具有捕集重金属功能的高分子絮凝剂CSAX的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以玉米淀粉为基体,首先在弱碱性条件下,用环氧氯丙烷(EPI)作交联剂与玉米淀粉作用生成交联淀粉(CSt),然后在弱酸性条件下,以硝酸铈铵(CAN)为引发剂、丙烯酰胺(AM)为单体,合成交联淀粉-丙烯酰胺接枝共聚物(CSA),最后此接枝共聚物和二硫化碳在碱性条件下磺化生成具有捕集重金属功能的高分子絮凝剂-----交联淀粉-聚丙烯酰胺-黄原酸酯(Crosslinked Starch-graft-polyAcrylamide-co-sodium Xanthate,简称CSAX)。用FTIR光谱、元素分析、电子扫描电镜以及X射线能量色散谱仪等对CSt、CSA、CSAX进行了表征。并讨论了环氧氯丙烷的用量,硝酸铈铵的剂量,NaOH和二硫化碳的重量百分比、温度、时间等合成条件对产品性能的影响。因为在CSAX分子中同时含有聚丙烯酰胺侧链和黄原酸基,所以CSAX具有同时除浊和捕集重金属离子双重功能。通过实验室配水和实际生产废水的絮凝实验,证明CSAX具有良好的絮凝功能,为重金属废水的治理提供了一种新的方法,开辟了一剂多用的途径,可望减少水处理的单元数,或者降低处理负荷和成本,使重金属离子的处理变的简单易行。
     论文的实验研究主要包括以下六部分内容:
     一)研究了交联淀粉的制备条件对CSAX性能的影响。实验证明最佳合成条件为:玉米淀粉50 g,1% (w/v) NaCl溶液75 mL,15% (w/v) NaOH溶液20 mL,环氧氯丙烷4 mL,反应时间8 h,反应温度30℃,获得交联淀粉的沉降积为45 mL。
     二)研究了交联淀粉-丙烯酰胺接枝共聚物的制备条件及对CSAX性能的影响。实验证明最佳合成条件为:交联淀粉40 g/L,丙烯酰胺的浓度为0.939 mol/L,硝酸铈铵的浓度为6.67×10-4mol/L,反应时间3 h,反应温度45℃,此时CSA的接枝率和接枝效率均较高,分别为86.6%和72.7%,侧链的分子量可达2.64×107。
     三)研究了交联淀粉-聚丙烯酰胺-黄原酸酯的制备条件及对CSAX性能的影响。实验证明在催化剂NaOH浓度为3 mol/L,交联淀粉-丙烯酰胺接枝聚合物浓度为50 g/L, CS2浓度为1.6mol/L,反应温度为30℃,反应时间为3h的条件下,产品CSAX中的硫含量较高,为7.41%。
     四)研究了CSAX絮凝性能。在实验中分别用CSAX处理了含铜、铬、镍、汞以及多种金属离子的实验室配水和兰州综合电镀厂的生产废水。实验结果表明在实验室配水条件下,无论是水样含一种金属离子还是多种金属离子,CSAX对其都有较好的去除能力。用CSAX处理兰州综合电镀厂的生产废水,其表现为对重金属离子Cu2+、Pb2+、Cd2+有较高的去除能力,但对Cr(Ⅵ)、Ni2+、Zn2+的去除不显著。
     五)对CSAX形成絮体形态的研究表明,絮体的表面和内部具有高度不规则性,絮体的形成过程具有分形特征。通过实验研究絮体的特性和分形维数之间的关系,分析了絮体的分形特征,在原水浊度为100 NTU, pH值为5.0,Cu2+的浓度为25mg/L, CSAX的投加量为30mg/L的条件下,CSAX的絮凝效果最好,形成絮体的分形维数为2.0。证明可以通过监测絮体的分形维数来监控絮凝过程。
     六)探讨了CSAX的稳定性和技术经济。表明CSAX在低温、避光的条件下,存放稳定性较好,基本不会影响对废水的处理效果;另外,CSAX的生产成本低,处理废水时操作简单,处理效果好,可产生较好的社会效益和经济效益。
A novel macromolecule flocculant with the function of trapping heavy metal ions has been synthesized by using corn starch as matrices. Firstly, starch (St) was crosslinked by using epichlorohydrin (EPI) as cross-linking reagent under the basic conditions; then the crosslinked-starch-grafted-polyacrylamide of copolymer (CSA) was synthesized by using ceric ammonium nitrate (CAN) as initiator and acrylamide (AM) as monomer under the weak acid conditions; finally the new kind of flocculant called crosslinked starch-graft-polyacrylamide-co-sodium xanthate (CSAX) was synthesized by xanthation of the copolymer under the basic conditions. The structures of crosslinked starch (CSt)、CSA、CSAX were characterized with fourier transform infrared spectroscopy (FTIR), elemental analysis, scanning electronic microscope (SEM), and Energy dispersive X-ray spectrometry (EDS). The effects of the preparation conditions, such as the dosage of EPI and CAN, the percentage by weight of NaOH and CS2, reaction temperature and reaction time etc, were investigated. Because of CSAX molecules containing both the PAM pendant chains and—(?)—S, the CSAX was endowed the double functions of removing turbidity and trapping heavy metal ions. It can be found that there were excellent flocculantion functions of CSAX through flocculantion test of laboratory water and factory effluent. It could offer a new method for the heavy metal wastewater treatment, set a new approach for one dosage multi-usage, decreased the treatment units and cost, and made the treatment of heavy metal ions simpler and easier.
     There were mainly six sections of experimental studies in the thesis:
     1. Synthesis of crosslinked starch and the effects of some factors, such as the dosage of reactant and initiator, reaction time, reaction temperature, crosslinking degree on the performance of CSAX, were investigated. The results showed that the optimal synthesis conditions are:corn starch of 50 g, NaCl of 75 mL (1%, w/v), NaOH of 20 mL (15%, w/v), EPI of 4 mL, at 30℃for 8 h, SV (sediment volume of CSt) of 45 mL. In order to form solid-liquid separation effectively in flocculation, the crosslinking degree can not be too high.
     2. Synthesis of crosslinked-starch-grafted-polyacrylamide of copolymer (CSA), and the effects of some factors, such as the concentration of monomer and initiator, reaction time, reaction temperature, grafting percentage, efficiency of grafting, molecular weight of grafted PAM pendant chains on the performance of CSAX, were investigated. The results showed that the optimal synthesis conditions are:the concentration of CSt, AM and CAN is 40 g/L, 0.939 mol/L and 6.67×10-4 mol/L, respectively, at 45℃for 3h. So the grafting percentage is 86.6%, the efficiency of grafting is 72.7%, and the molecular weight of grafted PAM pendant chains reaches 2.64×107.
     3. Synthesis of crosslinked starch-graft-polyacrylamide-co-sodium xanthate (CSAX), and the effects of some factors, such as the material ratio, reaction time, reaction temperature on the performance of CSAX, was investigated. The results showed that the optimal synthesis conditions are:the concentration of CSA, NaOH and CS2 is 50 g/L,3.0 mol/L and 1.6 mol/L, respectively, at 30℃for 3 h. So the percent of S reaches 7.41%. As proven by FTIR, elemental analysis, and SEM, the CSAX can be successfully synthesized and can remove both turbidity-causing substances and heavy metal ions from aqueous solutions.
     4. The flocculation performance of CSAX was studied. It was treated in experiment by CSAX that the laboratory water containing Cu2+、Cr3+、Ni2+、Hg2+ or manifold heavy metal ions and actual electroplating wastewater of Lanzhou special electroplating. The results showed that CSAX exhibits the better removal capacity, either laboratory water containing one or manifold heavy metal ions. If actual electroplating wastewater of Lanzhou special electroplating is disposed by CSAX, Cu2+、Pb2+、Cd2+ are removed the better than that of Cr(Ⅵ)、Ni2+、Zn2+
     5. The microscopic studies of CSAX flocs indicated that CSAX flocs' surface and interior presented highly irregularity. The research also indicated that CSAX flocs' structure and establishment possessed fractal characteristics. The waste water containing both Cu2+ and Kaolin was treated with CSAX in flocculation experiment; the relationships between flocs' characteristics and fractal dimension were studied. The fractional dimension of the floc was calculated to be 2.0 in the best flocculation. It was almost certain that we could control the flocculation process by meteraging of the flocs' fractal dimension.
     6. Stabilization of product and technical economical analysis were discussed. It can be seen that CSAX has better stabilization at the lower temperature and light-proof, and the treatment efficiency for heavy metal will be less affected. In addition, CSAX provided with low operating cost, simple treatment method, and higher efficiency. Therefore, it has a good social and economice benefit.
引文
[1]常青.水处理絮凝学.北京:化学工业出版社,2003.
    [2]徐晓军.化学絮凝剂作用原理.北京:科学出版社.2005.
    [3]Denis B, Carole C, Alain L, Zdravka D Q. Experimental analysis of floc size distributions in a 1-L jar under different hydrodynamics and physicochemical conditions. Journal of Colloid and Interface Science,2005,292 (2):413-428.
    [4]霍健彭,李光海,窦泽权,吕萍.转炉炼钢烟气除尘水处理.工业水处理,2003:10,261-263.
    [5]戴树桂.环境化学.北京:高等教育出版社,1997.
    [6]国家环境保护局.化学工业废水治理.北京:中国环境科学出版社,1991.
    [7]陈静生,周家义.中国水环境重金属研究.北京:中国环境科学出版社.1988.
    [8]Pledger H, Young T S, Wu G S, Butler G B. Synthesis and Characterization of Water-Soluble Starch-Acrylamide Graft Copolymers. Journal of Macromolecular Science Chemistry.1985, A22 (4), 415-436.
    [9]Frank Verbanac and Decatur:US Pat.4,060,506,1977.
    [10]Butler G B, Hogen T E, Dallas J M:US Pat.4,400,496,1983.
    [11]王华东.水环境污染概论.北京:北京师范大学出版社,1984.
    [12]Wing R E, Doane W M, Russell C R. Insoluble Starch Xanthate:Use in Heavy Metal Removal. Journal of Applied Polymer Science 1975,19,847-854.
    [13]Wing R E, Doane W M:US Pat.3,979,286,1976.
    [14]刁静茹.高分子重金属絮凝剂SSXA的制备及性能研究(硕士学位论文).兰州:兰州交通大学,2006.
    [15]王娟.高分子重金属絮凝剂ISXA的制备及性能研究(硕士学位论文).兰州:兰州交通大学.2006.
    [16]Zobel H F, Stephen A M. Starch:structure, analysis and application. In:Stephen, A.M., (Ed.), Food Polysaccharides and their Application, Marcel Dekker, New York,1996.
    [17]王绍文,姜凤有.重金属废水治理技术.北京:冶金工业出版社,1993.
    [18]赵由才.环境工程化学.北京:化学工业出版社,2003.
    [19]孟祥和,胡国飞.重金属废水处理.北京:化学工业出版社,2000.
    [20]Pillay A E, Yaghi B, Williams J R, Al-Kindy S. Mercury pollution from irrigation with treated sewage water (TSW). Journal of Water and Health.2007,2(5),315-322.
    [21]Francesca Bretzel, Gianniantonio Petruzzelli. Effects of lead and cadmium soil pollution on Aesculus ippocastanum. Contaminated Soil 2000. proceedings of the Seventh international FZK/TNO conference on contaminated soil 18-22 September 2000, Leipzing, Germany, Vol.2,1423-1424.
    [22]Alison Motluk. Pollution may lead to a life of crime. New Scientist,1997,2084 (154),4.
    [23]Syed Safiullah. Arsenic Pollution in the Ground Water in Bangladesh:An Overview. Asian Journal of Water, Environment and Pollution,2007,1(4),47-59.
    [24]陈花果.重金属废水处理技术现状与展望.水处理导报,2004.3:14-16.
    [25]Holmes G, Singh B R, Theodore L. Handbook of Environmental Management & Technology. Wiley, New York,1993,229-264.
    [26]杜军.石灰中合法处理含重金属离子废水.工业水处理,1987,7(4),23-24.
    [27]赵冰翠.重金属离子废水中和沉淀特性的研究.矿产保护与利用,1997,1(6),46-50.
    [28]张嫦,吴立考.工业废水中重金属离子的处理方法研究.能源环境保护,2003,17(5),25-27.
    [29]方忠安.重金属硫化物沉淀气浮性能的研究.中国化学会第二届水处理化学讨论会,中国化学会第二届水处理化学讨论会,1993,2,上海,181-183.
    [30]You C F, Bickle M J. Evolution of an active sea-floor massive sulphide deposit. Nature,1998,394 (6694),668-671.
    [31]曾华,刘兴芬,杨正.碳酸盐-氢氧化物共沉淀软磁铁氧体的制备、微观结构及磁性1.沉淀物的化学组成及金属离子的含量.兰州大学学报(自然科学版),1985,2(21),24-32.
    [32]张选科.铁氧体沉淀法的应用.重庆环境保护.1983,6,21-24.
    [33]李军.铁氧体沉淀法处理重金属废水.电镀与环保,1999,19(1),30-31.
    [34]张兴仁,宋存义.有色金属选矿厂含氰废液的臭氧氧化处理工艺.国外黄金参考,2000,(8).36-38。
    [35]胡国强,孙斌.铁还原法回收COD废液中银.重庆环境科学,1998,10(4),53-55.
    [36]孙权一.铁粉法处理铬离子废水应用与研究.化学世界,1980,3,148-151.
    [37]陈海燕.微电解电化学法处理高浓度电镀废水.广东化工,2004,2,49-51.
    [38]Bennion D N, Newman J. Electrochemical Removal of Copper Ions from very Dilute Solutions. Journal of Applied Electrichemistry,1972,2(1),113-119.
    [39]Montillet A, Commiti J, Legrand J. Application of Metallic Foams in Electrochemical Reactors of Filter Presst Type. Journal of Applied Electrochemistry,1993,23 (9),1045-1051.
    [40]高以衡.反渗透方法处理电镀废水的研究、应用、进展.电镀与环保,1983,2(2):3-7.
    [41]Hiroaki O, Kusumakar S, Wilasinee S. Performance of an Ultra-low-pressure Reverse Osmosis Membrane for Separating Heavy Metal:Effects of Interference Parameters. Desalination,2002,144, 287-294.
    [42]薛德明,张碧珍.通过络合方法强化电渗析对二价同电荷重金属离子分离效果的初步研究.水处理技术,1991,17(5),308-313.
    [43]Bartlomiej I, Roman B. Uses of electrodialysis through a bipolar membranes in industry and environmental protection. Przemysl Chemiczny,2008,87(1),43-47.
    [44]Maria Josefa Santos Yabe, Elisabeth de Oliveira. Heavy metals removal in industrial effluents bysequential adsorbent treatment. Advances in Environmental Research.2003,7,263-272.
    [45]Am J, Youngwoo S, Paul L. The Removal of Heavy Metals in Urban Runoff by Sorption on Mulch. Environmental Pollution,2005,113,117-127.
    [46]杨琦,何品晶,邵立明.负压蒸发法处理生活垃圾填埋场渗滤液.环境工程,2006,24(2),17-19.
    [47]Guyer H H. Industrial Processes and Waste Stream Management. Wiley. New York,1989.
    [48]#12
    [49]南俊民,韩东梅,崔明,左晓希.溶剂萃取法从废旧锂离子电池中回收有价金属.电池,2004,34(4),309-311.
    [50]Fouad E A, Bart H. Emulsion liquid membrane extraction of zinc by a hollow-fiber contactor. Journal of Membrane Science.2008,307 (2),156-168.
    [51]Parhi P K, Sarangi K. Separation of copper,zinc,cobalt and nickel ions by supported liquid membrane technique using LIX 841.TOPS-99 and Cyanex 272. Separation and Purification Technology.2008,59 (2),169-174.
    [52]Turaev D Y. Use of Membrane Electrolysis for Recovery of Heavy Metal Ions. Russian Journal of Applied Chemistry,2007,1 (8),83-86.
    [53]程树培,崔益斌,杨柳燕.高絮凝性微生物育种生物技术研究与应用进展.环境科学进展,1995,12(1),65-69.
    [54]马士军.微生物絮凝剂的开发与应用.工业水处理,1997,12(1),34-37.
    [55]ZHAO W, TING Y P. CHEN J P, XING C H, SHI S Q. Advanced primary treatment of waste water using a bio-flocculation-adsorption sedimentation process. Acta Biotechnologica,2000,20 (1),53-64.
    [56]Zhang Xing. Study on Production and Flocculation Conditions of Bio-Flocculant. Journal of China University of Mining and Technology,1998,8(1),87-90.
    [57]王雅静,戴惠新.生物吸附法分离废水中重金属离子的研究进展.冶金分析,2006,26(1),40-45.
    [58]胡厚堂,王海宁.生物吸附法处理水体中的重金属的现状与展望.环境技术,2004,22(1),35-38.
    [59]邱廷省,唐海峰.生物吸附法处理重金属废水的研究现状及发展.南方冶金学院学报,2003,24(4),65-69.
    [60]Jpai J, Shrivastava R, Bajpai A K. Dynamic and equilibrium studies on adsorption of Cr(Ⅵ) ions onto binary bio-polymeric beads of cross linked alginate and gelatin. Colloids and Surfaces. A, Physicochemical and Engineering Aspects,2004,236 (1-3),81-90.
    [61]浩云涛,李建宏,潘欣,马宇翔,王雪锋.椭圆小球藻(Chlorella ellipsoidea)对4种重金属的耐受性及富集.湖泊科学,2001,13(2),158-162.
    [62]马前,张小龙.国内外重金属废水处理新技术的研究进展.环境工程学报,2007,7,12-16.
    [63]张建梅,韩志萍,王亚军.重金属废水的生物处理技术.环境污染治理技术与设备,2003,04,77-80.
    [64]孙建民,于丽青,孙汉文.重金属废水处理技术进展.河北大学学报(自然科学版),2004,7,438-443
    [65]严瑞珥宣.水处理剂应用手册.北京:化学工业出版社.2000.
    [66]姚重华.混凝剂与絮凝剂(第一版).北京:中国环境科学出版社,1991.
    [67]周令剑.王洪昌.冀琳彦.我国絮凝剂的研究现状及前景展望.水资源与水工程学报,2006,17(2):39-42.
    [68]汤鸿霄.羟基聚合氯化铝的絮凝形态学.环境科学学报,1998,18(1),1-8.
    [69]Gao B Y. WangY, Yue Q Y.The Chemical Species Distribution of aluminum in composite Flocculants Prepared form Poly alu-minum Chloride (PAC) and (PDMDAAC). Actahydrochem. Hydrobiol,2005, 33 (4), 365-371.
    [70]Subbiah R M, Sastry C A, Agomuthu P. Removal of zinc form rubberthread manufacturing industry wastewater using chemical precipitant/flocculants. Environmental progress,2000,33 (4),299-304.
    [71]佟瑞利,赵娜娜,刘成蹊.许泽胜.无机、有机高分子絮凝剂絮凝机理及进展.河北化工,2007,30(3),3-6.
    [72]钱孟康.当代中国和欧美城市给水处理技术的比较.中国给水排水,2000.10.
    [73]汤鸿霄.无机高分子絮凝剂的几点新认识.工业水处理.1997,17(4).1-5.
    [74]崔丹.高分子絮凝剂的发展概况.广州化工,2002,30(4),38-40.
    [75]Gregory J. Flocculation of polystyrene particles with cationic polyelectrolytes. Transactions of the Faraday Society 1969,65, 2260-2268.
    [76]Chen L, Chen D H, Wu C L. Studying Flocculation Mechanism of Chitosan with Pyrene-fluorescence Probe Method. Chinese Journal of Chemistry.2003,21,1224-1228.
    [77]Chen L. Insight into Flocculation Mechanism of Chitosan. Journal of Donghua University.2003,20 (1), 90-93.
    [78]Mohamed I. Khalil, Amal A. Aly. Evaluation of Some Starch Derivatives Containing Amide Groups as Flocculants. Starch/Starke,2001,53,323-329.
    [79]张万忠,李绵贵.季铵盐阳离子聚电解质P(DM-AM)用于造纸废水处理的研究.水处理技术,1999,25(5),293-296.
    [80]潘松汉,王真智.阳离子淀粉接枝絮凝剂的制备研究:淀粉和丙烯酰胺接枝共聚物的胺甲基化反应.化学通讯,1987,4,29-34.
    [81]Khalil M I, Abdel-Halim M G. Preparation of anionic starch containing carboxyl groups and its utilization as chelating agent, Starch,2001,53 (1),35-41.
    [82]庄云龙,石荣莹.磷酸酯淀粉絮凝剂在废水处理中的应用.纸和造纸,2000,4,47-48.
    [83]Sanjeev Chaudhari, Vinod Tare. Removal and Recovery of Heavy Metals from Simulated Wastewater Using Insoluble Starch Xanthate Process. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management,2008,12 (3),170-180.
    [84]鲁德忠,巫拱生,胡应模,李敏学,岳贵春,杨志明.内烯酰胺与玉米淀粉接枝共聚物的合成及其对含石油废水的处理:乙烯基类单体与淀粉的接枝共聚反应(Ⅴ).吉林大学自然科学学报,1989,1(1),81-85.
    [85]常文越,王英健.淀粉--丙烯酰胺接枝共聚物的合成及其污水絮凝实验研究.2000,26(3),9-10.
    [86]Karmakar N C, Sastry B S. Flocculation and settling characteristics of copper ore fines suspension from a concentration plant. CIM Bulletin,2000,9(2),67-71.
    [87]弗格森J E.无机立体化学与化学键.北京:高等教育出版社,1983.
    [88]何子乐.有机化学中的硬软酸碱原理.北京:科学出版社,1987
    [89]Politzer P, Weinstein H. Some relations between electronic distribution and electronegativity. Journal of Chemical Physics,1979,71(11),4218-4220.
    [90]Bernabe L Rivas, Hernan A Maturana, Ivan M Peric, Sandra Villegas. Metal ion extraction behavior of poly (2(methacryloyloxy)ethyl]trimethylammonium chloride-co-acrylic acid) resin. Polymer Bulletin, 1999,43 (2-3),277-283.
    [91]#12
    [92]陈义铺,吴激,王耐冬.4-氨基-三氮唑树脂对钌的吸附机理研究.贵金属,1994,14(3),1-6.
    [93]蒋建国,王伟.重金属螯合剂在废水治理中的应用研究.环境科学,1999,2(1),65-67.
    [94]李炎,唐涌濂,揭嵘,黄春华,龙作充,石利君,朱金栋,宿怡.不溶性交联淀粉黄原酸酯的制备与应用.湘潭大学自然科学学报,1981,2,30-43.
    [95]Kim B S, Lim S T. Removal of heavy metal ions from water by cross-linked carboxymethyl corn starch. Carbohydrate Polymers.1999,30 (3),217-223.
    [96]滕云超.接枝羧基纤维素在重金属废水治理中的应用研究.森林工程.2001,17(3),34-35.
    [97]相波,李义久,倪亚明.螯合淀粉衍生物对铜离子吸附性能的研究.环境化学,2004,23(2),193-197.
    [98]王刚.高分子重金属絮凝剂PEX的性能研究与应用:(硕士学位论文).兰州:兰州交通大学,2007.
    [99]魏安中.金属螫合剂和矿物表面作用机理的初步探讨.山东矿业学院出版社,济南,1978.
    [100]Banks W, Greenwood C T. Starch and Its Components. Edinburgh University Press, Edinburgh, 1975.
    [101]Fredriksson H, Silverio J, Andersson R, Eliasson A C. The influence of amylose and amylopectin characteristics on gelatinisation and retrogradation properties of different starches. Carbohydrate Polymers,1998,35,119-134.
    [102]肖锦,周勤.天然高分子絮凝剂.化工工业出版社,北京,2005.
    [103]Franck Delval, Gregorio Crini, Sabrina Bertini, Claudine Filiatre, Giangiacomo,Torri. Preparation, characterization and sorption properties of crosslinked starch-based exchangers. Carbohydrate Polymers,2005,60.67-75.
    [104]Hao Xuekui, Chang Qing. DuanLili, ZhangYongzhi. Synergetically Acting new Floccuants on the Basis of Starch-graft-Poly (acrylamide)-co-Sodium Xanthate. Starch/Starke,2007,59,251-257.
    [105]Athawale V D, Rathi SC, Lele V. Graft copolymerization on to maize starch-1. Grafting of methacrylamide using ceric ammonium nitrate as an initiator. European Polymer Journal,1998,34 (2):159-162.
    [106]Delval F, Crini G, Janus L, Vebrel J, Morcellet M. Novel crosslinked gels containing starch derivatives. Polymers water interaction. Applications in waster water treatment. Macromolecular Symposia,2001,166,103-108.
    [107]Delval F, Crini G, Sabrina B, Claudine F, Giangiacomo T. Preparation, characterization and sorption properties of crosslinked starch-based exchangers. Carbohydrate Polymers,2005,60,67-75.
    [108]Reyes Z, Clark C F, Comas M, Russell C R, Rist C E. Continuous production of graft copolymers of starch with acrylamide and acrylic acid by Ceric lon Catalysis. Nuclear Applications,1969,6, 509-518.
    [109]Mehrotra R, Ranby B. Graft copolymerization onto starch-I. Complexes of Mn3+ as initiators. Journal of Applied Polymer Science.1977,21,1647.
    [110]Varma I K, Singh O P, Sandle N K. Graft-copolymerization of Starch with Acrylamide. Angewandte Makromolekulare Chemie,1983,119,183-192.
    [111]刘晓洪,向新柱.淀粉接枝型高分子絮凝剂的合成.辽宁化工,1999,28(4)201-203.
    [112]邱广明,邱广亮.淀粉与丙烯酰胺接枝共聚物的合成及絮凝助留性能.精细化工,2001,18(3),162-164.
    [113]姚金水,臧伟功,任华荣.丙烯酰胺与玉米淀粉接枝共聚物的合成及其吸水性能研究.离子交换与吸附.1998,14(3),242-245.
    [114]巫拱生,鲁德忠,胡应模,孙艳霞.过氧化氢-硫脲引发丙烯酰胺与玉米淀粉接枝共聚反应规律的研究:乙烯基类单体与淀粉的接枝共聚反应(Ⅷ).吉林大学自然科学学报,1989,1,86-90.
    [115]Mino G, Kaizerman S. A new method for the preparation of graft copolymers. Polymerization initiated by Cerie ion redox systems. Journal of Polymer Science.1958,31,242.
    [116]潘祖仁.高分子化学.北京:化学工业出版社,1988.
    [117]Hao Xuekui, Chang Qing. L ixiaohong. Synthesis, Characterization and Properties of Polymeric Flocculant with the Function of Trapping Heavy Metal lons. Journal of Applied Polymer Science, 2009,112(1),135-141
    [118]何卫东.高分子化学实验.合肥:中国科学技术大学出版社,2003.
    [119]Fanta G F. Synthesis of graft and block copolymers of starch. In:R. J. Ceresa, editor Block and graft copolymerization. New York Wiley,1973, 1, 11.
    [120]柳明珠,张守汉,吴靖嘉.丙烯酸与土豆淀粉接枝共聚反应规律的研究.兰州大学学报(自然科学版),1992,28(2),112-117.
    [121]葛学武,徐相凌.淀粉接枝丙烯酰胺制备絮凝剂的研究方法.高分子材料科学与工程,1999,15(1), 132-134.
    [122]Reyes Z. Rist C E, Russell C R. Grafting of polyacrylonitrile to granular corn starch by initiation with cerium. Journal of Polymer Science Part A:Polymer Chemistry,1966,4,1031-1043.
    [123]潘松汉,王贞,黎国康.淀粉糊化对淀粉-丙烯酰胺接枝共聚的影响.精细化工,1993,10(4),56-60.
    [124]Athawale V D, Rathi S C. Effect of chain length of the alkyl group of alkyl methacrylates on graft polymerization onto starch using ceric ammonium nitrate as initiator. European Polymer Journal, 1997,33(7),1067-1071.
    [125]Athawale V D, Vidyagauri, Mumbai.Graft Copolymerization Onto Starch.3:Grafting of Acrylamide Using Ceric ion Initiation and Preparation of its Hydrogels. Starch/Starke.1998,50,426-431.
    [126]Mehrotra R, Ranby B. Graft Copolymerization onto Starch.1.Complexes of Mn3+ as Initiators. Journal of Applied Polymer Science.1977,21,1647-1654.
    [127]Athawale V D, Rathi S C. Graft Polymerization:Starch as a Model Substrate. Journal of Macromolecular Science,1999,39 (3),445-480.
    [128]孙衍宁,金辉,宋文静,邢效功.淀粉改性阳离子多元共聚物对制浆造纸废水的处理.造纸废水处理工艺,2008,6.
    [129]宋晶晶 马希晨.淀粉/丙烯酰胺/内烯酰氧乙基三甲基氯化铵多元共聚物的合成.精细石油化工,2006 23(2).
    [130]张友松.变性淀粉生产与应用手册.北京:中国轻工业出版社,1999.
    [131]相波,李义久,倪亚明.水处理剂合成中交联淀粉制备工艺的优化.上海化工,2002,23.
    [132]复旦大学化学系,高分子实验技术.上海:复旦大学出版社,1983.
    [133]Billmeyer F W. Textbook of polymer science. Now York Wiley,1971.
    [134]Singh R P, Karmakar G P, Rath S K, Karmakar N C, Pandey S R, Kannan K, Jain S K, Lan N T, Tripathy T. Novel biodegradable flocculants based on polysaccharides. Current Science,2000,78 (7), 798-803.
    [135]周祖康,顾惕人,马季铭.胶体化学基础.北京:北京大学出版社.1996.
    [136]Ni Y C. Structural Identification of Organic Compounds and Organic Spectroscopy. Beijing, Chain, 2005,490-498.
    [137]John Dean A. Lang's Handbook of Chemistry (fifteenth edition). Science Press and Mcgraw-Hill Education (Asia) Co.7.1.
    [138]赵家政,徐洮.分析电子显微实用手册.宁夏人民教育出版社.1996.
    [139]刁静茹,常青,王娟.CS2/H2O2与CAN引发体系合成ST-g-PAM的比较.兰州交通大学报,2005,24(6),62-65.
    [140]Krishnamoorthi S, Singh R P. Synthesis, Characterization, Flocculation, and Rheological Characteristics of Hydrolyzed and Unhydrolyzed Polyacrylamide-Grafted Poly(vinyl alcohol). Journal of Applied Polymer Science,2006,101,2109-2122.
    [141]Nayak B R, Singh R P. Synthesis and characterization of grafted hydroxypropyl guar gum by ceric ion induced initiation.European Polymer Journal 2001,37,1655-1666.
    [142]Owen D R, Shen T C. In Structure Solubility Relationship in Polymers. Harris F W and Seymour R B Eds., Academic Press,1977.
    [143]张淑媛,李白法,张子勇,刘文丽.不溶性淀粉黄原酸酯的合成.高分子材料科学与工程,1991,5,114-122.
    [144]Rao S R. Xanthate and related compounds.Marcel Dekker, New York,1971, New York.
    [145]Tipman R N, Leja J. Reactivity of Xanthate and dixanthogen in aqueous solutions of different pH. Colloid and polymer Science,1975,253,4-10.
    [146]Schaum K, Ziedler P, Wagner E. Hydrolysis and dissociation of xanthates. Kolloid-Zeitschrift,1933, 65,264.
    [147]Sun Z, Forsling W. Degradation kinetics of ethyl-xanthate as a function of pH in aqueous solution. Minerals Engineering,1997,10 (4),389-400.
    [148]Iwasaki I, Cook S R B. The decomposition of xanthate in acid solution. Journal of the American Chemical Society,1958,80,285-288.
    [149]Nanjo M, Yamasaki T. Acid decomposition of metal xanthate complexes and their stability. Bulletin of the chemical society of Japan,1969,42,972-976.
    [150]Chang Y K. Removal and Stabilization of Copper Ions by Xanthate Processes. Dissertation for Doctor of Philosophy, Department of Environmental Engineering, National Cheng Kung University. April 26,2003.
    [151]Carol K. Wagner, Hall G, Riegel B, Virgilio J D, Kamath V. Germann G. Cross-linked polystyrene-dithiocarbamate polymers:Use in heavy metal removal. Journal of Applied Polymer Science,1986,31,1797-1804.
    [152]Homylev P I. The behavior of aqueous solution of potassium ethyl-and isoamyl xanthates. Investigatory work on the theory and practice of flotation, MEKHANOBR INSTITUTE,1936,2.
    [153]Wronski M. Kinetics of decomposition of xanthates in sodium hydroxide solutions. Roczniki Chemistry.1959,33,1071-1080.
    [154]Li-Ming Zhang, Dan-Qing Chen. An investigation of absorption of lead(Ⅱ) and copper(Ⅱ) ions by water-insoluble starch graft copolymers.Colloids and surfaces A:Physicochemical and Engineering Aspects,2002(205):231-236.
    [155]Qing Chang, Xuekui Hao, Lili Duan. Synthesis of Crosslinked Starch-graft-polyacrylamide-co-sodium Xanthate And Its Performances In Wastewater Treatment. Journal of Hazardous Materials, 2008,159(2-3),548-553.
    [156]Besra L, Sengupta D K, Roy SK, Ay P. Influence of polymer adsorption and conformation on flocculation and dewatering of kaolin suspension. Separation and Purification Technology,2004,37, 231-246.
    [157]宋延耀.配位化学.成都:成都科技大学出版社,1990.
    [158]戴树桂.环境化学.北京:高等教育出版社,1996.
    [159]段丽丽.高分子重金属絮凝剂CSAX的性能研究(一)(硕士学位论文).兰州:兰州交通大学,2008.
    [160]Sharma Y C. Cr (Ⅵ) removal from industrial effluents by adsorption on an indigenous low-cost material. Colloids and Surfaces A, Physicochemical and Engineering Aspects,2003,215 (1-3), 155-162.
    [161]Nakajima A, Baba Y. Mechanism of hexavalent chromium adsorption by persimmon tannin gel. Water Research,2004,38 (12),2859-2864.
    [162]Kobya M. Removal of Cr (Ⅵ) from aqueous solutions by adsorption onto hazelnut shell activated carbon:kinetic and equilibrium studies. Bioresource Technology,2004,91 (3),317-321.
    [163]Babel S, Kurniawan T A. Cr(Ⅵ) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan.Chemosphere 2004,54 (7),951-967.
    [164]Chun L, Hongzhang C, Zuohu L. Adsorptive removal of Cr (Ⅵ) by Fe-modified steam exploded wheat straw. Process Biochemistry,2004,39,541-545.
    [165]Ranganathan K. Chromium removal by activated carbons prepared from Casurina equisetifolia leaves. Bioresource Technology,2000,73 (3),99-103.
    [166]Bishnoi N R, Bajaj M, Sharma N, Gupta A. Adsorption of Cr(Ⅵ) on activated rice husk carbon and activated alumina. Bioresource Technology,2004,91 (3),305-307.
    [167]大连理工大学无机化学教研室.无机化学.河北:高等教育出版社,1990.
    [168]华东理工大学化学系,四川大学化工学院.分析化学.北京:高等教育出版社,2003
    [169]张永智.高分子重金属絮凝剂CSAX的性能研究(二)(硕士学位论文).兰州:兰州交通大学.2008.
    [170]于贵芬,青长乐.汞在腐殖酸上的吸附与解吸特征.环境科学学报.2001,21(5),601-606.
    [171]安茂忠,屠振密.电镀Zn、Cu、Ni、Cr及其合金的研究进展.电子工艺技术,2001,22(1),5-9.
    [172]段德莉,李曙.电镀镍铬合金的研究进展.材料保护,2006,39(2),32-36,41.
    [173]张益国.黄酸盐程序去除铜离子及其生成物之稳定性(博士学位论文).台湾:国力成功大学,2003.
    [174]Leja J. Surface chemistry of froth flotation. New York:Plenum Press.1982.
    [175]雒娅楠,邱志刚,宋诗哲,董飒英,王洪仁,于辉.PVD法及与电镀复合制备光纤腐蚀传感器的Fe-C合金敏感膜.化工学报,2004,55(6),947-951.
    [176]张永珍,马海燕.处理电镀废水新型设备的研制.环境科学研究:1999.12(6),36-38.
    [177]唐兆民,张景书.电镀废水的处理现状与发展趋势.国土与自然资源研究,2004:2,69-71.
    [178]马小隆,刘晓东,周广柱.电镀废水处理存在的问题及解决方案.山东科技大学学报(自然科学版),2005,24(1),107-111.
    [179]WU-CHUNG, JUN-YI WU. dynamic adsorption behaviors between Cu2+ ion and water-insouble amphoteric starch in aqueous solutions. Journal of Applied Polymer Science,2001.81,2849-2855.
    [180]Yi Jiu Li, Bo Xiang, Ya Ming Ni. Removal of Cu(Ⅱ) from Aqueous Solutions by Chelating Starch Derivatives. Journal of Applied Polymer Science,2004,92,3881-3885.
    [181]Xue-Song Wang, Yong Qin. Removal of Ni(Ⅱ), Zn(Ⅱ) and Cr(Ⅵ) from aqueous solution by Alternanthera philoxeroides biomass. Journal of Hazardous Materials,2006, B138,582-588.
    [182]Singh K K, Rastogi R, Hasan S H. Removal of Cr(Ⅵ) from wastewater using rice bran.Journal of Colloid and Interface Science,2005,290.61-68.
    [183]JING-MEISUN, CHISHANG, JU-CHANGHUANG. Co-removal of Hexavalent Chromium through Copper Precipitation in Synthetic Wastewater. Environmental Science and Technology,2003,37,4281-4287
    [184]Rizkalla N, HILDGEN P. Influence of the fractal character of model substances on their reactivity at solid-liquid interfaces. Journal of Colloid and Interface Science,1999,215,43-53.
    [185]Sutherland D N. A theoretical model of floc structure. Journal of Colloid and Interface Science,1967, 25,373-380.
    [186]余振勋,谭凯旋,易正戟.絮体生长模拟及其分形特性的研究进展.南华大学学报(自然科学版),2007,21(2),46-49.
    [187]魏在山,徐晓军,宫磊.新型聚硅硫酸铁铝处理废水的絮体分形研究.中山大学学报(自然科学版),2004,43,217-220.
    [188]Chakraborti. Characterization of alum floc by image analysis. Environmental Science and Technology,2000,34 (18),3969-3976.
    [189]Serge Stoll, Jacques Buffle. Computer Simulation of Flocculation Progresses:The Roles of Chain Conformation and Chain/Colloid Concentration Ratio in the Aggregate Structures. Journal of Colloid and Interface Science,1998,205,290-304.
    [190]Mandalena, Hermawan, Graeme C, Bushel I, Vincent S J. Floc Strength Chracterization Technique. An Insight into Silica Aggregation Langmuir,2004,20,6450-6457.
    [191]贾金平,谢少艾,陈虹锦.电镀废水处理技术及工程实例.北京:化学工业出版社,2008.
    [192]Tare V, Chaudhari S. Evaluation of soluble and insoluble xanthate process for the removal of heavy metals from wastewaters. Water Research,1987,21,1109-1118.
    [193]Khalil M I, Farag S. Utilization of Some Starch Derivatives in Heavy Metal Ions Removal. Journal of Applied Polymer Science,1998,69,45-50.
    [194]龚盛昭.淀粉基黄原酸盐合成新工艺及其在废水处理中的应用.化工环保,2001,21(2),95-97.
    [195]张淑媛.不溶性淀粉黄原酸酯脱除废水中铜.环境化学,1989,8(1),47-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700