:462-466.
    244. Ottoline SD Mechanisms in Plant Development [M]. Oxford:Blackwell Publishing,2003: 122-160.
    245. Pabon-Mora N, Ambrose B, Litt A. Poppy APETALA1/FRUITFULL orthologs control flowering time, branching, perianth identity and fruit development [J]. Plant Physiology 2012; 158(4):1685-1704.
    246. Parcy F. Flowering:a time for integration [J]. International Journal of Developmental Biology 2005; 49(5):585-593.
    247. Parenicova L, De Folter S, Kieffer M, Horner DS, Favalli C, Busscher J. Cook HE. Ingram RM, Kater MM, Davies B. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis:New openings to the MADS world [J]. Plant Cell 2003; 15(7):1538-1551.
    248. Pekker I, Alvarez JP, Eshed Y. Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity [J]. Plant Cell 2005; 17(11):2899-2910.
    249. Pham K, Steven K. Sticky-end PCR:new method for subcloning [J]. Biotechniques 1998; 25: 206-208.
    250. Ponce MR, Barrero JM, Candela H, Robles P. Perez-Perez JM, Piqueras P, Martinez-Laborda A, Micol JL. Genetic and molecular analysis of INCURVATA2, a negative regulator of floral homeotic genes in the leaves of Arabidopsis thaliana [J]. International Journal of Developmental Biology 2001; 45(S1):S53-S54.
    251. Prenner G, Vergara-Silva F, Rudall PJ. The key role of morphology in modelling inflorescence architecture [J]. Trends in Plant Scienceence 2009; 14(6):302-309.
    252. Prusinkiewicz P, Erasmus Y, Lane B, Harder LD, Coen E. Evolution and development of inflorescence architectures [J]. Science 2007; 316(5830):1452-1456.
    253. Purugganan MD. The MADS-box floral homeotic gene lineages predate the origin of seed plants:phylogenetic and molecular clock estimates [J]. Journal of Molecular Evolution 1997; 45(4):392-396.
    254. Purugganan MD, Suddith JI. Molecular population genetics of the Arabidopsis CAULIFLOWER regulatory gene:nonneutral evolution and naturally occurring variation in floral homeotic function [J]. Proceedings of the National Academy of Sciences, USA 1998; 95(14): 8130-8134.
    255. Purugganan MD, Rounsley SD, Schmidt RJ, Yanofsky MF. Molecular evolution of flower development:diversification of the plant MADS-box regulatory gene family [J]. Genetics 1995; 140(1):345-356.
    256. Redei GP. Supervital mutants of Arabidopsis [J]. Genetics 1962; 47(4):443-460.
    257. Putterill J, Robson F, Lee K, Simon R, Coupland G. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors [J]. Cell 1995; 80(6):847-857.
    258. Rao NN, Prasad K, Kumar PR, Vijayraghavan U. Distinct regulatory role for RFL, the rice LFY homolog, in determining flowering time and plant architecture [J]. Proceedings of the National Academy of Sciences, USA 2008; 105(9):3646-3651.
    259. Ratcliffe OJ, Bradley DJ, Coen ES. Separation of shoot and floral identity in Arabidopsis [J]. Development 1999; 126(6):1109-1120.
    260. Rieu I, Powers SJ. Real-time quantitative RT-PCR:Design, calculations, and statistics [J]. Plant Cell 2009; 21(4):1031-1033.
    261. Robson F, Costa MMR, Hepworth SR, Vizir I, Reeves PH, Putterill J, Coupland G. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants [J]. The Plant Journal 2001; 28(6): 619-631.
    262. Royce TE, Rozowsky JS, Gerstein MB. Toward a universal microarray:prediction of gene expression through nearest-neighbor probe sequence identification [J]. Nucleic acids research 2007; 35(15):e99.
    263. Rottmann WH. Meilan R, Sheppard LA, Brunner AM, Skinner JS, Ma C, Cheng S, Jouanin L, Pilate G, Strauss SH. Diverse effects of overexpression of LEAFY and PTLF, a poplar (Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis [J]. The Plant Journal 2000; 22(3):235-245.
    264. Rubio V, Deng XW. Standing on the shoulders of GIGANTEA [J]. Science 2007; 318(5848): 206-207.
    265. Roden LC, Song HR, Jackson S, Morris K, Carre IA. Floral responses to photoperiod are correlated with the timing of rhythmic expression relative to dawn and dusk in Arabidopsis [J]. Proceedings of the National Academy of Sciences, USA 2002; 99(20):13313-13318.
    266. Sanchez-Leon N, Arteaga-Vazquez M, Alvarez-Mejfa C, Mendiola-Soto J, Duran-Figueroa N, Rodrfguez-Leal D, Rodrfguez-Arevalo Ⅰ, Garcia-Campayo V, Garcfa-Aguilar M, Olmedo-Monfil V. Transcriptional analysis of the Arabidopsis ovule by massively parallel signature sequencing [J]. Journal of Experimental Botany 2012; 63(10):3829-3842.
    267. Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis [J]. Science 2000; 288(5471):1613-1616.
    268. Sawa M, Kay SA, Imaizumi T. Photoperiodic flowering occurs under internal and external coincidence [J]. Plant Signaling & Behavior 2008; 3(4):269-271.
    269. Sather DN. Golenberg EM. Duplication of API within the Spinacia oleracea L. AP1/FUL clade is followed by rapid amino acid and regulatory evolution [J]. Planta 2009; 229(3):507-521.
    270. Sawa M, Nusinow DA, Kay SA, Imaizumi T. FKFI and GIGANTEA complex formation is required for day-length measurement in Arabidopsis [J]. Science 2007; 318(5848):261-265.
    271. Schmid M, Uhlenhaut NH, Godard F, Demar M, Bressan R, Weigel D. Lohmann JU. Dissection of floral induction pathways using global expression analysis [J]. Development 2003; 130(24):6001-6012.
    272. Schranz ME, Quijada P, Sung SB, Lukens L, Amasino R, Osborn TC. Characterization and effects of the replicated flowering time gene FLC in Brassica rapa [J]. Genetics 2002; 162(3): 1457-1468.
    273. Schomburg FM, Patton DA, Meinke DW, Amasino RM. FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs [J]. Plant Cell 2001:13(6):1427-1436.
    274. Schwechheimer C, Willige BC. Shedding light on gibberellic acid signalling [J]. Current Opinion in Plant Biology 2009; 12(1):57-62.
    275. Schmitz RJ, Sung S, Amasino RM. Histone arginine methylation is required for vernalization-induced epigenetic silencing of FLC in winter-annual Arabidopsis thaliana [J]. Proceedings of the National Academy of Sciences, USA 2008; 105(2):411-416.
    276. Sellaro R, Pacfn M. Casal JJ. Diurnal dependence of growth responses to shade in Arabidopsis:Role of hormone, clock, and light signaling [J]. Molecular Plant 2012; 5(3):619-628.
    277. Searle I, He Y, Turck F, Vincent C, Fornara F, Krober S, Amasino RA, Coupland G. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis [J]. Genes & Development 2006; 20(7): 898-912.
    278. Sessions A, Nemhauser JL, McColl A. Roe JL. Feldmann KA, Zambryski PC. ETTIN patterns the Arabidopsis floral meristem and reproductive organs [J]. Development 1997; 124(22): 4481-4491.
    279. Sessions RA, Zambryski PC. Arabidopsis gynoecium structure in the wild and in ettin mutants [J]. Development 1995; 121(5):1519-1532.
    280. Seymour GB, Manning K, Eriksson EM, Popovich AH, King GJ. Genetic identification and genomic organization of factors affecting fruit texture [J]. Journal of Experimental Botany 2002; 53(377):2065-2071.
    281. Shan H, Zhang N, Liu C, Xu G, Zhang J, Chen Z, Kong H. Patterns of gene duplication and functional diversification during the evolution of the API/SQUA subfamily of plant MADS-box genes [J]. Molecular Phylogenetics and Evolution 2007; 44(1):26-41.
    282. Shan H, Chen S, Jiang J, Chen F, Chen Y, Gu C, Li P, Song A, Zhu X, Gao H. Hetcrologous Expression of the Chrysanthemum R2R3-MYB Transcription factor CmMYB2 enhances drought and salinity tolerance, increases hypersensitivity to ABA and delays flowering in Arabidopsis thaliana [J]. Molecular Biotechnology 2011:1-14.
    283. Shchennikova AV, Shulga OA, Immink R, Skryabin KG, Angenent GC. Identification and characterization of four chrysanthemum MADS-box genes, belonging to the APETALAI/FRUITFULL and SEPALLATA3 subfamilies [J]. Plant Physiology 2004; 134(4): 1632-1641.
    284. Shiraya T, Sato S, Kato T, Tabata S, Iwasaki T. Arabidopsis VIP6/ELF8, the homolog of CTR9 component of the transcriptional complex PAF1, is essential for plant development [J]. Plant Biotechnology 2008; 25(5):447-455.
    285. Shen L, Kang YG, Liu L, Yu H. The j-domain protein j3 mediates the integration of flowering signals in Arabidopsis [J]. Plant Cell 2011; 23(2):499-514.
    286. Shitsukawa N, Takagishi A, Ikari C, Takumi S, Murai K. WFL, a wheat FLORICAULA/LEAFY ortholog, is associated with spikelet formation as lateral branch of the inflorescence meristem [J]. Genes and Genetic Systems 2006; 81(1):13-20.
    287. Shu G, Amaral W, Hileman LC, Baum DA. LEAFY and the evolution of rosette flowering in violet cress (Jonopsidium acaule, Brassicaceae) [J]. American Journal of Botany 2000; 87(5): 634-641.
    288. Siegfried KR, Eshed Y, Baum SF, Otsuga D, Drews GN, Bowman JL. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis [J]. Development 1999; 126(18): 4117-4128.
    289. Simon R, Carpenter R, Doyle S, Coen E. Fimbriata controls flower development by mediating between meristem and organ identity genes [J]. Cell 1994; 78(1):99-107.
    290. Simpson GG, Dijkwel PP, Quesada V, Henderson I, Dean C. FY is an RNA 3'end-processing factor that interacts with FCA to control the Arabidopsis floral transition [J]. Cell 2003; 113(6): 777-787.
    291. Skipper M, Pedersen KB, Johansen LB, Frederiksen S, Irish VF, Johansen BB. Identification and quantification of expression levels of three FRUITFULL-like MADS-box genes from the orchid Dendrobium thyrsiflorum (Reichb. f.) [J]. Plant Science 2005; 169(3):579-586.
    292. Sliwinski MK, Bosch JA, Yoon HS, Balthazar M, Baum DA. The role of two LEAFY paralogs from Idahoa scapigera (Brassicaceae) in the evolution of a derived plant architecture [J]. The Plant Journal 2007; 51 (2):211-219.
    293. Sliwinski MK, White MA, Maizel A, Weigel D, Baum DA. Evolutionary divergence of LFY function in the mustards Arabidopsis thaliana and Leaven wo rthia crassa [J]. Plant Molecular Biology 2006; 62(2):279-289.
    294. Smykal P, Gennen J, De Bodt S, Ranganath V, Melzer S. Flowering of strict photoperiodic Nicotiana varieties in non-inductive conditions by transgenic approaches [J]. Plant molecular biology 2007; 65(3):233-242.
    295. Somers DE, Devlin PF, Kay SA. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock [J]. Science 1998; 282(5393):1488-1490.
    296. Souer E, van der Krol A, Kloos D, Spelt C, Bliek M, Mol J, Koes R. Genetic control of branching pattern and floral identity during Petunia inflorescence development [J]. Development 1998; 125(4):733-742.
    297. Soppe W, Bentsink L, Koornneef M. The early-flowering mutant efs is involved in the autonomous promotion pathway of Arabidopsis thaliana [J]. Development 1999; 126(21): 4763-4770.
    298. Srikanth A, Schmid M. Regulation of flowering time:all roads lead to Rome [J]. Cellular and Molecular Life Sciences 2011; 68(12):2013-2037.
    299. Sonmez C, Baurle I, Magusin A, Dreos R, Laubinger S, Weigel D, Dean C. RNA 3' processing functions of Arabidopsis FCA and FPA limit intergenic transcription [J]. Proceedings of the National Academy of Sciences, USA 2011; 108(20):8508-8513.
    300. Souer E, Rebocho AB, Bliek M, Kusters E, de Bruin RA, Koes R. Patterning of inflorescences and flowers by the F-Box protein DOUBLE TOP and the LEAFY homolog ABERRANT LEAF AND FLOWER of petunia [J]. Plant Cell 2008:20(8):2033-2048.
    301. Stahle MI, Kuehlich J, Staron L, von Arnim AG, Golz JF. YABBYs and the transcriptional corepressors LEUNIG and LEUNIG HOMOLOG maintain leaf polarity and meristem activity in Arabidopsis [J]. Plant Cell 2009; 21(10):3105-3118.
    302. Stam M, Mol JNM, Kooter JM. Review Article:The silence of genes in transgenic plants [J]. Annals of Botany 1997; 79(1):3-12.
    303. Stern DL, Orgogozo V. The loci of evolution:how predictable is genetic evolution? [J]. Evolution 2008; 62(9):2155-2177.
    304. Strable J, Borsuk L. Nettleton D, Schnable PS, Irish EE. Microarray analysis of vegetative phase change in maize [J]. The Plant Journal 2008; 56(6):1045-1057.
    305. Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis [J]. Nature 2001; 410(6832):1116-1120.
    306. Swofford D. PAUP:A computer program for phylogenetic inference using maximum parsimony [J]. The Journal of General Physiology 1993; 102(6):A9-a9.
    307. Sung S, Amasino RM. Vernalization and epigenetics:how plants remember winter [J]. Current opinion in plant biology 2004; 7(1):4-10.
    308. Toth R, Kevei E, Hall A, Millar AJ, Nagy F, Kozma-Bognar L. Circadian clock-regulated expression of phytochrome and cryptochrome genes in Arabidopsis [J]. Plant Physiology 2001; 127(4):1607-1616.
    309. Teper-Bamnolker P, Samach A. The flowering integrator FT regulates SEPALLATA3 and FRUITFULL accumulation in Arabidopsis leaves [J]. Plant Cell 2005:17(10):2661-2675.
    310. Theiβen G. Development of floral organ identity:stories from the MADS house [J]. Current Opinion in Plant Biology 2001; 4(1):75-85.
    311. Theissen G. Shattering developments [J]. Nature 2000; 404(6779):711-713.
    312. Theissen G, Saedler H. The golden decade of molecular floral development (1990-1999):a cheerful obituary [J]. Developmental Genetics 1999; 25(3):181-193.
    313. Trevaskis B, Bagnall DJ, Ellis MH, Peacock WJ, Dennis ES. MADS box genes control vernalization-induced flowering in cereals [J]. Proceedings of the National Academy of Sciences, USA 2003; 100(22):13099-13104.
    314. Tournois J. Influence de la lumiere sur la floraison duhoublon japonais et du chanvre determinees par des semishaitifs [J]. C. R. Acad. Sci, pairs 1912; 155:297-300..
    315. Trevaskis B, Hemming MN, Dennis ES, Peacock WJ. The molecular basis of vernalization-induced flowering in cereals [J]. Trends in Plant Scienceence 2007; 12(8):352-357.
    316. Van Buskirk EK, Decker PV, Chen M. Photobodies in light signaling [J]. Plant Physiology 2012; 158(1):52-60.
    317. Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering [J]. Science 2004; 303(5660): 1003-1006.
    318. Velten J, Cakir C, Youn E, Chen J, Cazzonelli CI. Transgene silencing and transgene-derived siRNA production in tobacco plants homozygous for an introduced AtMYB90 construct [J]. PLoS One 2012; 7(2):e30141.
    319. Vandenbussche M, Theissen G, Van de Peer Y, Gerats T. Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations [J]. Nucleic Acids Research 2003; 31(15):4401-4409.
    320. Vidal RO, Nascimento LC, Mauricio Costa Mondego J, Amarante Guimaraes Pereira G, Falsarella Carazzolle M. Identification of SNPs in RNA-seq data of two cultivars of Glycine max (soybean) differing in drought resistance [J]. Genetics and Molecular Biology 2012; 35(1): 331-334.
    321. Wada M, Cao QF, Kotoda N, Soejima J, Masuda T. Apple has two orthologues of FLORICAULA/LEAFY involved in flowering [J]. Plant Molecular Biology 2002; 49(6):567-577. 322. Wagner D. Flower morphogenesis:timing is key [J]. Developmental cell 2009; 16(5): 621-622.
    323. Wagner D, Meyerowitz EM. SPLAYED, a novel SWI/SNF ATPase homolog, controls reproductive development in Arabidopsis [J]. Current Biology 2002; 12(2):85-94.
    324. Wang C, Wang X, Kibet NK, Song C, Zhang C, Li X, Han J, Fang J. Deep sequencing of grapevine flower and berry short RNA library for discovery of novel microRNAs and validation of precise sequences of grapevine microRNAs deposited in miRBase [J]. Physiologia Plantarum 2011; 143(1):64-81.
    325. Wang H, Caruso LV, Downie AB, Perry SE. The embryo MADS domain protein AGAMOUS-Like 15 directly regulates expression of a gene encoding an enzyme involved in gibberellin metabolism [J]. Plant Cell 2004; 16(5):1206-1219.
    326. Wang H, Chen J, Wen J, Tadege M, Li G, Liu Y, Mysore KS, Ratet P, Chen R. Control of compound leaf development by FLORICAULA/LEAFY ortholog SINGLE LEAFLETl in Medicago truncatula [J]. Plant Physiology 2008; 146(4):1759-1772.
    327. Wang J-W, Czech B, Weigel D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana [J]. Cell 2009; 138(4):738-749.
    328. Wang W, Dai S, Li M. Physical mapping of rDNA in Dendranthema nankingense and its close related species by fluorescent in situ hybridization [J]. Cellular and Molecular Biology Letters 2002; 7(3):911-918.
    329. Wang Z-Y, Tobin EM. Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED I (CCAl) gene disrupts circadian rhythms and suppresses its own expression [J]. Cell 1998; 93(7): 1207-1217.
    330. Wang Z, Gerstein M, Snyder M. RNA-Seq:a revolutionary tool for transcriptomics [J]. Nature Reviews Genetics 2009; 10(1):57-63.
    331. Wang Z, Liang Y, Li C, Xu Y, Lan L, Zhao D, Chen C, Xu Z, Xue Y, Chong K. Microarray analysis of gene expression involved in anther development in rice (Oryza sativa L.) [J]. Plant Molecular Biology 2005; 58(5):721-737.
    332. Wei B, Zhang RZ, Li AL, Mao L. Progress in plant small RNA research via high-throughput sequencing [J]. Scientia Agricultura Sinica 2009; 42(11):3755-3764.
    333. Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM. LEAFY controls floral meristem identity in Arabidopsis [J]. Cell 1992; 69(5):843-859.
    334. Weigel D, Nilsson O. A developmental switch sufficient for flower initiation in diverse plants [J]. Nature 1995; 377(6549):495-500.
    335. Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D. Integration of spatial and temporal information during floral induction in Arabidopsis [J]. Science 2005; 309(5737):1056-1059.
    336. William DA, Su Y, Smith MR, Lu M, Baldwin DA, Wagner D. Genomic identification of direct target genes of LEAFY [J]. Proceedings of the National Academy of Sciences, USA 2004; 101(6):1775-1780.
    337. Wilson IW, Kennedy GC, Peacock JW, Dennis ES. Microarray analysis reveals vegetative molecular phenotypes of Arabidopsis flowering-time mutants [J]. Plant and Cell Physiology 2005; 46(8):1190-1201.
    338. Wisniewski JP, Brewin N. Construction of transgenic pea lines with modified expression of diamine oxidase and modified nodulation responses with exogenous putrescine [J], Molecular plant-microbe interactions 2000; 13(9):922-928.
    339. Wouters FS, Bastiaens PIH. Fluorescence lifetime imaging of receptor tyrosine kinase activity in cells [J]. Current Biology 1999; 9(19):1127-S1121.
    340. Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis [J]. Cell 2009; 138(4): 750-759.
    341. Wu MF, Tian Q, Reed JW. Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction [J]. Development 2006; 133(21): 4211-4218.
    342. Wu X, Dinneny JR, Crawford KM, Rhee Y, Citovsky V, Zambryski PC, Weigel D. Modes of intercellular transcription factor movement in the Arabidopsis apex [J]. Development 2003; 130(16):3735-3745.
    343. Wu YH, Li Q, Zhang JS, Zheng Z, Xue S, Li Y. Molecular cloning and characterization of two tobacco MADS-box genes [J]. Sexual Plant Reproduction 2000; 13(3):163-169.
    344. Xing D, Zhao H, Xu R, Li QQ. Arabidopsis PCFS4, a homologue of yeast polyadenylation factor PCF11P, regulates FCA alternative processing and promotes flowering time[J]. The Plant Journal 2008; 54(5):899-910.
    345. Xu L, Zhu L, Tu L, Liu L, Yuan D, Jin L, Long L, Zhang X. Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry [J]. Journal of Experimental Botany 2011; 62(15):5607-5621.
    346. Xu X, Chen C. Fan B, Chen Z. Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors [J]. Plant Cell 2006; 18(5):1310-1326.
    347. Yaish MWF, Peng M, Rothstein SJ. AtMBD9 modulates Arabidopsis development through the dual epigenetic pathways of DNA methylation and histone acetylation [J]. The Plant Journal 2009; 59(1):123-135.
    348. Yamaguchi A, Kobayashi Y, Goto K, Abe M, Araki T. TWIN SISTER OF FT (TSF) acts as a floral pathway integrator redundantly with FT [J]. Plant and Cell Physiology 2005; 46(8): 1175-1189.
    349. Yamaguchi A, Wu M-F, Yang L, Wu G, Poethig RS, Wagner D. The microRNA-regulated SBP-box. transcription factor SPL3 is a Direct upstream activator of LEAFY, FRUITFULL, and APETALA1 [J]. Developmental cell 2009; 17(2):268-278.
    350. Yamauchi Y, Ogawa M, Kuwahara A, Hanada A, Kamiya Y, Yamaguchi S. Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds [J]. Plant Cell 2004; 16(2):367-378.
    351. Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J. The wheat and barley vernalization gene VRN3 is an orthologue of FT [J]. Proceedings of the National Academy of Sciences, USA 2006; 103(51):19581-19586.
    352. Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization [J]. Science 2004; 303(5664):1640-1644.
    353. Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors [J]. Nature 1990; 346(6279):35-39.
    354. Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene VRN [J]. Proceedings of the National Academy of Sciences, USA 2003; 100(10):6263-6268.
    355. Yanovsky MJ, Kay SA. Molecular basis of seasonal time measurement in Arabidopsis [J]. Nature 2002; 419(6904):308-312.
    356. Yant L, Mathieu J, Schmid M. Just say no:floral repressors help Arabidopsis bide the time [J]. Current Opinion in Plant Biology 2009; 12(5):580-586.
    357. Yoine M, Ohto M, Onai K, Mita S, Nakamura K. The lbal mutation of UPF1 RNA helicase involved in nonsense-mediated mRNA decay causes pleiotropic phenotypic changes and altered sugar signalling in Arabidopsis [J]. The Plant Journal 2006; 47(1):49-62.
    358. Yoon HS, Baum DA. Transgenic study of parallelism in plant morphological evolution [J]. Proceedings of the National Academy of Sciences, USA 2004; 101(17):6524-6529.
    359. Yu H, Xu Y, Tan EL, Kumar PP. AGAMOUS-LIKE 24, a dosage-dependent mediator of the flowering signals [J]. Proceedings of the National Academy of Sciences, USA 2002; 99(25): 16336-16341.
    360. Yu H, Ito T, Wellmer F, Meyerowitz EM. Repression of AGAMOUS-LIKE 24 is a crucial step in promoting flower development [J]. Nature Genetics 2004; 36(2):157-161.
    361. Yu TS, Lue WL, Wang SM, Chen J. Mutation of Arabidopsis plastid phosphoglucose isomerase affects leaf starch synthesis and floral initiation [J]. Plant Physiology 2000; 123(1): 319-326.
    362. Yu X, Li L, Guo M, Chory J, Yin Y. Modulation of brassinosteroid-regulated gene expression by Jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis [J]. Proceedings of the National Academy of Sciences, USA 2008; 105(21):7618-7623.
    363. Yu Xin H, Yong Hong W, Xin Fang L, Jia Yang L. Arabidopsis RAVI is down-regulated by brassinosteroid and may act as a negative regulator during plant development [J]. Cell Research 2004; 14(1):8-15.
    364. Zeevaart JA. Florigen coming of age after 70 years [J]. Plant Cell 2006; 18(8):1783-1789.
    365. Zhang JZ, Ai XY, Sun LM, Zhang DL, Guo WW, Deng XX, Hu CG. Molecular cloning and functional characterization of genes associated with flowering in citrus using an early-flowering trifoliate orange (Poncirus trifoliata L. Raf.) mutant [J]. Plant Molecular Biology 2011:1-18.
    366. Zhang JZ, Ai XY, Sun LM, Zhang DL, Guo WW, Deng XX, Hu CG. Transcriptome profile analysis of flowering molecular processes of early flowering trifoliate orange mutant and the wild-type [Poncirus trifoliata (L.) Raf.] by massively parallel signature sequencing [J]. BMC Genomics 2011; 12(1):63.
    367. Zhang MZ, Ye D, Wang LL, Pang JL, Zhang YH, Zheng K, Bian HW, Han N, Pan JW, Wang JH, Zhu MY. Overexpression of the cucumber LEAFY homolog CFL and hormone treatments alter flower development in gloxinia (Sinningia speciosa) [J]. Plant Molecular Biology 2008; 67(4): 419-427.
    368. Zhang S, Sandal N, Polowick PL, Stiller J, Stougaard J, Fobert PR. Proliferating Floral Organs (Pfo), a Lotus japonicus gene required for specifying floral meristem determinacy and organ identity, encodes an F-box protein [J]. The Plant Journal 2003; 33(4):607-619.
    369. Zhang Y. Cao G, Qu LJ. Gu H. Characterization of Arabidopsis MYB transcription factor gene AtMYB17 and its possible regulation by LEAFY and AGL15 [J]. Journal of Genetics and Genomics 2009; 36(2):99-107.
    370. Zhao C, Hanada A, Yamaguchi S, Kamiya Y, Beers EP. The Arabidopsis MYB genes MYRI and MYR2 are redundant negative regulators of flowering time under decreased light intensity [J]. The Plant Journal 2011; 66(3):502-515.
    371. Zhao H, Liu Z, Hu X, Yin J, Li W, Rao G, Zhang X, Huang C, Anderson N, Zhang Q. Chrysanthemum genetic resources and related genera of Chrysanthemum collected in China [J]. Genetic Resources and Crop Evolution 2009; 56(7):937-946.
    372. Zheng Y, Ren N, Wang H, Stromberg AJ, Perry SE. Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Likel5 [J]. Plant Cell 2009; 21(9):2563-2577.
    373.白书农.植物发育生物学[B]:北京大学出版社,2012,PP:75-112
    374.郭志刚,张伟,园艺:菊花:清华大学出版社;1997.
    375.石万里,姚毓璆:菊花花芽分化初步研究.园艺学报1990,17(4):309-312.
    376.黄河.甘菊响应盐诱导的分子机理研究[D].:北京林业大学,2012.
    377.黎裕,王建康,邱丽娟,马有志,李新海,万建民.中国作物分子育种现状与发展前景[J].作物学报2010;36(009):1425-1430.
    378.马月萍.甘菊LEFAY司源基因的克隆与表达分析[D].:北京林业大学,2005.
    379.王翊,马月萍,戴思兰等.观赏植物花期调控途径及其分子机制[J].植物学报,2010,45(6):641-653.
    380.王翊,付建新,戴思兰等.甘菊DFL::EGFP高效融合蛋白表达载体的构建[J].生物技术通报,2010,(2):102-108.
    381.史硕博,陈涛,赵学明等.转录组平台技术及其在代谢工程中的应用[J].生物工程学报,2010,26(9):1187-1198.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700