早老性神经退行性病变模式动物的蛋白差异表达和氧化应激研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人口老龄化的发展,阿尔茨海默病(Alzheimer's disease,AD)患者数量逐年增多,但目前尚缺乏有效的治疗手段,给社会和家庭带来沉重的负担。AD是一种中枢神经系统退行性疾病,细胞外β淀粉样蛋白(β-amyloid,Aβ)沉积形成的老年斑(senile plaques,SP),和细胞内高度磷酸化的tau蛋白形成的神经纤维缠结(neurofibrillary tangles,NFT)是两个显著的神经病理特征。Aββ淀粉样蛋白前体(amyloid precursor protein,APP)经β分泌酶和γ分泌酶裂解生成,早老素(presenilin,PS)包括PS1和PS2,是γ分泌酶的主要活性成分,对Aβ的生成至关重要。此外,PS蛋白在胚胎发育、神经母细胞分化、神经元凋亡、tau蛋白过度磷酸化和神经细胞黏附中也具有重要作用。
     PS cDKO(conditional double knockout,cDKO)小鼠前脑(皮层和海马)PS基因被特异性敲除,出生3周后,PS1和PS2基因才开始特异性失活,并逐渐出现年龄依赖性的神经退行性病变和脑组织病理学异常,如突触丢失、神经元死亡、大脑皮层萎缩、海马神经元分子层和胼胝体萎缩,侧脑室和第三脑室扩大,tau蛋白过度磷酸化。2个月即出现记忆力和突触可塑性降低,并且随着年龄的增长逐渐加重。因此PS cDKO小鼠是目前较好的研究PS功能的转基因动物模型,也是较好的AD转基因模型,通过基因操作的方式模拟了AD的神经退行性病变和痴呆的症状。由于PS1和PS2在前脑特异性失活,Aβ生成减少,未见SP,也没有Aβ介导的氧化应激,因而,PS cDKO小鼠的发病机制和主流的“Aβ毒性学说”不符。有研究表明,PS cDKO小鼠学习记忆能力下降并非由于大量的Aβ聚集,而是由于PS功能丧失,炎症相关基因表达增加所致。蛋白质是主要功能的执行者,其表达和翻译后修饰(post translational modification,PTM)对AD的病理过程有至关重要的影响,目前在PS cDKO小鼠中知之甚少。因此,我们利用二维液相色谱(two-dimensional liquid chromatography,2-DL)分离的蛋白质组学研究技术和其它分子生物学方法,观察PS cDKO小鼠与野生型(wild-type,WT)小鼠脑组织的蛋白表达差异;同时,分析PS cDKO小鼠脑组织的氧化应激情况和蛋白质的氧化修饰,在蛋白水平上探讨PS cDKO小鼠AD样病理变化的分子机制。另一方面,与PS cDKO相反,NR2B转基因小鼠是一种学习记忆增强的模式动物,关于NR2B小鼠脑组织的蛋白表达情况,目前的了解也不多。因此,采用蛋白质组学方法,对这两种模式动物的脑组织蛋白同时进行研究,更加有利于分析蛋白在AD中的功能。
     本论文分为4章。第一章分析了目前常用的几种蛋白质分离方法,重点讨论了蛋白样品的纯化方法,以及我们所采用的二维液相色谱分离系统PF2D方法的稳定性、可靠性,为后面的实验奠定基础。第二章分别分离并鉴定了不同月龄的PS cDKO小鼠与WT小鼠、NR2B小鼠与WT小鼠脑组织的蛋白质差异表达,并对部分差异蛋白采用Western blot进行了确认,同时,分析了这些差异蛋白与神经退行性疾病(包括AD)的关系。第三章研究了不同月龄的PS cDKO小鼠脑组织和肝组织的氧化产物和抗氧化物水平,并对其氧化应激情况进行了分析。第四章综述了目前人们对PS、NR2B和AD的研究,AD的蛋白质组学研究,以及AD与氧化应激等方面的认识。具体如下:
     首先,对PF2D中的蛋白样品处理方法和系统的重复性进行摸索。由于脑组织中含有较多的脂质和脂蛋白等杂质,对于等电聚焦色谱的分离效果有一定的影响,因此我们对不同的蛋白除脂方法进行了比较,如超速离心、丙酮沉淀、异丙醇/正己烷、Freon和Cleanasite法。最终我们选择了蛋白损失少、易操作且重复性高的Freon和Cleanasite法除脂。重复上样后分离结果显示,系统一维和二维的重复性都较好。峰面积和蛋白浓度成正比,从而保证了用于蛋白差异表达分析时的可靠性。
     其次,我们利用上述实验系统,分别分离鉴定了不同月龄的PS cDKO、NR2B小鼠脑组织的蛋白表达谱。PS cDKO的结果显示,与WT小鼠相比,2月龄显著差异的峰有26个(6个下调,20个上调),4月龄有51个(33个下调,18个上调),6月龄有108个(44个下调,64个上调)。对6月龄小鼠部分差异表达的峰进行基质辅助激光解吸离子化飞行时间质谱(matrix assisted laser desorotion/ionizationtime-of-flight,MALDI-TOF)鉴定,有二氢嘧啶相关蛋白2(dihydropyrimidinase-like2,DRP-2)、异柠檬酸脱氢酶、丙酮酸脱氢酶、微管蛋白、星型胶质细胞丝状酸性蛋白(glial fibrillary acidic protein,GFAP)、肌酸激酶BB和液泡H~+-ATP酶B2等蛋白,它们与神经元生长和可塑性、神经元损伤以及ATP合成等功能密切相关。用Western blot方法检测其中的GFAP表达水平,结果显示6月龄PS cDKO小鼠海马与WT相比表达水平升高,和蛋白组学结果趋势一致。
     NR2B的结果显示,相对于匹配的WT小鼠,NR2B转基因小鼠有显著性差异的峰共有了2个,其中有34个上调、38个下调。经质谱鉴定出的26个蛋白中有14个上调如谷氨酰胺合成酶(glutamine synthetase,GS)、网格蛋白轻链B(Clathrinlight chain B,Lcb)、NADH2脱氢酶、ATP合成酶等,12个下调如鸟核苷酸释放因子1、Pin2/TRF1交互作用蛋白等,它们和神经递质、突触可塑性、神经元发育、细胞循环、能量代谢、基因转录等生理功能相关。Western blot方法检测结果表明,GS和Lcb蛋白在NR2B转基因小鼠中表达均升高,与蛋白质组学方法结果的趋势一致,进一步证实了二维液相色谱分离、MALDI-TOF/TOF质谱鉴定方法的可靠。
     对鉴定出的蛋白进行功能分析,发现PS cDKO小鼠和NR2B转基因小鼠实验中鉴定出的蛋白,有许多和能量代谢密切相关,表明能量代谢对神经元的功能非常重要。ATP合成和神经元的可塑性与学习记忆能力有密切关系。这为进一步探究PS cDKO转基因小鼠的病理机制、学习记忆能力下降的分子机制,寻找治疗AD可能的药物靶点奠定了基础。
     第三,之前有关氧化应激在AD中的作用的实验都是建立在Aβ生成增加的基础上,而PS cDKO小鼠脑内Aβ生成是减少的。本论文中我们通过检测氧化产物包括丙二醛(malondialdehyde,MDA)、羧基化蛋白(carbonylated protein)、iPF_(2α)-Ⅵ(F_2-isoprostanes-Ⅵ)和抗氧化酶如超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(Catalase,CAT)、谷胱甘肽过氧化酶(Glutathione peroxidase,GSH-px)水平分析PS cDKO小鼠不同年龄阶段的大脑皮层和肝组织的氧化应激情况。
     实验结果表明,PS cDKO小鼠大脑皮层MDA水平与对照组相比,2、4、7月龄都维持在较高水平,有统计学差异;蛋白被氧化后产生的羧基化蛋白的含量与对照组相比也明显升高,在2、4和7月龄组分别升高51%、61%和41%。应用Oxyblot免疫标记羧基蛋白也进一步证实了这个趋势。PS cDKO小鼠大脑皮层的抗氧化能力也相应有所改变:CAT活性在4月龄和7月龄时明显下降;SOD在2、4和7月龄均有升高,其中2月龄和7月龄组和对照组相比,分别升高了12%和45%,差异具有统计学意义。各组PS cDKO小鼠皮层GSH-px活性与对照组比较差别无统计学意义,但2月龄雄性小鼠皮层GSH-px活性与同月龄同性别的对照组相比,则明显升高。GFAP表达也呈年龄相关性的增加,在2个月时表达就有所升高,与MDA和蛋白氧化水平相一致,进一步证实了PS cDKO小鼠的氧化应激过程和免疫炎症等病理过程密切相关。
     我们还利用气相色谱-质谱(gas chromatograph-mass spectrometer,GC-MS)检测小鼠大脑皮层脂质过氧化物isoprostanes的活性异构体之一iPF_(2α)-Ⅵ。结果表明,PS cDKO小鼠大脑皮层的iPF_(2α)-Ⅵ含量随着年龄增长迅速增高,在4和7月龄时和WT相比有显著性差异;血浆中的iPF_(2×)-Ⅵ在7月龄时显著增高,但雌性PScDKO小鼠在4和7月龄都有显著性差异。
     最后,我们对蛋白的氧化修饰进行了初步探讨。利用肼化生物胞素标记氧化修饰的羧基化蛋白,再用链霉亲和素纯化后,酶解、LCQ-MS进行质谱鉴定。实验结果表明,酮戊二酸脱氢酶、肌动蛋白α亚型、血红蛋白β1亚单位和丝/苏氨酸蛋白激酶BUB1在PS cDKO小鼠大脑皮层中发生氧化修饰。
     综上所述,我们利用二维液相色谱分离和质谱的方法验证了PS cDKO小鼠和NR2B转基因小鼠脑组织中多类蛋白水平发生改变。对这些蛋白的功能进行分析,发现尤其与能量代谢和神经可塑性功能密切相关;大脑皮层的氧化应激在病理过程的早期阶段已经开始出现,是对PS丧失功能的一个早期反应,这一反应和脑Aβ沉积无关;同时鉴定出部分氧化修饰的蛋白;在PS cDKO AD样模型小鼠中,氧化应激和神经元损伤之间的因果关系尚需进一步研究。
Alzheimer's disease(AD) is a neurodegeneration disease of central nervous system characterized by senile plaques(SP) which is formed by extracellularβ-amyloid(Aβ) deposits and neurofibrillary tangles(NFT) which is formed by tau hyper-phosphoralation.Presenilin(PS) is an essential component ofγ-secretase, which cleaves the C-terminal ofβ-amyloid precursor protein(APP) to produce Aβthat accumulates into SP.In addition to the critical role of PS in Aβformation in the brain,PS also has many other functions such as embryo development,neuroblast differentiation,neuron apoptosis,tau hyper-phosphoralation and neural cell adhesion.
     The forebrain-specific(cerebral cortex and hippocampus) and conditional PSI and PS2 double knock-out(PS cDKO) mice appear inactivation of PS at 3 weeks of age postnatally.They exhibit age-dependent AD-like neurodegenerative phenotypes although the brain Aβwas decreased,such as synaptic loss,neuronal cell death, astrogliosis,cerebral cortex,hippocampus and corpus callosum atrophy,lateral ventricle and third ventricle enlargement and tau hyperphosphorylation.Memory loss and synaptic plasticity impairments start from 2 months of age and become more serious progressively.Thus,derived from genetic manipulation of AD genes that reproduce the central features of AD,namely neurodegeneration and dementia,PS cDKO mice is an ideal model for the study of PS functions in adult mice and AD pathology.In PS cDKO mice,Aβproduction is decreased and the oxidative stress induced by Aβis not found.It is not coincidence with the conventional "Aβhypothesis" of AD pathogenesis.Several important studies have indicated that memory impairment and neurodegeneration in PS cDKO mice are not caused by Aβaccumulation but related to the loss of PS function with the evidence of differential up-regulation of inflammatory markers in the cerebral cortex.As a function executor, protein,especially protein expression and post-translational modification(PTM),is more important to the AD pathogenesis.Unfortunately,up to now,the proteomics of PS cDKO mice is still unknown.In this study,a two-dimensional liquid chromatography-based(2-DL) proteomic approach and other molecular biology methods were used to observe the differentially expressed proteins between PS cDKO and wild-type(WT) mice,and the identification of oxidative modified proteins and oxidative stress status in the brain of PS cDKO mice were also performed.The molecular mechanism of AD-like pathology of PS cDKO mice on the protein level was further investigated.On the other hand,the NR2B transgenic(Tg) mice are the model mice with enhanced learning and memory.However,information about the proteomics of NR2B Tg mice is also scant.It would be thus more helpful to the analysis of protein functions in AD when we compare the expression patterns of brain proteins between these two transgenic models via the proteomics approach.
     This thesis is composed of four chapters.Chapter 1 will mainly describe the establishment of the methods for purification of brain tissue proteins and the reproducibility and reliability of the 2-DL system PF2D.Chapter 2 describes the proteomic investigation of proteins in brain tissues and the identification of the differentially expressed proteins between PS cDKO and the age-,gender-matched WT mice over several age points,and those between NR2B and age-,gender-matched WT mice,respectively.The expression levels of some proteins were further verified by using the Western blot method.The relationship of these differentially expressed proteins with AD pathogenesis will further be discussed.In chapter 3,we present the results from the studies of oxidative stress of PS cDKO mice at different age point by detecting oxidative productions and anti-oxidative enzymes.Finally,we will give a comprehensive literature review in terms of the most recent advances in physiological and pathological relevance of PS and NR2B in neurodegeneration as well as learning and memory functions,and in proteomic studies of AD and the oxidative stress as a major function in AD pathogenesis.
     Firstly we optimized the method of brain tissue protein purification to make sure that protein could be well separated by PF2D.The brain tissue is aboundant of lipid as much as about 63%of the dry matter of the brain.High contents of lipid and lipid-associated protein in the brain sample may cause the charge loss on the surface of protein and dramatically reduce the binding efficiency of proteins to the stationary phase of the CF column during the first dimensional fractionation.We initially tried several approaches for removing lipids from the rude protein extracts,such as ultra-centrifugation,acetone precipitation,isopropanol/hexane,Freon and Cleanascite. Freon and Cleanascite methods were proved to be superior over the others in terms of its simplicity and a higher protein recovery rate.Thus,it was used to purify the brain proteins in our protein profiling experiments.The good reproducibility of 1st dimension and 2nd dimension is demonstrated after we loaded two repeat samples. Peak area is in direct ratio with protein concentration.Both of them assure the reliability of the system for analysis the differentially expressed protein.
     Secondly,we separated proteins of brain tissue by using the PF2D system and searched differentially expressed peaks by the Delt vue software.By comparing with the age- and gender-matched WT mice,26 peaks(6 up-regulation and 20 down-regulation) in 2-month-old PS cDKO mice,51 peaks(18 up-regulation and 33 down-regulation) in 4-month-old PS cDKO mice and 108 peaks(64 up-regulation and 44 down-regulation) in 6-month-old PS cDKO mice were observed.Differentially expressed peaks of 6-month-old PS cDKO mice from the second dimensional chromatography were selected for protein identification using the PMF and MS/MS data from matrix assisted laser desorption/ionization time-of-flight(MALDI-TOF) mass spectrometric analysis.Dihydropyrimidinase-like 2(DRP-2),isocitrate dehydrogenase,pyruvate dehydrogenase,creatine kinase,glial fibrillary acidic protein (GFAP),tubulin were identified and they have relations with neuron development and plasticity,neuron injury and ATP synthesis.To further corroborate the expression profiling data from the present proteomic experiment,GFAP was selected for Western blotting analysis by using specific antibody.The result showed that the mean level of the protein in the 6-month-old PS cDKO mice were elevated compared to WT mice's, similar to that observed in the proteomic data.
     Totally,72 differentially expressed proteins were mapped with 34 proteins up-regulation and 38 down-regulation in 6-month-old NR2B Tg mice.Twenty six cortical proteins with altered expression level were identified by MALDI-TOF/TOF in the NR2B Tg mice.Among them,14 proteins were up-regulated,while 12 proteins were down-regulated,including glutamine synthetase(GS),guanine nucleotide-releasing factor 1,carbonic anhydrase,clathrin light chain B(Lcb), enolase 1,ATP synthase,cytochrome c,THO complex 4,and M-phase phosphoprotein 1.They play important roles in cell cycle control,neuronal development,RNA transcription as well as energy and metabolic homeostasis.These findings were further corroborated in an independent group of and WT mice by Western blot analysis of two selected proteins:Lcb and GS.
     From analysis of functions of these identified protein in PS cDKO and NR2B Tg mice,we found many proteins have relations with energy metabolic homeostasis, suggesting an important role of proteins associated energy metabolism in the neuron normal functions,and ATP synthesis has close relations with neuron plasticity and learning and memory.These results provide important information in understanding the AD pathological mechanism of PS cDKO mice.
     Thirdly,previous investigations into oxidative imbalance implicated in underlying AD pathogenic mechanism have been largely based on the AD-like amyloidosis in transgenic animal models.However,data derived from PS cDKO that presents the loss-of-function of pathogenic mechanism of AD with reduced Aβproduction are currently scant.The present study aimed primarily to investigate oxidative stress status in the PS cDKO mice with different ages by measuring levels of peroxidation products including malondialdehyde(MDA),carbonylated proteins and F_2-isoprostanes-Ⅵ(iPF_(2α)-Ⅵ) and anti-oxidative enzymes such as superoxide dismutase(SOD),catalase(CAT) and glutathione peroxidase(GSH-px) in response to the presenilin inactivation in the brain.
     Our results show that levels of lipid peroxidation product MDA were significantly elevated in the cortex of PS cDKO mice at the age as early as 2-month, and the oxidative stress were even severe and maintained at a higher level during the ages from 4- to 7-month,as compared with those of age- and gender-matched. Accordantly,protein oxidative modification levels,as measured as protein carbonyl content by DNPH assay,in the cerebral cortex samples were also significantly higher by 51%,61%and 41%in 2-,4- and 7-month age groups of PS cDKO mice, respectively,as compared with those of WT controls.The finding was further confirmed in the mice,especially in those at ages of 4 and 7-month,using Oxyblot immunolabeling of carbonylated proteins.Levels of anti-oxidative enzymes also have changes.Cortical CAT activities were significantly decreased by 58%and 46%in the 4- and 7-month mice,respectively,compared to that of matched controls. Contrastingly,cortical SOD activities were markedly higher in 2-month and 7-month PS cDKO mice by 12%and 45%,respectively,compared to WT controls.There was no significant difference in cortical GSH-px activities between WT and PS cDKO mice over all age points.However,in 2-month male PS cDKO mice the activities of this enzyme appeared to be increased significantly compared to age- and gender-matched WT.GFAP expression was increased in the cortices of PS cDKO mice in an age-related manner,similar to the changes shown in the MDA and protein oxidation results above.It revealed that the interaction relationship between oxidative stress and inflammatory may be closely associated with the underlying loss-of-function pathogenesis of AD.
     We also measured the levels of iPF_(2α)-Ⅵby gas chromatograph-mass spectrometer(GC-MS).iPF_(2α)-Ⅵis one of active isoforms of isoprostanes which were produced by lipid peroxidation of cell memberane.Results show that cerebral cortex iPF_(2α)-Ⅵcontents increased in an age-dependent manner,and have significantly difference in 4-month and 7-month PS cDKO mice compared with WT's.Contents of plasma iPF_(2α)-Ⅵsignificantly increased in 7-month PS cDKO mice,and increased in 4- and 7-month male PS cDKO mice.
     In the present study,we also conducted a preliminary investigation in identification of oxidative modified proteins in the brain of the AD Tg model by using biocytin hydrazide-streptavidin affinity methodology coupled to microTOFQ proteomics approach.2-oxoglutarate dehydrogenase E1 component,alpha-actin-2, hemoglobin subunit beta-land mitotic checkpoint serine/threonine-protein kinase BUB1 were identified only in PS cDKO mice cortex.
     In conclusion,we identified many proteins by 2-DL coupled to MALDI-TOF/TOF approach and found changes of protein levels to be mainly associated with energy metabolism and neuron plasticity in both PS cDKO and NR2B Tg mice compared to WT mice.Enhanced oxidative stress in the cortex of PS cDKO mice is an early event responsible for the loss-of-function of PS towards the AD-like pathologies unrelated with the brain amyloidosis.The cause-effect relationship between oxidative stress and inflammatory response in this PS-deficient AD-like model needs to be further elucidated.
引文
1.O'Farrell,P.H.,High resolution two-dimensional electrophoresis of proteins.J Biol Chern,1975.250(10):4007-21.
    2.Langen,H.,et al.,Two-dimensional map of human brain proteins.Electrophoresis,1999.20(4-5):907-16.
    3.Yu,L.R.,et al.,Global analysis of the cortical neuron proteome.Mol Cell Proteomics,2004.3(9):896-907.
    4.Edgar,P.F.,et al.,Proteome map of the human hippocampus.Hippocampus,1999.9(6):644-50.
    5.Fountoulakis,M.,et al.,Proteomic analysis of the fetal brain.Proteomics,2002.2(11):1547-76.
    6.Fountoulakis,M.,et al.,The rat brain hippocampus proteome.J Chromatogr B Analyt Technol Biomed Life Sci,2005.819(1):115-29.
    7.Kachman,M.T.,et al.,A 2-D liquid separations/mass mapping method for interlysate comparison of ovarian cancers.Anal Chem,2002.74(8):1779-91.
    8.Lubman,D.M.,et al.,Two-dimensional liquid separations-mass mapping of proteins from human cancer cell lysates.J Chromatogr B Analyt Technol Biomed Life Sci,2002.782(1-2):183-96.
    9.Hurst,R.E.,et al.,Proteome-level display by 2-dimensional chromatography of extracellular matrix-dependent modulation of the phenotype of bladder cancer cells.Proteome Sci,2006.4:13.
    10.Barre,O.and M.Solioz,Improved protocol for chromatofocusing on the ProteomeLab PF2D.Proteomics,2006.6(19):5096-8.
    11.Chen,E.I.,et al.,Large scale protein profiling by combination of protein fractionation and multidimensional protein identification technology(MudPIT).Mol Cell Proteomics,2006.5(1):53-6.
    12.Pirondini,A.,et al.,A 2-D liquid-phase chromatography for proteomic analysis in plant tissues.J Chromatogr B Analyt Technol Biomed Life Sci,2006.833(1):91-100.
    13.Soldi,M.,et al.,Proteome profile of human urine with two-dimensional liquid phase fractionation.Proteomics,2005.5(10):2641-7.
    14.Castro,A.R.,W.E.Morrill,and V.Pope,Lipid removal from human serum samples.Clin Diagn Lab Immunol,2000.7(2):197-9.
    15.Sheng,S.,D.Chen,and J.E.Van Eyk,Multidimensional liquid chromatography separation of intact proteins by chromatographic focusing and reversed phase of the human serum proteome.optimization and protein database.Mol Cell Proteomics,2006.5(1):26-34.
    16.Kristiansen,T.Z.,et al.,A proteomic analysis of human bile.Mol Cell Proteomics,2004.3(7):715-28.
    17.Shin,Y.K.,et al.,Proteomic analysis of mammalian basic proteins by liquid-based two-dimensional column chromatography.Proteomics,2006.6(4):1143-50.
    18.De Strooper,B.,et al.,Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein.Nature,1998.391(6665):387-90.
    19.Hutton,M.and J.Hardy,The presenilins and Alzheimer's disease.Hum Mol Genet,1997.6(10):1639-46.
    20.Wines-Samuelson,M.and J.Shen,Presenilins in the developing,adult,and aging cerebral cortex.Neuroscientist,2005.11(5):441-51.
    21.Donoviel,D.B.,et al.,Mice lacking both presenilin genes exhibit early embryonic patterning defects.Genes Dev,1999.13(21):2801-10.
    22.Feng,R.,et al.,Forebrain degeneration and ventricle enlargement caused by double knockout of Alzheimer's presenilin-1 and presenilin-2.Proc Natl Acad Sci U S A,2004.101(21):8162-7.
    23.Beglopoulos,V.,et al.,Reduced beta-amyloid production and increased inflammatory responses in presenilin conditional knock-out mice.J Biol Chem,2004.279(45):46907-14.
    24.Dong,S.,et al.,Environment enrichment rescues the neurodegenerative phenotypes in presenilins-deficient mice.Eur J Neurosci,2007.26(1):101-12.
    25.Shen,J.and R.J.Kelleher,3rd,The presenilin hypothesis of Alzheimer's disease:evidence for a loss-of-function pathogenic mechanism.Proc Natl Acad Sci U S A,2007.104(2):403-9.
    26.Bear,M.F.and R.C.Malenka,Synaptic plasticity:LTP and LTD.Curr Opin Neurobiol,1994.4(3):389-99.
    27.Linden,D.J.and J.A.Connor,Long-term synaptic depression.Annu Rev Neurosci,1995.18:319-57.
    28.Konishi,M.,Birdsongfor neurobiologists.Neuron,1989.3(5):541-9.
    29.Kuhl,P.K.,Learning and representation in speech and language.Curr Opin Neurobiol,1994.4(6):812-22.
    30.Maragos,W.F.,et al.,Loss of hippocampal[3H]TCP binding in Alzheimer's disease.Neurosci Lett,1987.74(3):371-6.
    31.Wang,Y.,et al.,Effects of post-mortem delay on subunits of ionotropic glutamate receptors in human brain.Brain Res Mol Brain Res,2000.80(2):123-31.
    32.Sze,C.,et al.,N-Methyl-D-aspartate receptor subunit proteins and their phosphorylation status are altered selectively in Alzheimer's disease.J Neurol Sci,2001.182(2):151-9.
    33.Tang,Y.P.,et al.,Genetic enhancement of learning and memory in mice.Nature,1999.401(6748):63-9.
    34.Cao,X.,et al.,Maintenance of superior learning and memory function in NR2B transgenic mice during ageing.Eur J Neurosci,2007.25(6):1815-22.
    35.Tang,Y.P.,et al.,Differential effects of enrichment on learning and memory function in NR2B transgenic mice.Neuropharmacology,2001.41(6):779-90.
    36.Lahm,H.W.and H.Langen,Mass spectrometry:a tool for the identification of proteins separated by gels.Electrophoresis,2000.21(11):2105-14.
    37.Lubec,G.,et al.,Expression of the dihydropyrimidinase related protein 2(DRP-2) in Down syndrome and Alzheimer's disease brain is downregulated at the mRNA and dysregulated at the protein level.J Neural Transm Suppl,1999.57:161-77.
    38.Castegna,A.,et al.,Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain.Part Ⅰ:creatine kinase BB,glutamine synthase,and ubiquitin carboxy-terminal hydrolase L-1.Free Radic Biol Med,2002.33(4):562-71.
    39.Dutcher,S.K.,The tubulin fraternity:alpha to eta.Curr Opin Cell Biol,2001.13(1):49-54.
    40.Guha,S.,et al.,Chaperone-like activity of tubulin.J Biol Chem,1998.273(46):30077-80.
    41.Tuma,D.J.,S.L.Smith,and M.F.Sorrell,Acetaldehyde and microtubules.Ann N YAcad Sci,1991.625:786-92.
    42.Ruotolo,R.,et al.,Gene expression profiling in human age-related nuclear cataract.Mol Vis,2003.9:538-48.
    43.Lee,Z.H.,et al.,Identification of a brain specific protein that associates with a refsum disease gene product,phytanoyl-CoA alpha-hydroxylase.Brain Res Mol Brain Res,2000.75(2):237-47.
    44.Bescond,M.and Z.Rahmani,Dual-specificity tyrosine-phosphorylated and regulated kinase 1A(DYRK1A) interacts with the phytanoyl-CoA alpha-hydroxylase associated protein 1(PAHX-AP1),a brain specific protein.Int J Biochem Cell Biol,2005.37(4):775-83.
    45.Kimura,R.,et al.,The DYRK1A gene,encoded in chromosome 21 Down syndrome critical region,bridges between beta-amyloid production and tau phosphorylation in Alzheimer disease.Hum Mol Genet,2007.16(1):15-23.
    46.Fuchs,E.,The cytoskeleton and disease:genetic disorders of intermediate filaments.Annu Rev Genet,1996.30:197-231.
    47.Ingelsson,M.,et al.,Early Abeta accumulation and progressive synaptic loss,gliosis,and tangle formation in AD brain.Neurology,2004.62(6):925-31.
    48.Bubber,P.,et al.,Mitochondrial abnormalities in Alzheimer brain:mechanistic implications.Ann Neurol,2005.57(5):695-703.
    49.Prince,J.,et al.,Mitochondrial enzyme deficiencies in Down's syndrome.J Neural Transm Park Dis Dement Sect,1994.8(3):171-81.
    50.Kim,S.H.,et al.,Decreased levels of complex Ⅲ core protein 1 and complex Ⅴbeta chain in brains from patients with Alzheimer's disease and Down syndrome.Cell Mol Life Sci,2000.57(12):1810-6.
    51.Mosconi,L.,et al.,Brain metabolic differences between sporadic and familial Alzheimer's disease.Neurology,2003.61(8):1138-40.
    52.Gibson,G.E.,K.F.Sheu,and J.P.Blass,Abnormalities ofmitochondrial enzymes in Alzheimer disease.J Neural Transm,1998.105(8-9):855-70.
    53.Butterworth,R.F.and A.M.Besnard,Thiamine-dependent enzyme changes in temporal cortex of patients with Alzheimer's disease.Metab Brain Dis,1990.5(4):179-84.
    54.Yates,C.M.,et al.,Enzyme activities in relation to pH and lactate in postmortem brain in Alzheimer-type and other dementias.J Neurochem,1990.55(5):1624-30.
    55.Sims,N.R.,et al.,Impairment of brain mitochondrial function by hydrogen peroxide.Brain Res Mol Brain Res,2000.77(2):176-84.
    56.Pereira,C.,et al.,Cell degeneration induced by amyloid-beta peptides:implications for Alzheimer's disease.J Mol Neurosci,2004.23(1-2):97-104.
    57.Casley,C.S.,et al.,Beta-amyloid inhibits integrated mitochondrial respiration and key enzyme activities.J Neurochem,2002.80(1):91-100.
    58.Brown,G.K.,et al.,Pyruvate dehydrogenase deficiency J Med Genet,1994.31(11):875-9.
    59.Mohuczy,D.,K.Qian,and M.I.Phillips,Presenilins in the heart:presenilin-2expression is increased by low glucose and by hypoxia in cardiac cells.Regul Pept,2002.110(1):1-7.
    60.Zhao,J.,et al.,Comparative serum glycoproteomics using lectin selected sialic acid glycoproteins with mass spectrometric analysis:application to pancreatic cancer serum.J Proteome Res,2006.5(7):1792-802.
    61.Zhu,K.,et al.,Protein pI shifts due to posttranslational modifications in the separation and characterization of proteins.Anal Chern,2005.77(9):2745-55.
    62.Billecke,C.,et al.,Analysis of glioma cell platinum response by metacomparison of two-dimensional chromatographic proteome profiles.Mol Cell Proteomics,2006.5(1):35-42.
    63.Norenberg,M.D.and A.Martinez-Hernandez,Fine structural localization of glutamine synthetase in astrocytes of rat brain.Brain Res,1979.161(2):303-10.
    64.Butterfield,D.A.,et al.,Oxidatively induced structural alteration of glutamine synthetase assessed by analysis of spin label incorporation kinetics:relevance to Alzheimer's disease.J Neurochem,1997.68(6):2451-7.
    65.Boguski,M.S.and F.McCormick,Proteins regulating Ras and its relatives.Nature,1993.366(6456):643-54.
    66.Li,S.,et al.,Distinct roles for Ras-guanine nucleotide-releasing factor 1(Ras-GRF1) and Ras-GRF2 in the induction of long-term potentiation and long-term depression.J Neurosci,2006.26(6):1721-9.
    67.Donaldson,J.G.and R.D.Klausner,ARF:a key regulatory switch in membrane traffic and organelle structure.Curr Opin Cell Biol,1994.6(4):527-32.
    68.Stamm,S.,et al.,Clathrin light chain B:gene structure and neuron-specific splicing.Nucleic Acids Res,1992.20(19):5097-103.
    69.Tate,P.H.and A.P.Bird,Effects of DNA methylation on DNA-binding proteins andgene expression.Curr Opin Genet Dev,1993.3(2):226-31.
    70.Stamm,S.,et al.,Regulation of the neuron-specific exon of clathrin light chain B.Brain Res Mol Brain Res,1999.64(1):108-18.
    71.Yao,EJ.,Synaptic frailty and clathrin-mediated synaptic vesicle trafficking in Alzheimer's disease.Trends Neurosci,2004.27(1):24-9.
    72.Tholey,G.,M.Ledig,and P.Mandel,Modifications in energy metabolism during the development of chick glial cells and neurons in culture.Neurochem Res,1982.7(1):27-36.
    73.Murray,A.W.and M.W.Kirschner,Dominoes and clocks:the union of two views of the cell cycle.Science,1989.246(4930):614-21.
    74.Abaza,A.,et al.,M phase phosphoprotein 1 is a human plus-end-directed kinesin-related protein required for cytokinesis.J Biol Chem,2003.278(30):27844-52.
    75.van Steensel,B.and T.de Lange,Control of telomere length by the human telomeric protein TRF1.Nature,1997.385(6618):740-3.
    76.Kishi,S.,et al.,Telomeric protein Pin2/TRF1 induces mitotic entry and apoptosis in cells with short telomeres and is down-regulated in human breast tumors.Oncogene,2001.20(12):1497-508.
    77.Bartzokis,G.,et al.,Apolipoprotein E genotype and age-related myelin breakdown in healthy individuals:implications for cognitive decline and dementia.Arch Gen Psychiatry,2006.63(1):63-72.
    78.Atamna,H.and W.H.Frey,2nd,Mechanisms ofmitochondrial dysfunction and energy deficiency in Alzheimer's disease.Mitochondrion,2007.7(5):297-310.
    79.Baloyannis,S.J.,Mitochondrial alterations in Alzheimer's disease.J Alzheimers Dis,2006.9(2):119-26.
    80.Chen,X.,D.Stem,and S.D.Yan,Mitochondrial dysfunction and Alzheimer's disease.Curr Alzheimer Res,2006.3(5):515-20.
    81.Chen,X.and S.D.Yan,Mitochondrial Abeta:a potential cause of metabolic dysfunction in Alzheimer's disease.IUBMB Life,2006.58(12):686-94.
    82.Parihar,M.S.and G.J.Brewer,Mitoenergetic failure in Alzheimer disease.Am J Physiol Cell Physiol,2007.292(1):C8-23.
    83.Wang,X.,et al.,Insights into amyloid-beta-induced mitochondrial dysfunction in Alzheimer disease.Free Radic Biol Med,2007.43(12):1569-73.
    84.Huang,H.M.,et al.,Mitochondrial function in fibroblasts with aging in culture and/or Alzheimer's disease.Neurobiol Aging,2005.26(6):839-48.
    85.Blass,J.P.,G.E.Gibson,and S.Hoyer,The role of the metabolic lesion in Alzheimer's disease.J Alzheimers Dis,2002.4(3):225-32.
    86.Hoyer,S.,Memory function and brain glucose metabolism.Pharmacopsychiatry,2003.36 Suppl 1:S62-7.
    87.Mancuso,M.,et al.,Mitochondrial dysfunction and Alzheimer's disease:new developments.J Alzheimers Dis,2006.9(2):111-7.
    88.Bandy,B.and A.J.Davison,Mitochondrial mutations may increase oxidative stress:implications for carcinogenesis and aging? Free Radic Biol Med,1990.8(6):523-39.
    89.Fukui,H.and C.T.Moraes,The mitochondrial impairment,oxidative stress and neurodegeneration connection:reality or just an attractive hypothesis? Trends Neurosci,2008.31(5):251-6.
    90.Hiona,A.and C.Leeuwenburgh,The role of mitochondrial DNA mutations in aging and sarcopenia:implications for the mitochondrial vicious cycle theory of aging.Exp Gerontol,2008.43(1):24-33.
    91.Jiang,N.,et al.,NMR-based metabonomic investigations into the metabolic profile of the senescence-accelerated mouse.J Proteome Res,2008.7(9):3678-86.
    92.Zhu,X.,et al.,Alzheimer disease,the two-hit hypothesis:an update.Biochim Biophys Acta,2007.1772(4):494-502.
    93.Mielke,K.and T.Herdegen,JNK andp38 stresskinases--degenerative effectors of signal-transduction-cascades in the nervous system.Prog Neurobiol,2000.61(1):45-60.
    94.Butterfield,D.A.,et al.,Evidence of oxidative damage in Alzheimer's disease brain.central role for amyloid beta-peptide.Trends Mol Med,2001.7(12):548-54.
    95.Nunomura,A.,et al.,Neuronal oxidative stress precedes amyloid-beta deposition in Down syndrome.J Neuropathol Exp Neurol,2000.59(11):1011-7.
    96.Pratico,D.,et al.,Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis.J Neurosci,2001. 21(12):4183-7.
    97.Levine,R.L.,et al.,Carbonyl assays for determination of oxidatively modified proteins.Methods Enzymol,1994.233:346-57.
    98.Saura,C.A.,et al.,Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration.Neuron,2004.42(1):23-36.
    99.De Strooper,B.,et al.,A presenilin-l-dependent gamma-secretase-like protease mediates release of Notch intracellular domain.Nature,1999.398(6727):518-22.
    100.De Strooper,B.,et al.,Phosphorylation,subcellular localization,and membrane orientation of the Alzheimer's disease-associated presenilins.J Biol Chem,1997.272(6):3590-8.
    101.Beglopoulos,V.and J.Shen,Regulation of CRE-dependent transcription by presenilins:prospects for therapy of Alzheimer's disease.Trends Pharmacol Sci,2006.27(1):33-40.
    102.Sato,E.,et al.,Early and transient increase in oxidative stress in the cerebral cortex of senescence-accelerated mouse.Mech Ageing Dev,1996.86(2):105-14.
    103.Sayre,L.M.,et al.,4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer's disease.J Neurochem,1997.68(5):2092-7.
    104.Yao,Y.,et al.,Brain inflammation and oxidative stress in a transgenic mouse model of Alzheimer-like brain amyloidosis.J Neuroinflammation,2004.1(1):21.
    105.Mohmmad Abdul,H.,et al.,Mutations in amyloid precursor protein and presenilin-1 genes increase the basal oxidative stress in murine neuronal cells and lead to increased sensitivity to oxidative stress mediated by amyloid beta-peptide(1-42),HO and kainic acid.implications for Alzheimer's disease.J Neurochem,2006.96(5):1322-35.
    106.Choi,J.,et al.,Proteomic identification of specific oxidized proteins in ApoE-knockout mice:relevance to Alzheimer's disease.Free Radic Biol Med,2004.36(9):1155-62.
    107.Nabeshi,H.,et al.,Proteomic analysis for protein carbonyl as an indicator of oxidative damage in senescence-accelerated mice.Free Radic Res,2006.40(11):1173-81.
    108.Opazo,C.,et al.,Metalloenzyme-like activity of Alzheimer's disease beta-amyloid.Cu-dependent catalytic conversion of dopamine,cholesterol,and biological reducing agents to neurotoxic H(2)O(2).J Biol Chem,2002.277(43):40302-8.
    109.Nakajima,M.,et al.,Deficiency of presenilin-1 increases calcium-dependent vulnerability of neurons to oxidative stress in vitro.J Neurochem,2001.78(4):807-14.
    110.Nakajima,M.and T.Shirasawa,Presenilin-1-deficient neurons are nitric oxide-dependently killed by hydrogen peroxide in vitro.Neuroscience,2004.125(3):563-8.
    111.Dalle-Donne,I.,et al.,Protein carbonylation in human diseases.Trends Mol Med,2003.9(4):169-76.
    112.Berlett,B.S.and E.R.Stadtman,Protein oxidation in aging,disease,and oxidative stress.J Biol Chem,1997.272(33):20313-6.
    113.Balazs,L.and M.Leon,Evidence of an oxidative challenge in the Alzheimer's brain.Neurochem Res,1994.19(9):1131-7.
    114.Lovell,M.A.,et al.,Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer's disease.Neurology,1995.45(8):1594-601.
    115.Gsell,W.,et al.,Decreased catalase activity but unchanged superoxide dismutase activity in brains of patients with dementia of Alzheimer type.J Neurochem,1995.64(3):1216-23.
    116.Marcus,D.L.,J.A.Strafaci,and M.L.Freedman,Differential neuronal expression of manganese superoxide dismutase in Alzheimer's disease.Med Sci Monit,2006.12(1):BRS-14.
    117.Yao,J.,et al.,Aging,gender and APOE isotype modulate metabolism of Alzheimer's Abeta peptides and F-isoprostanes in the absence of detectable amyloid deposits.J Neurochem,2004.90(4):1011-8.
    118.Zhao,Z.,et al.,One-step solid-phase extraction procedure for F(2)-isoprostanes.Clin Chem,2001.47(7):1306-8.
    119.Musiek,E.S.,et al.,Quantification of F-ring isoprostane-like compounds (F4-neuroprostanes) derived from docosahexaenoic acid in vivo in humans by a stable isotope dilution mass spectrometric assay J Chromatogr B Analyt Technol Biomed Life Sci,2004.799(1):95-102.
    120.Porter,N.A.,S.E.Caldwell,and K.A.Mills,Mechanisms of free radical oxidation of unsaturated lipids.Lipids,1995.30(4):277-90.
    121.Morrow,J.D.,et al.,A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase,free radical-catalyzed mechanism.Proc Natl Acad Sci U S A,1990.87(23):9383-7.
    122.Davi,G.,et al.,In vivo formation of 8-iso-prostaglandin f2alpha and platelet activation in diabetes mellitus:effects of improved metabolic control and vitamin E supplementation.Circulation,1999.99(2):224-9.
    123.Roberts,L.J.,2nd,et al.,The relationship between dose of vitamin E and suppression of oxidative stress in humans.Free Radic Biol Med,2007.43(10):1388-93.
    124.Pratico,D.,et al.,Increased F2-isoprostanes in Alzheimer's disease.evidence for enhanced lipid peroxidation in vivo.FASEB J,1998.12(15):1777-83.
    125.Montine,T.J.,et al.,Cerebrospinal fluid abeta42,tau,and f2-isoprostane concentrations in patients with Alzheimer disease,other dementias,and in age-matched controls.Arch Pathol Lab Med,2001.125(4):510-2.
    126.Montine,T.J.,et al.,F(2)-isoprostanes as biomarkers of late-onset Alzheimer's disease.J Mol Neurosci,2007.33(1):114-9.
    127.Pratico,D.,et al.,Increased 8,12-iso-iPF2alpha-Ⅵ in Alzheimer's disease:correlation of a noninvasive index of lipid peroxidation with disease severity.Ann Neurol,2000.48(5):809-12.
    128.Montine,T.J.,et al.,Peripheral F2-isoprostanes and F4-neuroprostanes are not increased in Alzheimer's disease.Ann Neurol,2002.52(2):175-9.
    129.Irizarry,M.C.,et al.,Plasma F2A isoprostane levels in Alzheimer's and Parkinson's disease.Neurodegener Dis,2007.4(6):403-5.
    130.Montine,T.J.,et al.,F2-isoprostanes in Alzheimer and other neurodegenerative diseases.Antioxid Redox Signal,2005.7(1-2):269-75.
    131.Smith,C.D.,et al.,Protein oxidation in aging brain.Ann N Y Acad Sci,1992.663:110-9.
    132.Castegna,A.,et al.,Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain.Part Ⅱ:dihydropyrimidinase-related protein 2,alpha-enolase and heat shock cognate 71.J Neurochem,2002.82(6):1524-32.
    133.Soreghan,B.A.,et al.,High-throughput proteomic-based identification of oxidatively induced protein carbonylation in mouse brain.Pharm Res,2003.20(11):1713-20.
    134.Soreghan,B.A.,et al.,Using proteomics and network analysis to elucidate the consequences of synaptic protein oxidation in a PS1 + AbetaPP mouse model of Alzheimer's disease.J Alzheimers Dis,2005.8(3):227-41.
    135.Goedert,M.and M.G.Spillantini,A century of Alzheimer's disease.Science,2006.314(5800):777-81.
    136.2008 Alzheimer's disease facts and figures.Alzheimers Dement,2008.4(2):110-33.
    137.Hartmann,T.,et al.,Distinct sites of intracellular production for Alzheimer's disease A beta40/42 amyloidpeptides.Nat Med,1997.3(9):1016-20.
    138.Shah,S.,et al.,Nicastrin functions as a gamma-secretase-substrate receptor.Cell,2005.122(3):435-47.
    139.Kimberly,W.T.,et al.,Gamma-secretase is a membrane protein complex comprised of presenilin,nicastrin,Aph-1,and Pen-2.Proc Natl Acad Sci U S A,2003.100(11):6382-7.
    140.Edbauer,D.,et al.,Reconstitution of gamma-secretase activity.Nat Cell Biol,2003.5(5):486-8.
    141.Wakabayashi,T.and B.De Strooper,Presenilins:members of the gamma-secretase quartets,but part-time soloists too.Physiology(Bethesda),2008.23:194-204.
    142.De Strooper,B.,Aph-1,Pen-2,and Nicastrin with Presenilin generate an active gamma-Secretase complex.Neuron,2003.38(1):9-12.
    143.Takasugi,N.,et al.,The role of presenilin cofactors in the gamma-secretase complex.Nature,2003.422(6930):438-41.
    144.Vetrivel,K.S.,et al.,Pathological and physiological functions of presenilins.Mol Neurodegener,2006.1:4.
    145.Dewji,N.N.,The structure and functions of the presenilins.Cell Mol Life Sci,2005.62(10):1109-19.
    146.Tolia,A.,L.Chavez-Gutierrez,and B.De Strooper,Contribution of presenilin transmembrane domains 6 and 7 to a water-containing cavity in the gamma-secretase complex.J Biol Chem,2006.281(37):27633-42.
    147.Tolia,A.,K.Horre,and B.De Strooper,Transmembrane domain 9 of presenilin determines the dynamic conformation of the catalytic site of gamma -secretase.J Biol Chem,2008.
    148.Parks,A.L.and D.Curtis,Presenilin diversifies its portfolio.Trends Genet,2007.23(3):140-50.
    149.Larner,A.J.and M.Doran,Clinical phenotypic heterogeneity of Alzheimer's disease associated with mutations of the presenilin-1 gene.J Neurol,2006. 253(2):139-58.
    150.Citron,M.,et al.,Mutant presenilins of Alzheimer's disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice.Nat Med,1997.3(1):67-72.
    151.Nakano,Y.,et al.,Accumulation of murine amyloidbeta42 in a gene-dosage-dependent manner in PS1 'knock-in' mice.Eur J Neurosci,1999.11(7):2577-81.
    152.Xia,W.,et al.,Enhanced production and oligomerization of the 42-residue amyloid beta-protein by Chinese hamster ovary cells stably expressing mutant presenilins.J Biol Chem,1997.272(12):7977-82.
    153.Hardy,J.and D.J.Selkoe,The amyloid hypothesis of Alzheimer's disease:progress and problems on the road to therapeutics.Science,2002.297(5580):353-6.
    154.Qian,S.,et al.,Mutant human presenilin 1 protects presenilin 1 null mouse against embryonic lethality and elevates Abetal-42/43 expression.Neuron,1998.20(3):611-7.
    155.De Strooper,B.,Loss-of-function presenilin mutations in Alzheimer disease.Talking Point on the role of presenilin mutations in Alzheimer disease.EMBO Rep,2007.8(2):141-6.
    156.Wolfe,M.S.,When loss is gain:reduced presenilin proteolytic function leads to increased Abeta42/Abeta40.Talking Point on the role of presenilin mutations in Alzheimer disease.EMBO Rep,2007.8(2):136-40.
    157.Chen,Q.,et al.,Loss of presenilin function causes Alzheimer's disease-like neurodegeneration in the mouse.J Neurosci Res,2008.86(7):1615-25.
    158.Koo,E.H.and R.Kopan,Potential role of presenilin-regulated signaling pathways in sporadic neurodegeneration.Nat Med,2004.10 Suppl:S26-33.
    159.Kang,D.E.,et al.,Presenilin 1 facilitates the constitutive turnover of beta-catenin." differential activity of Alzheimer's disease-linked PS1 mutants in the beta-catenin-signaling pathway.J Neurosci,1999.19(11):4229-37.
    160.Landman,N.,et al.,Presenilin mutations linked to familial A lzheimer's disease cause an imbalance in phosphatidylinositol 4,5-bisphosphate metabolism.Proc Natl Acad Sci U S A,2006.103(51):19524-9.
    161.Tu,H.,et al.,Presenilins form ER Ca2+ leak channels,a function disrupted by familial Alzheimer's disease-linked mutations.Cell,2006.126(5):981-93.
    162.Lazarov,O.,et al.,Impairments in fast axonal transport and motor neuron deficits in transgenic mice expressing familial Alzheimer's disease-linked mutant presenilin 1.J Neurosci,2007.27(26):7011-20.
    163.Pardossi-Piquard,R.,et al.,Presenilin-dependent transcriptional control of the Abeta-degrading enzyme neprilysin by intracellular domains of betaAPP and APLP.Neuron,2005.46(4):541-54.
    164.Sato,T.,et al.,Potential link between amyloid beta-protein 42 and C-terminal fragment gamma 49-99 of beta-amyloid precursor protein.J Biol Chem,2003.278(27):24294-301.
    165.Durkin,J.T.,et al.,Rank-order of potencies for inhibition of the secretion of abeta40 and abeta42 suggests that both are generated by a single gamma-secretase.J Biol Chem,1999.274(29):20499-504.
    166.Zhang,L.,et al.,Biochemical characterization of the gamma-secretase activity that produces beta-amyloid peptides.Biochemistry,2001.40(16):5049-55.
    167.Narayanan,S.,T.Sato,and M.S.Wolfe,A C-terminal region of signal peptide peptidase defines a functional domain for intramembrane aspartic protease catalysis.J Biol Chem,2007.282(28):20172-9.
    168.Lleo,A.,et al.,Low density lipoprotein receptor-related protein(LRP) interacts with presenilin 1 and is a competitive substrate of the amyloid precursor protein (APP)for gamma-secretase.J Biol Chem,2005.280(29):27303-9.
    169.Sisodia,S.S.,et al.,Gamma-secretase:never more enigmatic.Trends Neurosci,2001.24(11 Suppl):S2-6.
    170.Smine,A.,et al.,Regulation of brain G-protein go by Alzheimer's disease gene presenilin-1.J Biol Chem,1998.273(26):16281-8.
    171.Nelson,O.,et al.,Familial Alzheimer disease-linked mutations specifically disrupt Ca2+ leak function of presenilin 1.J Clin Invest,2007.117(5):1230-9.
    172.Fedrizzi,L.,et al.,Interplay of the Ca2+-binding protein DREAM with presenilin in neuronal Ca2+ signaling.J Biol Chem,2008.283(41):27494-503.
    173.Cheung,K.H.,et al.,Mechanism of Ca2+ disruption in Alzheimer's disease by presenilin regulation of InsP3 receptor channel gating.Neuron,2008.58(6):871-83.
    174.Chan,S.L.,et al.,Presenilin-1 mutations increase levels of ryanodine receptors and calcium release in PC12 cells and cortical neurons.J Biol Chem,2000.275(24):18195-200.
    175.LaFerla,F.M.,Calcium dyshomeostasis and intracellular signalling in Alzheimer's disease.Nat Rev Neurosci,2002.3(11):862-72.
    176.Yoo,A.S.,et al.,Presenilin-mediated modulation of capacitative calcium entry.Neuron,2000.27(3):561-72.
    177.Cedazo-Minguez,A.,et al.,The presenilin 1 deltaE9 mutation gives enhanced basal phospholipase C activity and a resultant increase in intracellular calcium concentrations.J Biol Chem,2002.277(39):36646-55.
    178.Dehvari,N.,et al.,Presenilin dependence of phospholipase C and protein kinase C signaling.J Neurochern,2007.102(3):848-57.
    179.Cowburn,R.F.,et al.,Presenilin-mediated signal transduction.Physiol Behav,2007.92(1-2):93-7.
    180.Dehvari,N.,et al.,Presenilin regulates extracellular regulated kinase(Erk)activity by a protein kinase C alpha dependent mechanism.Neurosci Lett,2008.436(1):77-80.181.Kim,M.Y.,et al.,Presenilin acts as a positive regulator of basal level activity of ERK through the Raf-MEK1 signaling pathway.Biochem Biophys Res Commun,2005.332(2):609-13.
    182.Kang,D.E.,et al.,Presenilins mediate phosphatidylinositol 3-kinase/AKT and ERK activation via select signaling receptors.Selectivity of PS2 in platelet-derived growth factor signaling.J Biol Chem,2005.280(36):31537-47.
    183.Zechner,D.,et al.,beta-Catenin signals regulate cell growth and the balance between progenitor cell expansion and differentiation in the nervous system.Dev Biol,2003.258(2):406-18.
    184.Malik,B.,et al.,Loss of neuronal cell cycle control as a mechanism of neurodegeneration in the presenilin-1 Alzheimer's disease brain.Cell Cycle, 2008.7(5):637-46.
    185.Kang,D.E.,et al.,Presenilin couples the paired phosphorylation of beta-catenin independent of axin:implications for beta-catenin activation in tumorigenesis.Cell,2002.110(6):751-62.
    186.Hooper,C.,R.Killick,and S.Lovestone,The GSK3 hypothesis of Alzheimer's disease.J Neurochem,2008.104(6):1433-9.
    187.Baki,L.,et al.,PS1 activates PI3K thus inhibiting GSK-3 activity and tau overphosphorylation.effects of FAD mutations.Embo J,2004.23(13):2586-96.
    188.Sherrington,R.,et al.,Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease.Nature,1995.375(6534):754-60.
    189.Levy-Lahad,E.,et al.,A familial Alzheimer's disease locus on chromosome 1.Science,1995.269(5226):970-3.
    190.Rogaev,E.I.,et al.,Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3gene.Nature,1995.376(6543):775-8.
    191.Duff,K.,et al.,Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1.Nature,1996.383(6602):710-3.
    192.Chishti,M.A.,et al.,Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695.J Biol Chem,2001.276(24):21562-70.
    193.Holcomb,L.,et al.,Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes.Nat Med,1998.4(1):97-100.
    194.Borchelt,D.R.,et al.,Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins.Neuron,1997.19(4):939-45.
    195.Borchelt,D.R.,et al.,Familial Alzheimer's disease-linked presenilin 1 variants elevate Abetal-42/1-40 ratio in vitro and in vivo.Neuron,1996.17(5):1005-13.
    196.McBain,C.J.and M.L.Mayer,N-methyl-D-aspartic acid receptor structure and function.Physiol Rev,1994.74(3):723-60.
    197.Bliss,T.V.and G.L.Collingridge,A synaptic model of memory:long-term potentiation in the hippocampus.Nature,1993.361(6407):31-9.
    198.Constantine-Paton,M.,NMDA receptor as a mediator of activity-dependent synaptogenesis in the developing brain.Cold Spring Harb Symp Quant Biol,1990.55:431-43.
    199.Gurd,J.W.,Phosphorylation of the postsynaptic density glycoprotein gp180 by endogenous tyrosine kinase.Brain Res,1985.333(2):385-8.
    200.Ayalon,G.,et al.,Two regions in the N-terminal domain of ionotropic glutamate receptor 3 form the subunit oligomerization interfaces that control subtype-specific receptor assembly.J Biol Chem,2005.280(15):15053-60.
    201.Sheng,M.and D.T.Pak,Ligand-gated ion channel interactions with cytoskeletal and signaling proteins.Annu Rev Physiol,2000.62:755-78.
    202.Kutsuwada,T.,et al.,Impairment of suckling response,trigeminal neuronal pattern formation,and hippocampal LTD in NMDA receptor epsilon 2 subunit mutant mice.Neuron,1996.16(2):333-44.
    203.Sprengel,R.,et al.,Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo.Cell,1998.92(2):279-89.
    204.Khan,A.M.,et al.,Lateral hypothalamic NMDA receptor subunits NR2A and/or NR2B mediate eating:immunochemical/behavioral evidence.Am J Physiol,1999.276(3 Pt 2):R880-91.
    205.Rea,M.A.,Photic entrainment of circadian rhythms in rodents.Chronobiol Int,1998.15(5):395-423.
    206.Hrabetova,S.,et al.,Distinct NMDA receptor subpopulations contribute to long-term potentiation and long-term depression induction.J Neurosci,2000.20(12):RC81.
    207.Clayton,D.A.,et al.,A hippocampal NR2B deficit can mimic age-related changes in long-term potentiation and spatial learning in the Fischer 344 rat.J Neurosci,2002.22(9):3628-37.
    208.Fountoulakis,M.,Proteomics:current technologies and applications in neurological disorders and toxicology.Amino Acids,2001.21(4):363-81.
    209.Fountoulakis,M.,Application of proteomics technologies in the investigation of the brain.Mass Spectrom Rev,2004.23(4):231-58.
    210.Papassotiropoulos,A.,et al.,Genetics,transcriptomics,and proteomics of Alzheimer's disease.J Clin Psychiatry,2006.67(4):652-70.
    211.Greber,S.,et al.,Decreased levels of synaptosomal associated protein 25 in the brain of patients with Down syndrome and Alzheimer's disease.Electrophoresis,1999.20(4-5):928-34.
    212.Schonberger,S.J.,et al.,Proteomic analysis of the brain in Alzheimer's disease:molecular phenotype of a complex disease process.Proteomics,2001.1(12):1519-28.
    213.Davidsson,P.,et al.,Proteome analysis of cerebrospinal fluid proteins in Alzheimer patients.Neuroreport,2002.13(5):611-5.
    214.Hye,A.,et al.,Proteome-based plasma biomarkers for Alzheimer's disease.Brain,2006.129(Pt 11):3042-50.
    215.Puchades,M.,et al.,Proteomic studies of potential cerebrospinal fluid protein markers for Alzheimer's disease.Brain Res Mol Brain Res,2003.118(1-2):140-6.
    216.Finehout,E.J.,et al.,Cerebrospinal fluid proteomic biomarkers for Alzheimer's disease.Ann Neurol,2007.61(2):120-9.
    217.Biroccio,A.,et al.,Differential post-translational modifications of transthyretin in Alzheimer's disease.a study of the cerebral spinal fluid.Proteomics,2006.6(7):2305-13.
    218.Oddo,S.,et al.,Triple-transgenic model of Alzheimer's disease with plaques and tangles:intracellular A beta and synaptic dysfunction.Neuron,2003.39(3):409-21.
    219.Sizova,D.,et al.,Proteomic analysis of brain tissue from an Alzheimer's disease mouse model by two-dimensional difference gel electrophoresis.Neurobiol Aging,2007.28(3):357-70.
    220.David,D.C.,et al.,Proteomic and functional analyses reveal a mitochondrial dysfunction in P301L tau transgenic mice.J Biol Chem,2005.280(25):23802-14.
    221.Desai,M.K.,et al.,Triple-transgenic Alzheimer's disease mice exhibit region-specific abnormalities in brain myelination patterns prior to appearance of amyloid and tau pathology.Glia,2008.57(1):54-65.
    222.Giasson,B.I.,et al.,Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions.Science,2000.290(5493):985-9.
    223.Choi,J.,et al.,Identification of oxidized plasma proteins in Alzheimer's disease.Biochem Biophys Res Commun,2002.293(5):1566-70.
    224.Reynolds,M.R.,et al.,Tau nitration occurs at tyrosine 29 in the fibrillar lesions of Alzheimer's disease and other tauopathies.J Neurosci,2006.26(42):10636-45.
    225.Butterfield,D.A.,et al.,Elevated levels of 3-nitrotyrosine in brain from subjects with amnestic mild cognitive impairment.implications for the role of nitration in the progression of Alzheimer's disease.Brain Res,2007.1148:243-8.
    226.Castegna,A.,et al.,Proteomic identification of nitrated proteins in Alzheimer's disease brain.J Neurochem,2003.85(6):1394-401.
    227.Stern,D.F.,Phosphoproteomics.Exp Mol Pathol,2001.70(3):327-31.
    228.Clokie,S.J.,et al.,BCR kinase phosphorylates 14-3-3 Tau on residue 233.Febs J,2005.272(15):3767-76.
    229.Derkinderen,P,et al.,Tyrosine 394 is phosphorylated in Alzheimer's paired helical filament tau and in fetal tau with c-Abl as the candidate tyrosine kinase.J Neurosci,2005.25(28):6584-93.
    230.Zhou,D.,et al.,Growth factor receptor-bound protein 2 interaction with the tyrosine-phosphorylated tail of amyloid beta precursor protein is mediated by its Src homology 2 domain.J Biol Chem,2004.279(24):25374-80.
    231.Sergeant,N.,et al.,Truncated beta-amyloid peptide species in pre-clinical Alzheimer's disease as new targets for the vaccination approach.J Neurochem,2003.85(6):1581-91.
    232.Hensley,K.,et al.,Brain regional correspondence between Alzheimer's disease histopathology and biomarkers of protein oxidation.J Neurochem,1995.65(5):2146-56.
    233.Markesbery,W.R.,Oxidative stress hypothesis in Alzheimer's disease.Free Radic Biol Med,1997.23(1):134-47.
    234.Subbarao,K.V.,J.S.Richardson,and L.C.Ang,Autopsy samples of Alzheimer's cortex show increased peroxidation in vitro.J Neurochem,1990.55(1):342-5.
    235.Moreira,P.I.,et al.,Nucleic acid oxidation in Alzheimer disease.Free Radic Biol Med,2008.44(8):1493-505.
    236.Nunomura,A.,et al.,RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer's disease.J Neurosci,1999.19(6):1959-64.
    237.Liu,Q.,et al.,Alzheimer-specific epitopes of tau represent lipid peroxidation-induced conformations.Free Radio Biol Med,2005.38(6):746-54.
    238.Leeuwenburgh,C.,et al.,Mass spectrometric quantification of markers for protein oxidation by tyrosyl radical,copper,and hydroxyl radical in low density lipoprotein isolated from human atherosclerotic plaques.J Biol Chem,1997.272(6):3520-6.
    239.Davies,S.,et al.,Photocytotoxicity of lipofuscin in human retinal pigment epithelial cells.Free Radic Biol Med,2001.3 I(2):256-65.
    240.Yoon,I.S.,et al.,Low-density lipoprotein receptor-related protein promotes amyloid precursor protein trafficking to lipid rafts in the endocytic pathway, FASEB J,2007.21(11):2742-52.
    241.Aksenov,M.Y.,et al.,Protein oxidation in the brain in Alzheimer's disease.Neuroscience,2001.103(2):373-83.
    242.Boyd-Kimball,D.,et al.,Proteomic identification of proteins specifically oxidized by intracerebral injection of amyloid beta-peptide(1-42) into rat brain:implications for Alzheimer's disease.Neuroscience,2005.132(2):313-24.
    243.Sultana,R.,et al.,Oxidative modification and down-regulation of Pinl in Alzheimer's disease hippocampus:A redox proteomics analysis.Neurobiol Aging,2006.27(7):918-25.
    244.Korolainen,M.A.,et al.,Oxidative modification of proteins in the frontal cortex of Alzheimer's disease brain.Neurobiol Aging,2006.27(1):42-53.
    245.Smith,M.A.,et al.,Oxidative damage in Alzheimer's.Nature,1996.382(6587):120-1.
    246.Smith,M.A.,et al.,Dimethylargininase,a nitric oxide regulatory protein,in Alzheimer disease.Free Radic Biol Med,1998.25(8):898-902.
    247.Montine,K.S.,et al.,4-hydroxy-2-nonenal pyrrole adducts in human neurodegenerative disease.J Neuropathol Exp Neurol,1997.56(8):866-71.
    248.Montine,K.S.,et al.,Immunohistochemical detection of 4-hydroxy-2-nonenal adducts in Alzheimer's disease is associated with inheritance of APOE4.Am J Pathol,1997.150(2):437-43.
    249.Takeda,A.,et al.,In Alzheimer's disease,heme oxygenase is coincident with Alz50,an epitope of tau induced by 4-hydroxy-2-nonenal modification.J Neurochem,2000.75(3):1234-41.
    250.Nunomura,A.,et al.,Oxidative damage is the earliest event in Alzheimer disease.J Neuropathol Exp Neurol,2001.60(8):759-67.
    251.Petersen,R.B.,et al.,Signal transduction cascades associated with oxidative stress in Alzheimer's disease.J Alzheimers Dis,2007.11(2):143-52.
    252.Moreira,P.I.,et al.,Alzheimer disease and the role of free radicals in the pathogenesis of the disease.CNS Neurol Disord Drug Targets,2008.7(1):3-10.
    253.Moreira,P.I.,et al.,A second look into the oxidant mechanisms in Alzheimer's disease.Curt Neurovasc Res,2005.2(2):179-84.
    254.Christen,Y.,Oxidative stress and Alzheimer disease.Am J Clin Nutr,2000.71(2):621S-629S.
    255.Cai,C.,et al.,The presenilin-2 loop peptide perturbs intracellular Ca2+homeostasis and accelerates apoptosis.J Biol Chem,2006.281(24):16649-55.
    256.Sayre,L.M.,G.Perry,and M.A.Smith,Oxidative stress and neurotoxicity.Chem Res Toxicol,2008.21(1):172-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700