London/Swedish APP双突变转基因小鼠模型的建立和初步表型分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
London/Swedish APP双突变转基因小鼠模型的建立和
     初步表型分析
     阿尔茨海默病(Alzheimer's disease,AD)是一种常见的中枢神经系统退行性变性疾病,其主要临床表现为进行性记忆减退和认知障碍。AD的主要神经病理学特征为过度的细胞外β淀粉样蛋白(amyloidβprotein,Ap)沉淀、细胞内神经纤维缠结增多、Tau蛋白的过度磷酸化、突触密度减少、神经元细胞减少等。为了更加深入的探究AD的发病机制,研究人员建立了一系列的动物模型作为研究工具。淀粉样蛋白前体蛋白(The amyloid precursor protein,APP)在AD发病机制中起重要作用,APP经过剪切加工后的Aβ是AD患者脑内老年斑的主要成分,而点突变的APP则是早发性AD(early onset of familialAlzheimer's disease,FAD)的主要病因。目前国内外已经建立了多种APP突变型转基因小鼠模型如PDAPP转基因小鼠模型,APP23转基因小鼠模型等,但是大多数模型出现病理及行为学改变的时间比较滞后,通常在六月龄以后才出现上述改变。因此我们建立了London/Swedish APP双突变转基因小鼠,使小鼠能够比其它APP转基因动物更早的出现病症,提高使用模型进行研究时工作效率。本研究主要包括以下三个部分的实验内容:
     1.London/Swedish hAPP双突变转基因载体及小鼠的制备:将London/Swedish APP双突变基因插入到PDGF启动子下游,构建转基因表达载体,通过显微注射法建立APP695~(V652i/K596N/M597L)转基因C57BL/6J小鼠。
     2.分子生物学水平及病理学分析:采用PCR技术鉴定APP695~(V652I/K596N/M597L)转基因小鼠的基因表型,鉴定出四只Founder鼠。进一步用RT-PCR和Western blotting检测hAPP695~(V652I/K596N/M597L)基因的表达,筛选并建立了2高表达的系APP695~(V652I/K596N/M597L)转基因小鼠。免疫组织化学显示在海马区双突变APP695~(V652I/K596N/M597L)转基因小鼠出现的阳性细胞数目较单突变APP695~*(652I)转基因小鼠及野生小鼠明显增多。常规的病理学检查转基因小鼠脑组织未发现异常。
     3.行为学检测:采用水迷宫检测系统对APP695~(V652I/K596N/M597L)转基因小鼠的行为学改变进行鉴定。结果显示,三月龄时APP695~(V652I/K596N/M597L)转基因小鼠,单突变APP695~(V652I)转基因小鼠及野生小鼠在经过Morris水迷宫隐蔽平台实验时,APP695~(V652I/K596N/M597L)转基因小鼠寻找到隐蔽平台的潜伏期比APP695~(V652I)转基因小鼠及野生小鼠明显延长。探索试验发现APP~(V652I/K596N/M597L)转基因小鼠比APP~(V652I)转基因小鼠及野生小鼠穿越目标象限的次数明显减少。
     综上所述,APP695~(V652I/K596N/M597L)转基因小鼠较APP695~(V652I)转基因小鼠更早的表达hAPP,出现学习认知能力障碍的时间明显提前,说明我们成功建立APP695~(V652I/K596N/M597L)转基因小鼠阿尔茨海默病模型,为研究AD发病机制和药物研发提供了有价值的研究工具。
Alzheimer's disease(AD) is a common neurodegenerative disease, which is characterized clinically by a progressive loss of memory and cognitive impairment.Its main neuropathological features include accumulation of extracellular amyloid or senile plaques,diffuse loss of neurons in the hippocampus and neocortex,decrease of synapse density neurofibrillary tangles,excess phosphorylation of tau protein.For penetrating investigating the pathogenesis of AD,researchers have constructed a serial of animal models as research tool.The amyloid precursor protein takes a central position in AD pathogenesis:APP processing generates theβ-amyloid(Aβ) peptides,which are deposited as the amyloid plaques in brains of AD individuals;Point mutations and duplications of APP are causal for a subset of early onset of familial Alzheimer's disease.At present,There are a certain number of mutation APP mice models,such as PDAPP transgenic mice model,APP 23 transgenic mice model et al.However,most of these models have appeared the pathology and ethology changes after six months.We have constructed and established the APP695~(V652I/K596N/M597L) transgenic mice model of Alzheimer's disease.This kind of model can show up disorders earlier,elevate the utilization efficiency of model.The main works were included below.
     1.The construction of the London/Swedish hAPP mutation gene transgenic vector and the establishment of transgenic mice:The London/Swedish hAPP mutation transgenic vector was constructed by inserting the APP~(695V652I/K596N/M597L) gene into the downstream of PDGF promoter.The transgenic mice were generated for the APP~(695V6521/K596N/M597L) gene using microinjection method.
     2.Genotyping and pathological analysis:PCR was used to genotype the potential transgenic mice and 4 APP695~(V652I/K596N/M597L) founders were identified.The expression levels of the mutated gene were determined with the RT-PCR and Western blotting and 2 lines of APP695~(V652I/K596N/M597L) transgenic mice with high expression of the target gene were screened.The transgenic hAPP protein was localized in brain tissue immunohistochemistry.Compared with wild type mice and the APP695~(V652I) transgenic mice,more positive cells in the hippocampus was observed in the APP695~(V652I/K596N/M597L) brain.
     3.Behavioral test:The behavioral tests were examined by the water maze trials.We found that APP695~(V652I/K596N/M597L) transgenic mouse showed the longest average latency to find the hidden platform in the water maze than the APP695~(V652I) transgenic mouse and wild type mouse. APP695~(V652I/K596N/M597L) transgenic mouse have the less annulus crossing index than the other group in the probing test.
     Therefore,The APP695~(V652I/K596N/M597L) transgenic mouse showed the earlier pathological changes and spatial memory deficits compared with that of the APP695~(V652I) transgenic mouse and wild type mouse.It suggested that we have established an AD animal model successfully,and The APP695~(V652I/K596N/M597L) transgenic mouse is a useful AD animal model.
引文
1. Citron M. Strategies for disease modification in Alzheimer's disease. Nat Rev Neurosci. 2004, 5:677- 685.
    2. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science. 2002, 297:353-356.
    3. Dobric S, Kostic VS, Rosic N, el al . Effect of physostigmine and verapamil on active avoidance in an experimental model of Alzheimer's disease. Int J Neurosci. 1997, 90:87-97.
    4. Jeltsch H, Cassel JC, Neufang B, el al . The effects of intrahippocam palraphe and/or septal grafts in rats with fimbria-fornix lesions depend on the origin of the grafted tissue and the behavioural task used. Neuroscience. 1994, 63(1): 19-39.
    5. Podlisny MB, Tolan DR, Selkoe DJ, el al. Homology of the amyloid beta protein precursor in monkey and human supports a primate modelforbeta amyloidosis in Alzheimer's disease. Am J Pathol. 1991, 138:1423-1435.
    6. Sehultz C, Hubbard GB, Rob U, et al. Age-related progression of tau pathology in brains of baboons. Neurobiol Aging. 2000, 21:905-912.
    7. Walker LC, Masters C, Beyreuther K, et al. Amyloid precursor protein in aged nonhuman primates. Proc Natl Acad Sci U S A. 1991,88(4): 1461-1465.
    8. GeaJing M, Rebeck GW, Hyman BT, et al. Neuropathology and apolipoprotein E profile of aged chimpanzees: implications for Alzheimer disease. Proc Natl Acad Sci U S A. 1994, 91:9382-9386.
    9. Giannakopoulos P, Silhol S, Jallageas V, et al. Quantitative analysis of tau protein-immunoreactive accumulatiom and amyloid protein deposits in the cerebral cortex of the mouse lemur. Acta Neuropathol. 1997,94:131-139.
    10. Szechtman H, Stead RH, Denburg JA, et al. Joint pathology and behavioral performance in autoimmune MRL-lpr Mice. Physiol Behav. 1996, 60(3):901-905.
    11. Owen T, Renno T, Taupin V, et al. Inflammatory cytokines in the brain does the CNS shape immune response? Immunol Today . 1994, 15(12):566 -571.
    12. Fred van Leuven , et al. Single and multiple transgenic mice as models for Alzheimer's disease. Progress in Neurobiology. 2000, 61:305-312.
    13. Games D, Adams D, Alessandrini R, et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature. 1995, 3:523-527.
    14. Hsiao K, Chapman P, Nilsen S, et al. Correlative memory deficits. A beta elevation, and amyloid plaques in transgenic mice. Science. 1996,274:99-102.
    15. Sturchler C, Abramowski D, Duke M, et al. Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci. 1997, 94:13287-13292.
    16. Chishti MA, Yang DS, Janus C, et al. Early-onset amyloid deposition and cognitive deficits in transgenicmice expressing a double mutant form of amyloid precursorprotein 695. J Biol Chem. 2001,276:21562-21570.
    17. Lamb BT, Call LM, Slunt HH, et al. Altered metabolism of familial Alzheimer's disease-linked amyloid precursor protein variants in yeast artificial chromosome transgenic mice. Hum Mol Genet. 1997,6:1535-1541.
    18. Van Dam D, Hooge R, Staufenbiel M, et al. Age-dependent cognitive decline in the APP23 model precedes amyloid deposition. Eur J Neurosci. 2003, 17:388-396.
    19. Kelly PH, Bondolfi L, Hunziker D, et al. Progressive age-related impairment of cognitive behavior in APP23 transgenic mice. Neurobiol Aging. 2003,24:365-378.
    20. Lalonde R, Dumont M, Staufenbiel M, et al. Spatial learning, exploration, anxiety, and motor coordination in female APP23 transgenic mice with the Swedish mutation. Brain Res. 2002, 956:36-44.
    21. Palmert MR, Golde TE, Cohen ML, et al. Amyloid protein precursor messenger RNAs: differential expression in Alzheimer's disease. Science. 1988, 241(4869):1080-1084.
    22. Yoshikai S, Sasaki H, Doh-ura K, et al. Genomic organization of the human-amyloid beta-protein precursor gene. Gene. 1990, 102(2):291-292.
    23. Selkoe D, Kopan R. Notch and Presenilin: regulated intramembrane proteolysis links development and degeneration. Annu Rev Neurosci. 2003, 26:565-597.
    24. Wang Y, Ha Y .The X-ray structure of an antiparallel dimer of the human amyloid precursor protein E2 domain. Mol Cell. 2004, 15:343-353.
    25. Bibel M, Richter J, Schrenk K, et al. Differentiation of mouse embryonic stem cells into a defined neuronal lineage. Nat Neurosci. 2004, 7:1003-1009.
    26. Pastorino L, Sun A, Lu PJ, et al. The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-beta production. Nature. 2006,440:528-534.
    27. Ashley J, Packard M, Ataman B, et al. Fasciclin II signals new synapse formation through amyloid precursor protein and the scaffolding protein dX11/Mint. J Neurosci. 2005, 25:5943-5955.
    28. Lu DC, Soriano S, Bredesen DE, et al. Caspase cleavage of the amyloid precursor protein modulates amyloid beta-protein toxicity. J Neurochem .2003, 87:733-741.
    29. Zheng H, Koo EH. The amyloid precursor protein: beyond amyloid. Mol Neurodegener. 2006, 3:1-5.
    30. Sam Gandy. The role of cerebral amyloid β accumulation in common forms of Alzheimer disease The Journal of Clinical. 2005, 115(5):1121-1129.
    31. Piccini A, Russo C, Gliozzi A, et al. beta-amyloid is different in normal aging and in Alzheimer disease. J Biol Chem. 2005, 280(40):34186-34192.
    32. Wolfe MS, Kellman W, Ruosseau P, et al. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature. 1999, 398:513-517.
    33. Steiner H, Capell A, Leimer U, et al. Genes and mechanisms involved in beta-amyloid generation and Alzheimer's disease. Eur Arch Psychiatry Clin Neurosci. 1999, 249(6):266-270.
    34. Strooper BD, Annaert W. Presenilins and the intramembrane protolysis of proteins: facts and fiction. Nat Cell Biol. 2001, 3: 221-225.
    35. Kowalska A. Genetic basis of neurodegeneration in familial Alzheimer's disease. Pol J Pharmacol, 2004, 56(2):171-178.
    36. Wagner SL, Munoz B. Modulation of amyloid beta protein precursor processing as a means of retarding progression of Alzheimer's disease. J Clin Invest. 1999, 104(10):1329-1332.
    37. Gordan JW, Ruddle FH. Integration and stable germ lin transmission of genes injected into mouse pronuclei. Science . 1981,214(4526): 1244-1246.
    38. De Felice FG, Vieira MN, Saraiva LM, et al. Targeting the neurotoxic species in Alzheimer's disease: inhibitors of Abeta oligomerization. FASEB J. 2004, 18(12):1366-1372.
    39. Mucke L, Masliah E, Yu G.Q, et al. High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci. 2000, 20(11):4050-4058.
    40. Klein WL, Krafft GA, Finch CE, et al. Targeting small Abeta oligomers: the solution to an Alzheimer's disease conundrum?. Trends Neurosci. 2001, 24(4):219-224.
    41. Lorenzo A, Yankner BA. Beta-amyloid neurotoxicity requires fibril-formation and is inhibited by congo red. Proc.Natl.Acad.Sci. 1994, 91(25):12243-12247.
    42. Pike CJ, Burdick D, Walencewicz AJ, et al. Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state. J Neurosci. 1993, 13(4): 1676-1687.
    43. Hartley DM, Walsh DM, Ye CP, et al. Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J Neurosci. 1999, 19(20):8876-8884.
    44. Walsh DM, Hartley DM, Kusumoto Y, et al. Amyloid beta-protein fibrillogenesis: Structure and biological activity of protofibrillar intermediates. J Biol Chem. 1999, 274(36):25945-25952.
    45. Pitschke M, Prior R, Haupt M, et al. Detection of single amyloid beta-protein aggregates in the cerebrospinal fluid of Alzheimer's patients by fluorescence correlation spectroscopy. Nat Med. 1998, 4(7):832-834.
    46. Standridge JB. Vicious cycles within the neuropathophysiologic Mechanisms of Alzheimer's disease. Curr Alzheimer Res. 2006, 3:95-108.
    47. Catalano SM, Dodson EC, Henze DA, et al. The role of amyloid-beta derived diffusible ligands (ADDLs) in Alzheimer's disease. Curr Top Med Chem. 2006: 6(6):597-608.
    48. Klein WL, Krafft GA, Finch CE, et al. Targeting small Abeta oligomers: the solution to an Alzheimer's disease conundrum?. Trends Neurosci. 2001, 24(4):219-224.
    49. Westerman MA, Cooper-Blacketer D, Mariash A, et al. The relationship between Abeta and memory in the Tg2576 mouse model of Alzheimer's disease. J Neurosci. 2002,22(5): 1858-1867.
    50. Goate A, Chartier-Harlin MC, Mullan M., et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature, 1991, 349(6311):704-706.
    51. Sherrington R, Rogaev EI, Liang Y, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's Disease. Nature. 1995, 375(6534): 754-760.
    52. Wisniewski T, Dowjat WK, Permanne B, et al. Presenilin-1 is associated with Alzheimer's disease amyloid. Am J Pathol. 1997, 151(2):601-610.
    53. Fryer JD, Simmons K, Parsadanian M, et al. Human apolipoprotein E4 alters the Aβ40-42 ratio and promotes the formation of cerebral amyloid angiopathy in an amyloid precursor protein transgenic model. J Neurosci. 2005, 25(11):2803-2810.
    54. Grundke-Iqbal I, Iqbal K. Tau pathology generated by over expression of tau. Am J Pathol. 1999, 155(6): 1781-1785.
    55. Chen Z, Raman M, Chen L. et al. TAO (Thousand-and-one Amino Acid) protein kinases mediate signaling from carbachol to p38 mitogen-activated protein kinase and ternary complex factors. J Biol Chem. 2003, 278(25):22278-22283.
    56. Tesseur I, Van Dorpe J, Spittaels K, et al. Expression of Human Apolipoprotein E4 in neurons causes hyperphosphorylation of Protein tau in the brains of transgenic mice. Am. J. Pathol. 2000, 156(3):951-964.
    57. Gotz J, Spillantini MG, Schafer T, et al. Somatodendritic localization and hyperphosphorylation of tau protein in transgenic mice expressing the longest human brain tau isoform. EMBO J. 1995, 14:1304-1313.
    58. Lewis J, McGowan E, Rockwood J, et al. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat Genet. 2000, 25:402-405.
    59. Spittaels K, Van den, Haute C, et al. Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein. Am J Pathol. 1999, 155:2153-2165.
    60. Sisodia SS, St George, Hyslop PH. Gamma-secretase, Notch, Abeta and Alzheimer's disease: where do the presenilins fit in? Nat Rev Neurosci. 2002, 3:281-290.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700